The EMS Publishing House is now EMS Press and has its new home at ems.press.

Please find all EMS Press journals and articles on the new platform.

Zeitschrift für Analysis und ihre Anwendungen


Full-Text PDF (727 KB) | Metadata | Table of Contents | ZAA summary
Volume 13, Issue 4, 1994, pp. 659–666
DOI: 10.4171/ZAA/485

Published online: 1994-12-31

The Comparison of Two Error Estimates for Approximate Solutions of the Poisson Equation

Gerald Lüttgens[1]

(1) RWTH Aachen, Germany

The purpose of the present paper is to discuss different error estimates for the numerical solution of a Dirichlet problem for the Poisson equation, calculated via the five point (discrete) Laplacian. Whereas the first error bound, a sum of ordinary $L^\infty$-moduli, is deduced from the usual stability inequality, use is made of some properties of the discrete Green function to verify another stability inequality in terms of $l^1$-norms, which then implies the second estimate via $\tau$-moduli multiplied by a logarithm factor. In the following we will show that it depends on the solution of the boundary value problem which measure of smoothness or rather which error estimate delivers the correct rate of convergence. The paper concludes with some remarks illustrating relations to the well-known logarithm factor in connection with finite element approximation.

Keywords: Poisson equation, finite difference method, stability, comparison of error bounds

Lüttgens Gerald: The Comparison of Two Error Estimates for Approximate Solutions of the Poisson Equation. Z. Anal. Anwend. 13 (1994), 659-666. doi: 10.4171/ZAA/485