The EMS Publishing House is now EMS Press and has its new home at ems.press.

Please find all EMS Press journals and articles on the new platform.

Zeitschrift für Analysis und ihre Anwendungen


Full-Text PDF (217 KB) | Metadata | Table of Contents | ZAA summary
Volume 25, Issue 1, 2006, pp. 1–21
DOI: 10.4171/ZAA/1275

Published online: 2006-03-31

Low-Frequency Stability Analysis of Periodic Traveling-Wave Solutions of Viscous Conservation Laws in Several Dimensions

Myunghyun Oh[1] and Kevin Zumbrun[2]

(1) University of Kansas, Lawrence, United States
(2) Indiana University, Bloomington, United States

We generalize the work of Oh & Zumbrun and Serre on spectral stability of spatially periodic traveling waves of systems of viscous conservation laws from the one-dimensional to the multi-dimensional setting. Specifically, we extend to multi-dimensions the connection observed by Serre between the linearized dispersion relation near zero frequency of the linearized equations about the wave and the homogenized system obtained by slow modulation (WKB) approximation. This may be regarded as partial justification of the WKB expansion; an immediate consequence is that hyperbolicity of the multi-dimensional homogenized system is a necessary condition for stability of the waves. As pointed out by Oh & Zumbrun in one dimension, the description of the low-frequency dispersion relation is also a first step in the determination of time-asymptotic behavior.

Keywords: Stability, WKB, periodic traveling-waves

Oh Myunghyun, Zumbrun Kevin: Low-Frequency Stability Analysis of Periodic Traveling-Wave Solutions of Viscous Conservation Laws in Several Dimensions. Z. Anal. Anwend. 25 (2006), 1-21. doi: 10.4171/ZAA/1275