The EMS Publishing House is now EMS Press and has its new home at ems.press.

Please find all EMS Press journals and articles on the new platform.

Commentarii Mathematici Helvetici


Full-Text PDF (240 KB) | Metadata | Table of Contents | CMH summary
Volume 81, Issue 3, 2006, pp. 617–641
DOI: 10.4171/CMH/66

Published online: 2006-09-30

The canonical subgroup: a "subgroup-free" approach

Eyal Z. Goren[1] and Payman L. Kassaei[2]

(1) McGill University, Montreal, Canada
(2) McGill University, Montreal, Canada

Beyond the crucial role they play in the foundations of the theory of overconvergent modular forms, canonical subgroups have found new applications to analytic continuation of overconvergent modular forms. For such applications, it is essential to understand various "numerical" aspects of the canonical subgroup, and in particular, the precise extent of its overconvergence. In this paper, we develop a theory of canonical subgroups for a general class of curves (including the unitary and quaternionic Shimura curves), using formal and rigid geometry. In our approach, we use the common geometric features of these curves rather than their (possible) specific moduli-theoretic description; it allows us to reproduce, for the classical cases, the optimal radii of definition for the canonical subgroup, usually derived by employing the theory of formal groups.

Keywords: Canonical subgroup, overconvergent modular form, rigid geometry

Goren Eyal, Kassaei Payman: The canonical subgroup: a "subgroup-free" approach. Comment. Math. Helv. 81 (2006), 617-641. doi: 10.4171/CMH/66