The EMS Publishing House is now EMS Press and has its new home at

Please find all EMS Press journals and articles on the new platform.

Zeitschrift für Analysis und ihre Anwendungen

Full-Text PDF (1110 KB) | Metadata | Table of Contents | ZAA summary
Volume 15, Issue 1, 1996, pp. 57–74
DOI: 10.4171/ZAA/688

Published online: 1996-03-31

A New Algebra of Periodic Generalized Functions

V. Valmorin[1]

(1) Université des Antilles et de la Guyane, Pointe-à-Pitre, Guadeloupe

Let $n$ denote a strictly positive integer. We construct a complex differential algebra $\mathcal G_n$ of so-called $2\pi$-periodic generalized functions. We show that the space $\mathcal D^{'(n)}_{2\pi}$ of $2\pi$-periodic distributions on $\mathbb R^n$ can be canonically embedded into $\mathcal G_n$. Next we lay the foundation for calculation in $\mathcal G_n$. This algebra $\mathcal G_n$ enables one to solve, in a canonical way, differential problems with strong singular periodic data which have no solution in $\mathcal D^{'(n)}_{2\pi}$.

Keywords: Periodic distributions, Fourier coefficients, periodic generalized functions, Colombeau algebras, differential problems with strong non-linearities

Valmorin V.: A New Algebra of Periodic Generalized Functions. Z. Anal. Anwend. 15 (1996), 57-74. doi: 10.4171/ZAA/688