The EMS Publishing House is now EMS Press and has its new home at ems.press.

Please find all EMS Press journals and articles on the new platform.

Zeitschrift für Analysis und ihre Anwendungen


Full-Text PDF (736 KB) | Metadata | Table of Contents | ZAA summary
Volume 16, Issue 1, 1997, pp. 217–228
DOI: 10.4171/ZAA/760

Published online: 1997-03-31

Nonlinear Vibration Systems with Two Parallel Random Excitations

J. vom Scheidt[1] and U. Wöhrl[2]

(1) Technische Universität Chemnitz, Germany
(2) Technische Universität Chemnitz-Zwickau, Germany

Systems of nonlinear vibration differential equations are investigated where the non-linearities are given by polynomials of any degree. The random excitations are induced by two parallel processes. These random excitations of an often applied type are expressed by linear functionals of weakly correlated processes with correlation length $\epsilon$. The moments of the solutions and their first and second derivatives are expanded with respect to $\epsilon$ where all terms up to order $\epsilon^2$ are included. Approximations of the correlation functions are given explicitely. Only the quadratic and cubic non-linearities have an influence on the correlation functions in this approximation order.

Keywords: Random vibrations, weakly correlated processes

vom Scheidt J., Wöhrl U.: Nonlinear Vibration Systems with Two Parallel Random Excitations. Z. Anal. Anwend. 16 (1997), 217-228. doi: 10.4171/ZAA/760