The EMS Publishing House is now EMS Press and has its new home at ems.press.
Please find all EMS Press journals and articles on the new platform.
Commentarii Mathematici Helvetici
Full-Text PDF (343 KB) | Metadata |


subscriptions@ems-ph.org
Published online: 2019-03-05
Locally compact groups acting on trees, the type I conjecture and non-amenable von Neumann algebras
Cyril Houdayer[1] and Sven Raum[2] (1) Université Paris-Sud, Orsay, France(2) Stockholm University, Sweden
We address the problem to characterise closed type I subgroups of the automorphism group of a tree. Even in the well-studied case of Burger–Mozes’ universal groups, non-type I criteria were unknown. We prove that a huge class of groups acting properly on trees are not of type I. In the case of Burger–Mozes groups, this yields a complete classification of type I groups among them. Our key novelty is the use of von Neumann algebraic techniques to prove the stronger statement that the group von Neumann algebra of the groups under consideration is non-amenable.
Keywords: Groups acting on trees, type I groups, free product von Neumann
Houdayer Cyril, Raum Sven: Locally compact groups acting on trees, the type I conjecture and non-amenable von Neumann algebras. Comment. Math. Helv. 94 (2019), 185-219. doi: 10.4171/CMH/458