The EMS Publishing House is now EMS Press and has its new home at ems.press.

Please find all EMS Press journals and articles on the new platform.

Zeitschrift für Analysis und ihre Anwendungen


Full-Text PDF (136 KB) | Abstract as PDF | Metadata | Table of Contents | ZAA summary
Volume 25, Issue 4, 2006, pp. 457–466
DOI: 10.4171/ZAA/1301

Published online: 2006-12-31

Composition Operators between H and α-Bloch Spaces on the Polydisc

Stevo Stevic[1]

(1) Serbian Academy of Science, Beograd, Serbia

Let $U^n$ be the unit polydisc of ${\mathbb C}^n$ and $\vp(z)=(\vp_1(z),\ldots,\vp_n(z))$ a holomorphic self-map of $U^n.$ Let $H(U^n)$ denote the space of all holomorphic functions on $U^n,$ $H^\infty(U^n)$ the space of all bounded holomorphic functions on $U^n,$ and ${\cal B}^a(U^n),$ $a>0,$ the $a$-Bloch space, i.e.,\hspace{-0.3cm} $$ {\cal B}^a(U^n)=\bigg\{ f\in H(U^n)\, |\, \|f\|_{{\cal B}^a}=|f(0)|+\sup\limits_{z\in U^n}\sum\limits^n_{k=1} \left|\frac{\partial f} {\partial z_k}(z)\right|\left(1- |z_k|^2\right)^a<+\infty\bigg\}. \hspace{-0.3cm} $$ We give a necessary and sufficient condition for the composition operator $C_{\vp}$ induced by $\vp$ to be bounded and compact between $H^\infty(U^n)$ and $a$-Bloch space ${\cal B}^a(U^n),$ when $a\geq 1.$

Keywords: Composition operators, alpha-Bloch space, unit polydisc, compactness, boundedness

Stevic Stevo: Composition Operators between H and α-Bloch Spaces on the Polydisc. Z. Anal. Anwend. 25 (2006), 457-466. doi: 10.4171/ZAA/1301