The EMS Publishing House is now EMS Press and has its new home at

Please find all EMS Press journals and articles on the new platform.

Zeitschrift für Analysis und ihre Anwendungen

Full-Text PDF (1076 KB) | Metadata | Table of Contents | ZAA summary
Volume 17, Issue 4, 1998, pp. 979–996
DOI: 10.4171/ZAA/862

Published online: 1998-12-31

Balls in Constrained Urns and Cantor-Like Sets

Günther J. Wirsching[1]

(1) Katholische Universität Eichstätt, Germany

Let $A_n(k)$ denote the number of different ways to distribute $k$ indistinguishable balls into $n$ constrained urns, with capacities $c_1,\cdots, c_n$. We consider the $normalized \ counting \ functions \ \varphi_n(x) = \gamma_nA_n(|\varrho x|)$, where $\varphi_n, \varrho_n > 0$ are appropriate constants such that supp$(\varphi_n) = [0,1]$ and $\int^1_0 \varphi_n (x)dx = 1$. It is shown here that, if $(c_n)_{n \in \mathbb N}$ is $asymptotically \ geometric \ with \ weight \ q > \frac{3}{2}$, i.e. if $q^{–n}c_n$ converges to some positive real number, then the functions $\varphi_n$ converge to some $C^{\infty}$-function $\varphi$ on $\mathbb R$. This function $\varphi$ is the unique solution of the integral equation $\varphi(x) = \frac{q}{q–1} \int^{qx}{qx–q+1} \varphi (t)dt$ satisfying supp $\varphi \in [0,1]$ and $\int^1_0 \varphi(t)dt = 1$. Moreover, if $q > 2$, it is shown that $\varphi$ is a polynomial on each interval outside a Cantor-like set in the interval [0, 1].

Keywords: Balls in constrained urns, special partitions of integers, asymptotically geometric sequences, sequences of integral operators, integral-functional equations, Cantor-like sets

Wirsching Günther: Balls in Constrained Urns and Cantor-Like Sets. Z. Anal. Anwend. 17 (1998), 979-996. doi: 10.4171/ZAA/862