The EMS Publishing House is now EMS Press and has its new home at ems.press.

Please find all EMS Press journals and articles on the new platform.

Zeitschrift für Analysis und ihre Anwendungen


Full-Text PDF (1644 KB) | Metadata | Table of Contents | ZAA summary
Volume 16, Issue 2, 1997, pp. 311–348
DOI: 10.4171/ZAA/765

Published online: 1997-06-30

Existence Results for the Quasistationary Motion of a Free Capillary Liquid Drop

Matthias Günther[1] and Georg Prokert[2]

(1) Universität Leipzig, Germany
(2) TU Eindhoven, Netherlands

We consider instationary creeping flow of a viscous liquid drop with free boundary driven by surface tension. This yields a nonlocal surface motion law involving the solution of the Stokes equations with Neumann boundary conditions given by the curvature of the boundary. The surface motion law is locally reformulated as a fully nonlinear parabolic (pseudodifferential) equation on a smooth manifold. Using analytic expansions, invariance properties, and a priori estimates we give, under suitable presumptions, a short-time existence and uniqueness proof for the solution of this equation in Sobolev spaces of sufficiently high order. Moreover, it is shown that if the initial shape of the drop is near the ball, then the evolution problem has a solution for all positive times which exponentially decays to the ball.

Keywords: Stokes flows, quasisteady motions, surface tensions, nonlinear parabolic equations, surface motion laws

Günther Matthias, Prokert Georg: Existence Results for the Quasistationary Motion of a Free Capillary Liquid Drop. Z. Anal. Anwend. 16 (1997), 311-348. doi: 10.4171/ZAA/765