In this paper, we consider the existence of periodic solutions for the following planar system:

\[Ju' = \nabla H(u) + G(u) + h(t), \]

where the function \(H(u) \in C^3(\mathbb{R}^2 \setminus \{0\}, \mathbb{R}) \) is positive for \(u \neq 0 \) and positively \((q, p)\)-quasi-homogeneous of quasi-degree \(pq \), \(G : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) is local Lipschitz and bounded, \(h \in L^\infty(0, 2\pi) \) is \(2\pi \)-periodic and \(J \) is the standard symplectic matrix.