The EMS Publishing House is now EMS Press and has its new home at ems.press.

Please find all EMS Press journals and articles on the new platform.

Revista Matemática Iberoamericana


Full-Text PDF (238 KB) | Metadata | Table of Contents | RMI summary
Volume 33, Issue 1, 2017, pp. 291–303
DOI: 10.4171/RMI/937

Published online: 2017-02-22

An $L^1$-type estimate for Riesz potentials

Armin Schikorra[1], Daniel Spector[2] and Jean Van Schaftingen[3]

(1) Universität Freiburg, Germany
(2) National Chiao Tung University, Hsinchu, Taiwan
(3) Université Catholique de Louvain, Belgium

In this paper we establish new $L^1$-type estimates for the classical Riesz potentials of order $\alpha \in (0, N)$: $$\|I_\alpha u\|_{L^{N/(N-\alpha)}(\mathbb{R}^N)} \leq C\,\|Ru\|_{L^1(\mathbb{R}^N;\mathbb{R}^N)}.$$ This sharpens the result of Stein and Weiss on the mapping properties of Riesz potentials on the real Hardy space $\mathcal{H}^1(\mathbb{R}^N)$ and provides a new family of $L^1$-Sobolev inequalities for the Riesz fractional gradient.

Keywords: Riesz potentials, Riesz transforms, Sobolev inequalities, fractional gradient

Schikorra Armin, Spector Daniel, Van Schaftingen Jean: An $L^1$-type estimate for Riesz potentials. Rev. Mat. Iberoam. 33 (2017), 291-303. doi: 10.4171/RMI/937