The EMS Publishing House is now EMS Press and has its new home at ems.press.

Please find all EMS Press journals and articles on the new platform.

Zeitschrift für Analysis und ihre Anwendungen


Full-Text PDF (177 KB) | Metadata | Table of Contents | ZAA summary
Volume 22, Issue 2, 2003, pp. 463–470
DOI: 10.4171/ZAA/1156

Published online: 2003-06-30

Approximation by Superpositions of a Sigmoidal Function

Grzegorz Lewicki[1] and G. Marino[2]

(1) Jagiellonian University, Krakow, Poland
(2) Università della Calabria, Arcavacata Di Rende, Italy

We generalize a result of B. Gao and Y. Xu [J. Math. Anal. Appl. 178 (1993) 221--226] concerning the approximation of functions of bounded variation by linear combinations of a fixed sigmoidal function to the class of functions of bounded f-variation. Also, in the case of one variable, a proposition of A. R. Barron [IEEE Trans. Inf. Theory 36 (1993) 930--945] is improved. Our proofs are similar to that of Gao and Xu [loc. cit.].

Keywords: Hölder continuity property, sigmoidal function, φ-variation, uniform approximation

Lewicki Grzegorz, Marino G.: Approximation by Superpositions of a Sigmoidal Function. Z. Anal. Anwend. 22 (2003), 463-470. doi: 10.4171/ZAA/1156