Revista Matemática Iberoamericana


Full-Text PDF (2353 KB) | Metadata | Table of Contents | RMI summary
Volume 7, Issue 1, 1991, pp. 65–114
DOI: 10.4171/RMI/106

Published online: 1991-04-30

Local Properties of Stationary Solutions of some Nonlinear Singular Schr6dinger Equations

Bouchaib Guerch[1] and Laurent Véron[2]

(1) Université François Rabelais, Tours, France
(2) Université François Rabelais, Tours, France

We study the local behaviour of solutions of the following type of equation $–\Delta u – V(x)u + g(u) = 0$ when $V$ is singular at some points and $g$ is a non-decreasing function. Emphasis is put on the case when $V(x) = clxl^{–2}$ and $g$ has a power-like growth.

No keywords available for this article.

Guerch Bouchaib, Véron Laurent: Local Properties of Stationary Solutions of some Nonlinear Singular Schr6dinger Equations. Rev. Mat. Iberoam. 7 (1991), 65-114. doi: 10.4171/RMI/106