Abstract. In 1945 Gerhard Hochschild published On the cohomology groups of an associative algebra in the Annals of Mathematics and thereby created what is now called Hochschild theory. In 1963, Murray Gerstenhaber proved that the Hochschild cohomology of any associative algebra carries a super-Poisson algebra structure, comprised of a graded commutative cup product and an odd super Lie algebra structure that acts through graded derivations with respect to the product. Subsequently, a number of higher structures have been discovered, and a vast body of research concerning and/or using Hochschild theory has developed in many different fields in mathematics and physics.

Introduction by the Organisers

This meeting had 27 participants from 10 countries (Argentina[2], Belgium[3], Canada[2], China[3], France[4], Germany[1], Norway[3], Russia[2], UK[1], and the US[6]) and 20 lectures were presented during the five day period. The extended abstracts of these lectures are presented on the following pages in chronological order.

This workshop fostered exchange of knowledge and ideas between various research areas, developed existing collaborations, and identified new directions of research by bringing together leading researchers and young colleagues from Algebraic Geometry (in its classical and its noncommutative version), Singularity Theory, Representation Theory of Algebras, Commutative Algebra, and Algebraic
Topology. The choice of a coherent group of disciplines, rather than a broad coverage of Hochschild theory, allowed for effective communication between different groups of practitioners.

Survey lectures on Hochschild cohomology of algebraic varieties, the relationship between loop homology and Hochschild cohomology in algebraic topology, and on the Hochschild cohomology of block algebras of finite groups were complemented by presentations on higher order structures on Hochschild cohomology such as existence of a Batalin–Vilkovisky operator or the explicit form of the Gerstenhaber Lie bracket in special cases. Further, categorical interpretations of various aspects of Hochschild theory were presented, and variations of Hochschild cohomology such as Koszul or Poisson cohomology were studied.

Numerous discussions among the participants, in particular among participants belonging to different mathematical communities, have contributed to the workshop in an essential way. As always, such workshop at MFO provided an ideal atmosphere for fruitful interaction and exchange of ideas. It is a pleasure to thank the administration and the staff of the Oberwolfach Institute for their efficient support and hospitality.

Acknowledgement: The MFO and the workshop organizers would like to thank the National Science Foundation for supporting the participation of junior researchers in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
Hochschild Cohomology in Algebra, Geometry, and Topology

Table of Contents

Damien Calaque (joint with Carlo A. Rossi & Michel Van den Bergh)
 Hochschild cohomology of smooth algebraic varieties 453

Liyu Liu
 Hochschild cohomology of projective hypersurfaces 456

Dmitry Kaledin
 Witt vectors as a polynomial functor 456

Markus Linckelmann
 On the Hochschild cohomology of finite group algebras 458

Liran Shaul
 Towards coherent duality over derived formal schemes 462

Don Stanley
 Loop homology and Hochschild cohomology 465

Srikanth B. Iyengar (joint with Jon F. Carlson)
 Tensor products with Carlson’s L_ζ-modules 467

James Zhang
 Auslander Theorem and Searching for Noncommutative McKay 470

Alexander Zimmermann (joint with Bernt Tore Jensen, Xiuping Su; Manuel Saorín)
 Degeneration in triangulated categories 470

Sarah Witherspoon (joint with Lauren Grimley, Van C. Nguyen, Cris Negron)
 An Alternate Approach to the Lie Bracket on Hochschild Cohomology .. 473

Cris Negron (joint with Sarah Witherspoon)
 The Gerstenhaber bracket as a Schouten bracket for polynomial rings extended by finite groups 476

Andrea Solotar (joint with Roland Berger, Thierry Lambre)
 Koszul Calculus .. 479

Yuri Volkov
 Hochschild cohomology of a smash product with a cyclic group 481

Zhengfang Wang
 Singular Hochschild cohomology and Gerstenhaber algebra structure 484
Guodong Zhou

Batalin-Vilkovisky structures in Hochschild cohomology and Poisson cohomology ... 486

Yang Han

Proper smooth local DG algebras are trivial 490

Petter Andreas Bergh (joint with Magnus Hellstrøm-Finnsen)

Hochschild cohomology of ring objects 492

Reiner Hermann (joint with Johan Steen)

The Lie bracket in Hochschild cohomology via the homotopy category of projective bimodules 495

María Julia Redondo (joint with Lucrecia Román)

Hochschild cohomology of monomial algebras 499

Travis Schedler

Quantizations of complete intersection surfaces and D-modules 499