The EMS Publishing House is now EMS Press and has its new home at ems.press.

Please find all EMS Press journals and articles on the new platform.

Zeitschrift für Analysis und ihre Anwendungen


Full-Text PDF (244 KB) | Metadata | Table of Contents | ZAA summary
Volume 22, Issue 3, 2003, pp. 553–568
DOI: 10.4171/ZAA/1162

Published online: 2003-09-30

Maximum Local Lyapunov Dimension Bounds the Box Dimension. Direct Proof for Invariant Sets on Riemannian Manifolds

Karin Gelfert[1]

(1) Physik komplexer Systeme, Dresden, Germany

For a C^1 map φ on a Riemannian manifold and for a compact invariant set K it is proven that the maximal local Lyapunov dimension of φ on K bounds the box dimension of K from above. A version for Hilbert spaces is also presented. The introduction of an adapted Riemannian metric provides in a certain sense an optimal upper bound for the box dimension of the Lorenz attractor.

Keywords: Box dimension, Lyapunov dimension, singular value function

Gelfert Karin: Maximum Local Lyapunov Dimension Bounds the Box Dimension. Direct Proof for Invariant Sets on Riemannian Manifolds. Z. Anal. Anwend. 22 (2003), 553-568. doi: 10.4171/ZAA/1162