The EMS Publishing House is now EMS Press and has its new home at ems.press.

Please find all EMS Press journals and articles on the new platform.

Zeitschrift für Analysis und ihre Anwendungen


Full-Text PDF (196 KB) | Abstract as PDF | Metadata | Table of Contents | ZAA summary
Volume 28, Issue 2, 2009, pp. 205–222
DOI: 10.4171/ZAA/1381

Published online: 2009-06-30

Error Estimates for the Cardinal Spline Interpolation

Gennadi Vainikko[1]

(1) Tartu University, Estonia

For the Sobolev class $W_{\textrm{per}}^{m,\infty}(\mathbb{R})$ of 1-periodic functions, an unimprovable error estimate for the spline interpolants of order $m$ on the uniform grid is known. In the present paper, this error estimate is extended to the Sobolev class $V^{m,\infty}(\mathbb{R})$ of (nonperiodic) functions on $\mathbb{R}$ having bounded $m$th derivative. Some further error estimates are established including the error estimates for derivatives of the spline interpolant.

Keywords: Splines, interpolation, error estimates, best constants

Vainikko Gennadi: Error Estimates for the Cardinal Spline Interpolation. Z. Anal. Anwend. 28 (2009), 205-222. doi: 10.4171/ZAA/1381