The EMS Publishing House is now EMS Press and has its new home at ems.press.

Please find all EMS Press journals and articles on the new platform.

Revista Matemática Iberoamericana


Full-Text PDF (535 KB) | Metadata | Table of Contents | RMI summary
Volume 31, Issue 4, 2015, pp. 1333–1373
DOI: 10.4171/RMI/871

Published online: 2015-12-23

Endpoint estimates for commutators of singular integrals related to Schrödinger operators

Luong Dang Ky[1]

(1) University of Quy Nhon, Quy Nhon, Binh Dinh, Vietnam

Let $L= -\Delta+ V$ be a Schrödinger operator on $\mathbb R^d$, $d\geq 3$, where $V$ is a nonnegative potential, $V\ne 0$, and belongs to the reverse H\"older class $RH_{d/2}$. In this paper, we study the commutators $[b,T]$ for $T$ in a class $\mathcal K_L$ of sublinear operators containing the fundamental operators in harmonic analysis related to $L$. More precisely, when $T\in \mathcal K_L$, we prove that there exists a bounded subbilinear operator $\mathfrak R= \mathfrak R_T\colon H^1_L(\mathbb R^d)\times {\rm BMO}(\mathbb R^d)\to L^1(\mathbb R^d)$ such that $$(\star)\qquad |T(\mathfrak S(f,b))|- \mathfrak R(f,b)\leq |[b,T](f)|\leq \mathfrak R(f,b) + |T(\mathfrak S(f,b))|,$$ where $\mathfrak S$ is a bounded bilinear operator from $H^1_L(\mathbb R^d)\times {\rm BMO}(\mathbb R^d)$ into $L^1(\mathbb R^d)$ which does not depend on $T$. The subbilinear decomposition $(\star)$ allows us to explain why commutators with the fundamental operators are of weak type $(H^1_L,L^1)$, and when a commutator $[b,T]$ is of strong type $(H^1_L,L^1)$.

Also, we discuss the $H^1_L$-estimates for commutators of the Riesz transforms associated with the Schrödinger operator $L$.

Keywords: Schrödinger operators, commutators, Hardy spaces, Calderón–Zygmund operators, Riesz transforms, BMO, atoms

Dang Ky Luong: Endpoint estimates for commutators of singular integrals related to Schrödinger operators. Rev. Mat. Iberoam. 31 (2015), 1333-1373. doi: 10.4171/RMI/871