The EMS Publishing House is now EMS Press and has its new home at ems.press.

Please find all EMS Press journals and articles on the new platform.

Zeitschrift für Analysis und ihre Anwendungen


Full-Text PDF (271 KB) | Metadata | Table of Contents | ZAA summary
Volume 1, Issue 2, 1982, pp. 7–9
DOI: 10.4171/ZAA/10

Published online: 1982-04-30

Theorems on polynomials in right invertible operators

Danuta Przeworska-Rolewicz[1]

(1) Polish Academy of Sciences, Warsaw 10, Poland

Suppose that $Q(D)$ is a polynomial in a right invertible operator acting in a linear space $X$, in general, with operator coefficients. Then $Q(D) = 0$ if and only if $Q(D) R^kz = 0$ for all $z \in \mathrm {ker} \: D (k = 0, 1, 2, \dots)$ under appropriate assumptions on $X$, the right inverse $R$ of $D$ and coefficients of $Q(D)$.

No keywords available for this article.

Przeworska-Rolewicz Danuta: Theorems on polynomials in right invertible operators. Z. Anal. Anwend. 1 (1982), 7-9. doi: 10.4171/ZAA/10