Abstract. The meeting focused on the last advances in the applications of variational methods to evolution problems governed by partial differential equations. The talks covered a broad range of topics, including large deviation and variational principles, rate-independent evolutions and gradient flows, heat flows in metric-measure spaces, propagation of fracture, applications of optimal transport and entropy-entropy dissipation methods, phase-transitions, viscous approximation, and singular-perturbation problems.

Mathematics Subject Classification (2000): 30Lxx, 35A15, 35Qxx, 49xx, 74xx, 76xx.

Introduction by the Organisers

It is well known that the study of many important evolution problems gains benefit by adopting a variational point of view. Variational methods can be quite helpful to better understand the intimate structure of the problem, to derive new properties concerning existence, uniqueness, stability, approximation, and long-time behaviour, to guess new estimates, to find the right or more appropriate formulations, to produce new kind of solutions, to explain the relationships between different approaches or techniques, to derive or justify some equations in terms of general principles and stochastic models, to study the stability of a system in terms of a set of parameters or to capture its behavior in a singular perturbation limit.

The workshop, organized by Alexander Mielke (WIAS, Berlin), Felix Otto (Max Planck Institute, Leipzig), Giuseppe Savaré (Univ. Pavia) and Ulisse Stefanelli
(IMATI-CNR, Pavia), aimed to present many new, striking and promising achievements in this wide area, thanks to the contribution of over 50 participants with broad geographic representation and a variety of research fields, each revealing different methodology, interests, and level of abstraction.

One of the organizers’ main goal was to generate a strong interaction between various subjects and people with different backgrounds, covering calculus of variations, optimal transport, phase transitions, fluid mechanics, materials science, stochastic calculus, and models. Approximately 25 talks of varying lengths were delivered by experts in the fields but also by quite a number of young post-docs and PhD students and stimulated a lot of discussions in a friendly and inspiring atmosphere, that contributed to the overall success of the meeting.

Among the main themes presented during the workshop, we quote here

- the interplay between the theory of large deviation in stochastic analysis on the one hand and variational principles on the other; e. g. an interpretation of the Wasserstein gradient flow structure in terms of large deviation, rigorous low-temperature bounds for the relaxation in multi-well energy landscapes, singular limits of rate functionals;
- the energetic approach to rate-independent evolution problems and various viscous regularizations, with applications to damage, fracture, and phase transitions;
- crack propagation, e. g. an emerging analysis of fully dynamic models, novel functional analytic aspects of the quasi-stationary models, and the analysis of alternative propagation criteria;
- the classic or new gradient-flow structure of various linear and nonlinear PDE’s;
- the application of optimal transport techniques to solve, study, or approximate efficiently evolution equations from fluid mechanics, particle interaction, quantum problems;
- entropy-entropy dissipation methods for evolution and their link with sharp functional inequalities;
- the interplay between evolution problems and geometry in metric-measure spaces; e. g. a clear distinction between Riemannian and Finsler settings is emerging;
- phase-transitions, viscous approximation, and singular-perturbation problems.

Special event

On Thursday afternoon, the Oberwolfach Prize was awarded to Nicola Gigli and László Székelyhidi for their excellent achievements in Analysis and Applied Mathematics. The award presentation by Gert-Martin Greuel, Director of the Institute, and by Manfred Feilmeier of the Oberwolfach Foundation, was followed by the Laudationes of the two price-winners. Luigi Ambrosio explained the crucial contributions of Gigli concerning the metric theory of gradient flows, the structure of the Wasserstein space, and the heat flow in non-smooth metric-measure spaces.
Stefan Müller explained the fundamental new insights of Székelyhidi into the theory of nonlinear partial differential equations and their applications in continuum mechanics, focusing in particular on compensated compactness, partial regularity and its failure.

Nicola Gigli then gave a lecture on his more recent results on metric measure spaces with a lower Ricci curvature bound and László Székelyhidi presented his recent achievements on the Euler equations, in particular the Onsager conjecture, and its relation to the Nash-Kuiper embedding in geometry. In the evening, there was a festive dinner.
Workshop: Variational Methods for Evolution

Table of Contents

Yann Brenier
 A diffusion equation for 3D divergence-free vector fields 3151

Dorothee Knees (joint with R. Rossi and C. Zanini)
 A vanishing viscosity approach in damage mechanics 3153

Christopher J. Larsen
 On dynamic Griffith fracture .. 3156

Ansgar Jüngel (joint with P. Fuchs and M. von Renesse)
 Quantum Navier-Stokes equations: kinetic and Lagrangian approaches 3158

Christian Seis (joint with Y. Brenier, F. Otto)
 On the coarsening rates in demixing binary viscous liquids 3160

Mark A. Peletier
 Understanding the origins of Wasserstein gradient flows 3162

José A. Carrillo (joint with D. Balagué, T. Laurent, G. Raoul)
 Radial Stability/Instability for Repulsive-Attractive Potentials 3165

Georg Menz (joint with André Schlichting)
 A two-scale proof of the Eyring-Kramers formula 3166

Matthias Kurzke (joint with C. Melcher, R. Moser, D. Spirn)
 Motion of vortices in ferromagnets 3169

Etienne Sandier (joint with Sylvia Serfaty)
 Renormalized energy for points in the plane 3171

Gilles A. Francfort (joint with Alessandro Giacomini)
 Revisiting elasto-plasticity: the heterogeneous case 3174

Tomáš Roubíček
 Inviscid limit of viscoelasticity with delamination 3175

Antonio Segatti (joint with R. Rossi, G. Savaré, U. Stefanelli)
 Elliptic regularization for gradient flows in metric spaces 3178

Emanuele Spadaro
 Least barriers to minimal hypersurfaces: an approach via MCF with obstacle .. 3180

Gianni Dal Maso
 Generalised functions of bounded deformation 3182
Jean Dolbeault (joint with Giuseppe Toscani)
Free energies, nonlinear flows and functional inequalities 3183

Michael Herrmann (joint with Barbara Niethammer and Juan J.L.
Velázquez)
Kramers and non-Kramers Phase Transitions in Many-Particle Systems
with Dynamical Constraint ... 3186

Guido De Philippis (joint with Luigi Ambrosio, Maria Colombo, Alessio
Figalli)
Existence of Eulerian solution to the Semi-Geostrophic system on the 2D
torus ... 3188

Karl-Theodor Sturm (joint with Shin-Ichi Ohta)
Heat Flow on Finsler Spaces .. 3190

Florian Theil (joint with Andrew Stuart, Frank Pinski)
Transition paths of maximal probability 3191

Andrea Braides (joint with M.S. Gelli)
Analysis of Lennard-Jones interactions in 2D 3193

Antonin Chambolle (joint with G. Francfort, A. Lemenant, J.-J. Marigo)
Singularity at the tip of a 2D fracture 3195

Matteo Negri
Brittle Crack Propagation in Mixed Mode 3198

Nicola Gigli (joint with Luigi Ambrosio and Giuseppe Savaré)
Notions of differential calculus on metric measure spaces 3200

László Székelyhidi Jr.
The h-principle for the Euler equations 3201

Michael Ortiz (joint with Bo Li, Bernd Schmidt)
Optimal-Transportation Meshfree Approximation Schemes 3204

Goro Akagi (joint with Ryuji Kajikiya)
Stability and instability of asymptotic profiles for fast diffusion 3206

Christof Melcher
Global solvability of the Landau-Lifshitz-Gilbert equation 3208

Giovanni Bellettini (joint with L. Bertini, M. Mariani and M. Novaga)
Remarks on the limit of the Cahn-Hilliard equation in 1D 3209

Giovanni Colombo
A shape optimization problem for Moreau’s sweeping process 3211