New Trends in Teichmüller Theory and Mapping Class Groups

Organised by
Ken’ichi Ohshika, Osaka
Athanase Papadopoulos, Strasbourg
Robert C. Penner, Bures-sur-Yvette
Anna Wienhard, Heidelberg

2 September – 8 September 2018

Abstract. In this workshop, various topics in Teichmüller theory and mapping class groups were discussed. Twenty-three talks dealing with classical topics and new directions in this field were given. A problem session was organised on Thursday, and we compiled in this report the problems posed there.

Mathematics Subject Classification (2010): Primary: 32G15, 30F60, 30F20, 30F45; Secondary: 57N16, 30C62, 20G05, 53A35, 30F45, 14H45, 20F65

IMU Classification: 4 (Geometry); 5 (Topology).

Introduction by the Organisers

The workshop New Trends in Teichmüller Theory and Mapping Class Groups, organised by Ken’ichi Ohshika (Osaka), Athanase Papadopoulos (Strasbourg), Robert Penner (Bures-sur-Yvette) and Anna Wienhard (Heidelberg) was attended by 50 participants, including a number of young researchers, with broad geographic representation from Europe, Asia and the USA. During the five days of the workshop, 23 talks were given, and on Thursday evening, a problem session was organised.

Teichmüller theory originates in the work of Teichmüller on quasi-conformal maps in the 1930s, and the study of mapping class groups was started by Dehn and Nielsen in the 1920s. The subjects are closely interrelated, since the mapping class group is the automorphism group of Teichmüller space with respect to its canonical complex structure and with respect to various metrics. Classically, Teichmüller...
theory is the study of moduli for complex structures on surfaces, but the expression has now a broader sense as the study of geometric structures on surfaces with several applications, and the various aspects of the theory are at the intersection of the fields of low-dimensional topology, algebraic topology, hyperbolic geometry, representations of discrete groups in Lie groups, symplectic geometry, topological quantum field theory, string theory, mathematical physics and others. All these interactions originate from the fact that Teichmüller space can be seen from various angles: as a space of equivalence classes of marked hyperbolic metrics, as a space of equivalence classes of complex algebraic curves, as a space of equivalence classes of marked conformal structures, as a space of equivalence classes of representations of the fundamental group of a surface into a Lie group \(\text{SL}(2, \mathbb{R}) \) and as a component of the moduli space of flat \(G \)-connections on a fixed surface where \(G \) is the Möbius group.

Since the works of Thurston starting in the 1970s, Teichmüller theory has a great impact on on low-dimensional geometry and topology. It has absorbed new techniques and viewpoints coming from complex analysis, combinatorial group theory, low-dimensional topology among others. Recently Teichmüller theory became a wider theory through its ramification and development into higher Teichmüller theory which extends this theory to representations of the surface into appropriate Lie groups \(G \). There is also a well-developed quantum Teichmüller theory, and a super Teichmüller theory which is beginning to grow. In fact, there was a substantive breakthrough during the workshop which produced the \(N=1 \) super McShane identity, the super version of an a priori constraint on length spectra that has found wide application in the classical theory. This super version has been long-sought in the physics community. The study of mapping class group is now closely related with thriving field of geometric group theory. All these developments were represented among the participants of the workshop.

The talks given in this workshop cover at the same time the new trends and the classical topics in a well balanced way. A relatively large amount of time for discussion was left.

Acknowledgement: The MFO and the workshop organizers would like to thank the National Science Foundation for supporting the participation of junior researchers in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”. Moreover, the MFO and the workshop organizers would like to thank the Simons Foundation for supporting Weixu Su, Subhojoy Gupta and Shinpei Baba in the “Simons Visiting Professors” program at the MFO.

Table of Contents

Thomas Koberda (joint with Sang-hyun Kim)
Diffeomorphism groups of critical regularity I ... 2479

Sang-hyun Kim (joint with Thomas Koberda)
Diffeomorphism groups of critical regularity II ... 2481

Sachiko Hamano (joint with Hiroshi Yamaguchi)
Pseudoconvex domains fibered by open Riemann surfaces of the same topological type ... 2483

Anton M. Zeitlin (joint with Ivan C.-H. Ip, Robert C. Penner)
Super-Teichmüller spaces and related structures .. 2486

Jeffrey Danciger (joint with Tengren Zhang)
Affine actions with Hitchin linear part ... 2489

George Daskalopoulos
Holomorphic Rigidity of Teichmüller space ... 2494

Federica Fanoni (joint with Matthew Durham and Nicholas Vlamis)
Curve graphs for infinite-type surfaces ... 2495

Tengren Zhang (joint with Andrew Zimmer)
Regularity of limit sets of Anosov representations. 2498

Vladimir Markovic
Harmonic surfaces in 3-manifolds and the Simple Loop Theorem 2499

William Goldman
Dynamical systems arising from classifying geometric structures 2500

Nariya Kawazumi (joint with A. Alekseev, Y. Kuno and F. Naef)
Formality of the Goldman bracket and the Turaev cobracket 2501

Hideki Miyachi
Toward Complex analysis with Thurston’s theory 2502

Scott A. Wolpert
Counting lariats on hyperbolic surfaces with cusps 2505

Valentina Disarlo (joint with Daniele Alessandrini)
Generalized stretch lines for surfaces with boundary 2506

Masaaki Suzuki (joint with Shigeyuki Morita, Takuya Sakasai)
Computations on Johnson homomorphisms ... 2509