The EMS Publishing House is now EMS Press and has its new home at ems.press.

Please find all EMS Press journals and articles on the new platform.

Zeitschrift für Analysis und ihre Anwendungen


Full-Text PDF (214 KB) | Metadata | Table of Contents | ZAA summary
Volume 24, Issue 1, 2005, pp. 117–135
DOI: 10.4171/ZAA/1232

Published online: 2005-03-31

Asymptotic Behavior of Discontinuous Solutions to Thermoelastic Systems with Second Sound

Reinhard Racke[1] and Ya-Guang Wang[2]

(1) Universität Konstanz, Germany
(2) Jiao Tong University, Shanghai, China

We consider the Cauchy problem for linear and semilinear thermoelastic systems with second sound in one space dimension with discontinuous initial data. Due to Cattaneo's law, replacing Fourier's law for heat conduction, the system is strictly hyperbolic. We investigate the behavior of discontinuous solutions as the relaxation parameter tends to zero, which corresponds to a formal convergence of the system to the hyperbolic-parabolic type of classical thermoelasticity. We obtain that the jump of the temperature goes to zero while the jumps of the gradient of the displacement and the spatial derivative of the temperature are propagated along the characteristic curves of the elastic fields when the relaxation parameter vanishes. Moreover, when certain growth conditions are imposed on the nonlinear functions, we deduce that these jumps decay exponentially when the time goes to infinity, more rapidly for small heat conduction coefficient.

Keywords: Semilinear, hyperbolic thermoelasticity, jump

Racke Reinhard, Wang Ya-Guang: Asymptotic Behavior of Discontinuous Solutions to Thermoelastic Systems with Second Sound. Z. Anal. Anwend. 24 (2005), 117-135. doi: 10.4171/ZAA/1232