The EMS Publishing House is now EMS Press and has its new home at ems.press.

Please find all EMS Press journals and articles on the new platform.

Zeitschrift für Analysis und ihre Anwendungen


Full-Text PDF (969 KB) | Metadata | Table of Contents | ZAA summary
Volume 3, Issue 4, 1984, pp. 303–313
DOI: 10.4171/ZAA/109

Published online: 1984-08-31

Spektrale Geometrie und Huygenssches Prinzip für Tensorfelder und Differentialformen II

Rainer Schimming[1] and Gunter Teumer[2]

(1) Ernst-Moritz-Arndt-Universität Greifswald, Germany
(2) Ernst-Moritz-Arndt-Universität Greifswald, Germany

Geometrical properties (especially local flatness) of a Riemannian manifold are recognized from analytical properties (spectrum or Huygens’ principle) of a Laplace operator. Especially, the "definiteness problem" of the spectral geometry of closed manifolds is solved for the canonical Laplace operator which acts on diffrential forms.

No keywords available for this article.

Schimming Rainer, Teumer Gunter: Spektrale Geometrie und Huygenssches Prinzip für Tensorfelder und Differentialformen II. Z. Anal. Anwend. 3 (1984), 303-313. doi: 10.4171/ZAA/109