The EMS Publishing House is now EMS Press and has its new home at ems.press.

Please find all EMS Press journals and articles on the new platform.

Revista Matemática Iberoamericana


Full-Text PDF (2087 KB) | Metadata | Table of Contents | RMI summary
Volume 33, Issue 1, 2017, pp. 29–66
DOI: 10.4171/RMI/927

Published online: 2017-02-22

Computing minimal interpolants in $C^{1,1}(\mathbb R^d)$

Ariel Herbert-Voss[1], Matthew J. Hirn[2] and Frederick McCollum[3]

(1) Harvard University, Cambridge, USA
(2) Michigan State University, East Lansing, USA
(3) New York University, USA

We consider the following interpolation problem. Suppose one is given a finite set $E \subset \mathbb R^d$, a function $f \colon E \to \mathbb R$, and possibly the gradients of $f$ at the points of $E$. We want to interpolate the given information with a function $F \in C^{1,1}(\mathbb R^d)$ with the minimum possible value of Lip$(\nabla F)$. We present practical, efficient algorithms for constructing an $F$ such that Lip$(\nabla F)$ is minimal, or for less computational effort, within a small dimensionless constant of being minimal.

Keywords: Algorithm, interpolation, Whitney extension, minimal Lipschitz extension

Herbert-Voss Ariel, Hirn Matthew, McCollum Frederick: Computing minimal interpolants in $C^{1,1}(\mathbb R^d)$. Rev. Mat. Iberoam. 33 (2017), 29-66. doi: 10.4171/RMI/927