The EMS Publishing House is now **EMS Press** and has its new home at ems.press.

Please find all EMS Press journals and articles on the new platform.

# Revista Matemática Iberoamericana

Full-Text PDF (2087 KB) | Metadata | Table of Contents | RMI summary

**Volume 33, Issue 1, 2017, pp. 29–66**

**DOI: 10.4171/RMI/927**

Published online: 2017-02-22

Computing minimal interpolants in $C^{1,1}(\mathbb R^d)$

Ariel Herbert-Voss^{[1]}, Matthew J. Hirn

^{[2]}and Frederick McCollum

^{[3]}(1) Harvard University, Cambridge, USA

(2) Michigan State University, East Lansing, USA

(3) New York University, USA

We consider the following interpolation problem. Suppose one is given a finite set $E \subset \mathbb R^d$, a function $f \colon E \to \mathbb R$, and possibly the gradients of $f$ at the points of $E$. We want to interpolate the given information with a function $F \in C^{1,1}(\mathbb R^d)$ with the minimum possible value of Lip$(\nabla F)$. We present practical, efficient algorithms for constructing an $F$ such that Lip$(\nabla F)$ is minimal, or for less computational effort, within a small dimensionless constant of being minimal.

*Keywords: *Algorithm, interpolation, Whitney extension, minimal Lipschitz extension

Herbert-Voss Ariel, Hirn Matthew, McCollum Frederick: Computing minimal interpolants in $C^{1,1}(\mathbb R^d)$. *Rev. Mat. Iberoam.* 33 (2017), 29-66. doi: 10.4171/RMI/927