Mini-Workshop: Recent Developments on Approximation Methods for Controlled Evolution Equations

Organised by
Birgit Jacob, Wuppertal
Enrique Zuazua, Bilbao
Hans Zwart, Enschede

1 November – 7 November 2015

Abstract. This mini-workshop brought together mathematicians engaged in partial differential equations, functional analysis, numerical analysis and systems theory in order to address a number of current problems in the approximation of controlled evolution equations.

Mathematics Subject Classification (2010): 93C20, 93C25, 65Mxx.

Introduction by the Organisers

The mini-workshop Recent Developments on Approximation Methods for Controlled Evolution Equations, organised by Birgit Jacob (Wuppertal), Enrique Zuazua (Bilbao) and Hans Zwart (Twente) was held November 1st – 7th, 2015. This meeting was well attended with 16 participants with broad geographic representation.

Systems modelled by linear ordinary differential equations have long been studied and there exists a wide body of theory and design algorithms dealing with their control. The state describing such a system lies in a finite-dimensional vector space. This setting has its limitations, as many systems of interest, from the point of view of applications to industry and other disciplines, do not fall into this class. A more interesting generalisation is that to systems with an infinite-dimensional state space. This class includes delay systems, and systems modelled by functional differential equations and partial differential equations (PDEs), generally called evolution equations. This field finds applications in such diverse areas as aeronautics, mechanical and electrical engineering. Since they appear frequently
as models in these fields of applications, evolution equations with boundary control and boundary observation are of particular interest.

One of the key issues when addressing real applications is the effective control of those systems, which requires of significant effort from the point of view of mathematical analysis.

The talks where grouped into three main themes:

- Modeling and control of real-live problems
- Numerical analysis of PDE control
- Theoretical aspects of controller design and approximations for systems described by PDEs

In the first theme the following participants gave talks: Rob Fey, Aitziber Ibáñez, Jarmo Malinen, George Weiss.

Furthermore, Athanasios Antoulas, András Bátkai, Umberto Biccari, Nicolae Cîndea, Weiwei Hu, Orest Iftime, Kirsten Morris, Timo Reis and Hans Zwart were the speakers of the second theme.

The last theme was covered by Björn Augner, Birgit Jacob, Felix Schwenninger and Hans Zwart. Although we have grouped them according to our themes, there was significant overlap between the approaches which stimulated many productive discussions.

The organizers and participants thank the Mathematisches Forschungsinstitut Oberwolfach for providing an inspiring setting for this mini-workshop, which allowed us to concentrate on the mathematics.

Acknowledgement: The MFO and the workshop organizers would like to thank the National Science Foundation for supporting the participation of junior researchers in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.

Mini-Workshop: Recent Developments on Approximation Methods for Controlled Evolution Equations

Table of Contents

Thanos Antoulas
 Model reduction of large-scale dynamical systems: An overview with applications to evolution equations ... 2915

Björn Augner (joint with Birgit Jacob)
 Boundary Stabilisation of Port-Hamiltonian Systems ... 2917

András Bátkai (joint with Petra Csomós, Bálint Farkas)
 Operator splitting for dissipative delay equations ... 2918

Umberto Biccari
 Boundary controllability for a one-dimensional heat equation with two singular inverse-square potentials ... 2920

Nicolae Cindea (joint with Carlos Castro, Arnaud Münch)
 Numerical controllability of the wave equation using time-space finite elements .. 2921

Rob H.B. Fey
 Controlling nonlinear resonances in thin-walled structures: modeling, simulations, and experiments ... 2922

Weiwei Hu
 Observer-based Feedback Stabilization of a Thermal Fluid 2923

Aitziber Ibañez (joint with Ramón Escobedo, Enrique Zuazua)
 Guidance by repulsion model: analysis, some simulations and optimal control .. 2924

Orest V. Iftime (joint with Tudor C. Ionescu)
 Model reduction by moment matching for infinite dimensional systems 2925

Birgit Jacob (joint with Xueran Wu, Hendrik Elbern)
 Optimal actuator and observation location for time-varying systems on a finite-time horizon ... 2926

Yann Le Gorrec (joint with Hector Ramírez, Hans Zwart)
 Non-linear dynamic stabilising control of port-Hamiltonian systems 2927

Jarmo Malinen
 Webster’s equation in acoustic waveguides ... 2929

Kirsten Morris
 Using approximations in controller design for infinite-dimensional systems .. 2930
Timo Reis (joint with Mark. R. Opmeer, Tilman Selig, Winnifried Wollner)

Balanced truncation model reduction for infinite-dimensional linear systems .. 2931

Felix L. Schwenninger (joint with Hans Zwart)

Results around the Cayley Transform Problem 2932

George Weiss (joint with Xiaowei Zhao)

Coupled passive systems and strong stabilization of the SCOLE system using tuned mass dampers 2933

Hans Zwart

Numerical approximations for port-Hamiltonian systems 2935