The EMS Publishing House is now EMS Press and has its new home at ems.press.

Please find all EMS Press journals and articles on the new platform.

Zeitschrift für Analysis und ihre Anwendungen


Full-Text PDF (219 KB) | Metadata | Table of Contents | ZAA summary
Volume 22, Issue 2, 2003, pp. 275–288
DOI: 10.4171/ZAA/1145

Published online: 2003-06-30

Deriving Harmonic Functions in Higher Dimensional Spaces

Tao Qian[1] and Franciscus Sommen[2]

(1) University of Macau, China
(2) Universiteit Gent, Belgium

For a harmonic function, by replacing its variables with norms of vectors in some multi-dimensional spaces, we may induce a new function in a higher dimensional space. We show that, after applying to it a certain power of the Laplacian, we obtain a new harmonic function in the higher dimensional space. We show that Poisson and Cauchy kernels and Newton potentials, and even heat kernels are all deducible using this method based on their forms in the lowest dimensional spaces. Fueter's theorem and its generalizations are deducible as well from our results. The latter has been used to singular integral and Fourier multiplier theory on the unit spheres and their Lipschitz perturbations of higher dimensional Euclidean spaces.

Keywords: Harmonic functions, Cauchy-Riemann operator, Clifford monogenic function, singular integrals, Fourier multipliers

Qian Tao, Sommen Franciscus: Deriving Harmonic Functions in Higher Dimensional Spaces. Z. Anal. Anwend. 22 (2003), 275-288. doi: 10.4171/ZAA/1145