Revista Matemática Iberoamericana


Full-Text PDF (426 KB) | Metadata | Table of Contents | RMI summary
Volume 22, Issue 2, 2006, pp. 591–648
DOI: 10.4171/RMI/467

Published online: 2006-08-31

Riesz transforms for symmetric diffusion operators on complete Riemannian manifolds

Xiang-Dong Li[1]

(1) Chinese Academy of Sciences, Beijing, China

Let $(M, g)$ be a complete Riemannian manifold, $L=\Delta -\nabla \phi \cdot \nabla$ be a Markovian symmetric diffusion operator with an invariant measure $d\mu(x)=e^{-\phi(x)}d\nu(x)$, where $\phi\in C^2(M)$, $\nu$ is the Riemannian volume measure on $(M, g)$. A fundamental question in harmonic analysis and potential theory asks whether or not the Riesz transform $R_a(L)=\nabla(a-L)^{-1/2}$ is bounded in $L^p(\mu)$ for all $10$ and $p\geq 2$ provided that $L$ generates a ultracontractive Markovian semigroup $P_t=e^{tL}$ in the sense that $P_t 1=1$ for all $t\geq 0$, $\|P_t\|_{1, \infty} < Ct^{-n/2}$ for all $t\in (0, 1]$ for some constants $C>0$ and $n > 1$, and satisfies $$ (K+c)^{-}\in L^{{n\over 2}+\epsilon}(M, \mu) $$ for some constants $c\geq 0$ and $\epsilon>0$, where $K(x)$ denotes the lowest eigenvalue of the Bakry-Emery Ricci curvature $Ric(L)=Ric+\nabla^2\phi$ on $T_x M$, i.e., $$ K(x)=\inf\limits\{Ric(L)(v, v): v\in T_x M, \|v\|=1\}, \quad\forall\ x\in M. $$ Examples of diffusion operators on complete non-compact Riemannian manifolds with unbounded negative Ricci curvature or Bakry-Emery Ricci curvature are given for which the Riesz transform $R_a(L)$ is bounded in $L^p(\mu)$ for all $p\geq 2$ and for all $a>0$ (or even for all $a\geq 0$).

Keywords: Bakry-Emery Ricci curvature, diffusion operator, Riesz transform, ultracontractivity

Li Xiang-Dong: Riesz transforms for symmetric diffusion operators on complete Riemannian manifolds. Rev. Mat. Iberoam. 22 (2006), 591-648. doi: 10.4171/RMI/467