Revista Matemática Iberoamericana


Full-Text PDF (209 KB) | Metadata | Table of Contents | RMI summary
Volume 21, Issue 1, 2005, pp. 111–132
DOI: 10.4171/RMI/417

Published online: 2005-04-30

Resolution of a family of Galois embedding problems with cyclic kernel

Montserrat Vela[1]

(1) Universitat Politècnica de Catalunya, Barcelona, Spain

In this paper we compute the obstruction and the solutions of cyclic embedding problems given by $$ (E): \quad 0 \rightarrow \mathbb{Z}/n\mathbb{Z} \rightarrow E \rightarrow \Gamma=\mathbb{Z}/n\mathbb{Z} \times \stackrel{m)}{\cdots} \times \mathbb{Z}/n\mathbb{Z} \rightarrow 0 , $$ with $\mathbb{Z}/n\mathbb{Z}$ trivial $\Gamma$-modulo, finding adequate representations of $\Gamma$ in the automorphisms group of a generalized Clifford algebra.

Keywords: Galois embedding problems, generalized Clifford algebras

Vela Montserrat: Resolution of a family of Galois embedding problems with cyclic kernel. Rev. Mat. Iberoam. 21 (2005), 111-132. doi: 10.4171/RMI/417