Abstract. The workshop focussed on various aspects of optimal control problems for systems of nonlinear partial differential equations. In particular, discussions around keynote presentations in the areas of optimal control of nonlinear/non-smooth systems, optimal control of systems involving nonlocal operators, shape and topology optimization, feedback control and stabilization, sparse control, and associated numerical analysis as well as design and analysis of solution algorithms were promoted. Moreover, also aspects of control of fluid structure interaction problems as well as problems arising in the optimal control of quantum systems were considered.

Introduction by the Organisers

Optimal control problems for partial differential equations or variational inequalities nowadays increasingly penetrate the applied sciences and by doing so they are confronted with major new challenges. As a result, besides new mathematical models, novel analytical as well as numerical tools need to be developed. Correspondingly, motivated by optimal control problems for nonlinear partial differential equation (PDE) systems which are related to practical applications, the aims of the workshop were to bring together a group of international experts working at the forefront of research in the field, to foster in-depth-discussions crystallizing around a number of keynote presentations as well as discussion groups on
focal topics emerging during the workshop, and to establish an (international) ex-
change forum for problems, techniques and solutions, both analytically as well as
numerically. In particular, the organizers also strived for diversity in the group of
invited scientists in order to enable transfer of information from senior to young
researchers, and vice versa.

The scientific activity of the workshop developed around several keynote top-
ics with associated keynote presentations, ad hoc presentations, e.g., in the late
afternoon or evening, and the organization of discussion groups on emerging focal
points. Among the focus topics, the following ones were of particular interest:

- **Control of nonlinear or non-smooth state systems.** Starting points
 for the discussion were, e.g., state systems of (quasi) variational inequality
 ((Q)VI) type with applications in thermodynamics or chemotaxis. Specif-
 ically, advanced analysis of the control-to-state map and the derivation of
 proper (sharp) stationarity conditions were focus points. Moreover, local
 stability analysis (in the spirit of second-order conditions) was considered.

- **Control of state systems with nonlocal operators.** Specific exam-
 ples which were highlighted are nonlocal convective Cahn-Hilliard sys-
 tems, systems for describing non-isothermal phase transitions, and non-
 local Cahn-Hilliard-Navier-Stokes systems. Additional complexities came
 from degenerate mobilities or singular potentials, and connections to non-
 smooth systems arise whenever non-smooth potentials, such as the double
 obstacle potential, were considered.

- **Shape and topology optimization.** This is an important branch of
 optimal design subject to partial differential equations with many appli-
 cations in engineering and recently also biomedical sciences. Specific topics
 of interest discussed at the meeting were the establishment of analytical
 tools for enabling a joint shape and topological derivative (currently, and
 apart from a very small number of attempts, these two concepts are still
 considered in separate), second-order analysis, and problems with non-
 smooth components, either in the data or through considering VI state
 systems.

- **Feedback control or stabilization.** Feedback stabilization or control
 are important topics not only in aero-dynamics, but also in other problems
 involving fluid flow such as stabilization of unsteady flow, flow over sur-
 faces, injection of polymer solutions, mass transport through porous walls,
 etc. Some of the major research questions discussed during the meeting
 involved the type of feedback law (linear vs. nonlinear), the proper choice
 of Lyapunov functionals, and the treatment of Riccati equations. The
 latter also play a role for instance in applications of robust optimal place-
 ment of sensor networks. This problem class was also considered in this
 workshop, and it was highlighted that it typically requires to develop suit-
 able solution techniques for ultra-high dimensional Riccati equations upon
 discretization.
• **Sparse control.** Very recently non-smooth control problems with the aim of computing optimal controls with sparse support set have come into focus. Particular applications are related to the optimal placement of actuators. But there is also a connection to inverse problems with sparsity-promoting priors. The workshop focused on modeling, analysis and numerics for such problems. In particular, as the associated optimal controls are typically measures only, dualization frameworks (including the sound understanding of dense embeddings of classes of convex sets in Sobolev spaces) were studied, proper stationarity and stability concepts were derived and optimal discretization schemes were addressed.

• **Numerical analysis and algorithm design / analysis.** As many of the aforementioned problem classes are either entirely new or have been studied from an analytical point of view only, the workshop also strived for advancing the development of proper discretization and numerical solution schemes. Exemplarily we mention that optimal control problems for VIs cannot be solved by techniques known for the iterative solution of optimal control problems for PDE-systems. This is related to the non-smooth character of the VI problem and the constraint degeneracy which prevents existence of Karush-Kuhn-Tucker-type multipliers. Another example is related to sparse controls which gives rise to questions concerning the discretization of measures and their efficient numerical treatment.

Acknowledgement: The MFO and the workshop organizers would like to thank the National Science Foundation for supporting the participation of junior researchers in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Workshop: Challenges in Optimal Control of Nonlinear PDE-Systems

Table of Contents

Fredi Tröltzsch (joint with Eduardo Casas)
Sparse optimal control for the heat equation with mixed control-state constraints ... 949

Arnaud Münch
About the controllability of an advection-diffusion equation with respect to the diffusion coefficient .. 951

Jürgen Sprekels (joint with Pierluigi Colli, Gianni Gilardi)
Cahn–Hilliard systems with general fractional operators 953

John Burns (joint with Gene Cliff, Terry Herdman)
Some applications & challenges for PDE control and optimization 955

Daniel Wachsmuth (joint with Tobias Geiger)
Optimal control of an evolution equation with non-smooth dissipation ... 957

Irwin Yousept
Hyperbolic Maxwell system of quasi-variational inequality type governed by Bean’s critical-state law with temperature effects 960

Pierluigi Colli (joint with Gianni Gilardi, Jürgen Sprekels)
Solvability and optimal velocity control of a Cahn–Hilliard system with convection and dynamic boundary conditions 961

Tobias Breiten, Laurent Pfeiffer
Infinite-horizon bilinear optimal control problems 964

Falk M. Hante (joint with Volker Mehrmann, Fabian Rüffler)
Optimal model switching for gas flow in pipe networks 967

Ira Neitzel (joint with Lucas Bonifacius)
On an optimal control problem with quasilinear parabolic PDE 970

Andrea Giorgini (joint with Monica Conti)
Recent results for the 3D Cahn-Hilliard-Brinkman system with unmatched viscosities ... 972

Dante Kalise
Multiscale optimal control of collective behavior phenomena 975

Helene Frankowska (joint with Elsa Maria Marchini, Marco Mazzola)
Necessary optimality conditions for infinite dimensional state constrained control problems ... 977
Matthias Heinkenschloss (joint with Xiaodi Deng)
A parallel-in-time gradient-type method for optimal control of nonlinear systems .. 980

Eduardo Casas (joint with Mariano Mateos, Arnd Rösch)
Second order optimality conditions and applications for some bang-bang control problems of semilinear parabolic equations 982

Sérgio S. Rodrigues (joint with Karl Kunisch)
Explicit exponential stabilization of nonautonomous linear parabolic-like systems by a finite number of internal actuators 984

Carlos N. Rautenberg (joint with Amal Alphonse, Michael Hintermüller)
Optimization problems with quasi-variational inequality constraints 986

Behzad Azmi (joint with Karl Kunisch)
On the Barzilai-Borwein step-sizes for optimization problems in Hilbert spaces .. 989

Michele Colturato (joint with Pierluigi Colli)
Phase field systems with maximal monotone nonlinearities related to SMC problems ... 989

Hannes Meinlschmidt (joint with Christian Meyer, Joachim Rehberg)
Optimal control of the 3D thermistor problem ... 992

Roland Herzog (joint with Christian Meyer, Ailyn Stötzner)
On Optimal Control Problems in Thermoelastoplasticity 994

Amal Alphonse (joint with Michael Hintermüller, Carlos N. Rautenberg)
Directional differentiability for elliptic quasi-variational inequalities ... 995

Gabriela Marinoschi (joint with Viorel Barbu)
An optimal control approach for determining optical flow 998

Michael Ulbrich (joint with Johannes Haubner)
Shape optimization for unsteady fluid-structure interaction 1001

Volker Schulz
Shape optimization from an optimal control perspective 1004

Maitine Bergounioux (joint with Isabelle Abraham, Romain Abraham, Guillaume Carlier, Emmanuel Trélat)
Tomographic reconstruction with few views 1005

Dan Tiba
Optimal control methods in shape optimization 1008

Boris Vexler (joint with Dmitriy Leykekhman, Daniel Walter)
Numerical analysis of sparse initial data identification for parabolic problems .. 1010

Michael Hinze (joint with Ahmad Ahmad Ali, Klaus Deckelnick)
Unique global solutions in optimal control with PDEs and VIs 1012
Challenges in Optimal Control of Nonlinear PDE-Systems

Arnd Rösch

Convergence of the SQP method for problems with low regularity 1013