The EMS Publishing House is now EMS Press and has its new home at

Please find all EMS Press journals and articles on the new platform.

Zeitschrift für Analysis und ihre Anwendungen

Full-Text PDF (212 KB) | Metadata | Table of Contents | ZAA summary
Volume 20, Issue 4, 2001, pp. 805–815
DOI: 10.4171/ZAA/1046

Published online: 2001-12-31

Linear Combinations of Frames and Frame Packets

Ole Christensen[1]

(1) Technical University of Denmark, Lyngby, Denmark

We find coefficients $c_{mn} (m, n \in \mathbb Z)$ such that for an arbitrary frame $\lbrace f_n \rbrace_{n \in \mathbb Z}$ the set of vectors $\lbrace \phi_m \rbrace_{m \in \mathbb Z} = \lbrace \sum _{n \in \mathbb Z} c_{mn}f_n \rbrace_{m \in \mathbb Z}$ will again be a frame. Appropriate coefficients can always be chosen as function values $c_{mn} = g(\frac {n}{\beta} – m\alpha)$), where $g$ belongs to a broad class of functions generating a Gabor frame $\lbrace E_{\beta m} T_{\alpha n}g \rbrace_{m, n \in \mathbb Z}$ for $L^2(\mathbb R)$. We also prove a version of the splitting trick, which allows to construct a large family of frames based on a single (wavelet or Gabor) frame.

Keywords: Frames, frame packets, Gabor frames

Christensen Ole: Linear Combinations of Frames and Frame Packets. Z. Anal. Anwend. 20 (2001), 805-815. doi: 10.4171/ZAA/1046