Commentarii Mathematici Helvetici

Full-Text PDF (109 KB) | Metadata | Table of Contents | CMH summary
Volume 80, Issue 2, 2005, pp. 377–389
DOI: 10.4171/CMH/18

Published online: 2005-06-30

Vanishing and non-vanishing for the first $L^p$-cohomology of groups

Marc Bourdon[1], Florian Martin[2] and Alain Valette[3]

(1) Université Lille I, Villeneuve d'Ascq, France
(2) Philip Morris International, Neuchâtel, Switzerland
(3) Université de Neuchâtel, Switzerland

We prove two results on the first $L^p$-cohomology $\overline{H}^{1}_{(p)}(\Gamma)$ of a finitely generated group $\Gamma$: \begin{enumerate} \item [1)] If $N\subset H\subset\Gamma$ is a chain of subgroups, with $N$ non-amenable and normal in $\Gamma$, then $\overline{H}^{1}_{(p)}(\Gamma)=0$ as soon as $\overline{H}^{1}_{(p)}(H)=0$. This allows for a short proof of a result of L\"uck \cite{LucMatAnn}: if $N\lhd\Gamma$, $N$ is infinite, finitely generated as a group, and $\Gamma/N$ contains an element of infinite order, then $\overline{H}^{1}_{(2)}(\Gamma)=0$. \item [2)] If $\Gamma$ acts isometrically, properly discontinuously on a proper $CAT(-1)$ space $X$, with at least 3 limit points in $\partial X$, then for $p$ larger than the critical exponent $e(\Gamma)$ of $\Gamma$ in $X$, one has $\overline{H}^{1}_{(p)}(\Gamma)\neq 0$. As a consequence we extend a result of Shalom \cite{Sha}: let $G$ be a cocompact lattice in a rank 1 simple Lie group; if $G$ is isomorphic to $\Gamma$, then $e(G)\leq e(\Gamma)$. \end{enumerate}

Keywords: Group cohomology, $L^p$-cohomology, $CAT(-1)$ space, critical exponent

Bourdon Marc, Martin Florian, Valette Alain: Vanishing and non-vanishing for the first $L^p$-cohomology of groups. Comment. Math. Helv. 80 (2005), 377-389. doi: 10.4171/CMH/18