Abstract. Locally compact groups are ubiquitous in the study of many continuous or discrete structures across geometry, analysis and algebra. Every locally compact group is an extension of a connected group by a totally disconnected group. The connected case has been studied in depth, notably using Lie theory, a culminating point being reached in the 1950s with the solution to Hilbert’s 5th problem. The totally disconnected case, by contrast, remains full of challenging questions. A series of new results has been obtained in the last twenty years, and today the activity in this area is witnessing a sharp increase. These texts report on the recent Arbeitsgemeinschaft on this topic.

Mathematics Subject Classification (2010): 22Dxx.

Introduction by the Organisers

Locally compact groups arise as the symmetry groups of all sorts of structures across many areas of mathematics. This includes Lie groups, p-adic and adèlic groups, isometry groups of general proper metric spaces. Even discrete structures such as locally finite graphs give rise to very interesting locally compact automorphism groups. Besides the groups themselves, one of the most important motivations to study locally compact groups is that they frequently appear as the “envelope” in which abstract groups of interest appear as lattices. This is notably the case for arithmetic groups and Kac–Moody groups. It has often happened that the most interesting theorems about those abstract groups are proved by transferring the problem to the ambient locally compact group and solving it there.
In the study of locally compact groups, it is usually understood that the focus is on non-discrete groups since otherwise it remains within “abstract” group theory. The case of Lie groups has been extensively studied for well over a century and largely classified in the early twentieth century. The next significant period of research culminated in the 1950s with the solution to Hilbert’s Fifth Problem, giving a satisfactory picture of the connected case.

Therefore, the main locus of modern research on locally compact groups is the study of non-discrete totally disconnected locally compact groups, since a general locally compact group decomposes as an extension of a connected group by a totally disconnected group.

The revival of this topic can arguably be dated to the work of G. Willis starting two decades ago. This gave a new impetus to the study of the local structure of totally disconnected groups. More recently, there has been progress both on the global and local structure. In addition, the compact case (i.e. profinite groups) has also witnessed important recent progress on the algebraic side.

The goals of the Arbeitsgemeinschaft are: to learn the necessary prerequisites, to study substantial parts of the recent developments and to reach the point where open problems can be discussed.

Acknowledgement: The MFO and the workshop organizers would like to thank the National Science Foundation for supporting the participation of junior researchers in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.

Arbeitsgemeinschaft: Totally Disconnected Groups

Table of Contents

- **Marc Burger**
 - *Locally compact groups: around Van Dantzig’s theorem* .. 2623

- **Andreas Thom**
 - *Transformation groups and permutation actions* ... 2624

- **Yair Glasner**
 - *Closed groups of tree automorphisms and Tits simplicity theorem* 2624

- **Lukasz Garncarek and Nir Lazarovich**
 - *Simplicity of the Neretin group* ... 2626

- **Romain Tessera**
 - *Locally compact groups as metric spaces* .. 2627

- **Yves Cornulier**
 - *Introduction to p-adic Lie groups* ... 2628

- **Albrecht Brehm and Rafaela Rollin**
 - *The scale function* .. 2630

- **Maxime Gheysens and Adrien Le Boudec**
 - *Tidy subgroups* ... 2632

- **Alex Furman**
 - *Margulis’ normal subgroup theorem* ... 2633

- **Świątosław Gal**
 - *Bader–Shalom Normal Subgroup Theorem* .. 2635

- **Roman Sauer**
 - *L²-Betti numbers of locally compact groups* ... 2635

- **László Márton Tóth and Samuel Mellick**
 - *Commensurated subgroups, after Shalom and Willis* ... 2636

- **Thibaut Dumont and Dennis Gulko**
 - *Minimal closed normal subgroups in certain compactly generated locally compact groups* .. 2638

- **Morgan Cesa and François Le Maitre**
 - *Elementary totally disconnected locally compact groups* 2639

- **Tsachik Gelander**
 - *Invariant Random Subgroups in rank one and higher rank Lie groups* 2640
Alejandra Garrido and Stephan Tornier
Automorphism Groups of Trees: Prescribed Local Actions 2641

Colin Reid and George Willis
Simple totally disconnected groups, after Smith 2644

Laurent Bartholdi
Burger-Mozes’ simple lattices ... 2645

John Wilson
The structure lattice, part I ... 2650

Benjamin Klopsch
Abstract quotients of profinite groups, after Nikolov and Segal, part I ... 2650

Phillip Wesolek
Contraction groups and the scale 2653

David Hume and Thierry Stulemeijer
The centraliser lattice .. 2654

Jakub Gismatullin
Abstract quotients of profinite groups and applications, after Nikolov and
Segal, part II .. 2657