Abstract. The constant emergence of novel technologies result in novel data generating devices and mechanisms that lead to a prevalence of highly complex data. To analyze such data, novel statistical methodologies need to be developed. This workshop addressed challenges that arise in the theoretical analyses of procedures in which geometry, shape and topology play central roles. The theoretical ideas involved here intersect deeply with a wide variety of fields, including mathematical statistics, probability theory, computational topology, and computational and differential geometry. The workshop brought together scholars with different perspectives, with the goal of facilitating cross-pollination to spur the development of new ideas, new analytical approaches, and new methods in geometric and shape statistics.

Introduction by the Organisers

The half-workshop Statistics for Shape and Geometric Features, organized by Dragi Anevski (Lund), Geurt Jongbloed (Delft), Christopher Genovese (Pittsburgh) and Wolfgang Polonik (Davis), was held July, 3rd – July 9th, 2016. This meeting was well attended by 26 participants with diverse geographic, demographic and disciplinary representation. For several of the participants it was the first time they attended an Oberwolfach Workshop, and they were deeply impressed by the workshop and the immensely stimulating atmosphere at the Forschungsinstitut.

The workshop consisted of presentations of the participants and discussions between them, either in groups or individually. The presentations earlier in the weeks
were intended to build a common platform for the participants, who came to the workshop with different backgrounds. These presentations were addressing principal component analysis for non-Euclidean data, inference for geometric objects, inference under shape constraints (log-concavity), and topological data analysis, respectively. Later in the week, the group discussed several emerging problems and ideas, including estimation in graphs under monotonicity constraints, algorithmic approaches for non-standard big data using the divide-and-conquer paradigm, and the estimation of flow lines. Some presentations also addressed applications of geometric/shape ideas to cutting-edge scientific problems, such as improving microscopy based image analysis, or the analysis of the filamentary structure of the world wide web. The PhD students attending the workshop also had an opportunity to present their dissertation research.

In summary, the workshop brought together scholars with related, but different statistical backgrounds that included shape constrained inference, topological data analysis, inference for geometric objects, and shape analysis. Corresponding major statistical problem areas include clustering and mode finding, identification and characterization of low-dimensional structures (e.g., embedded manifolds), as well as asymptotic distribution theory for estimators under various shape constraints. Another interesting aspect of the workshop was provided by a second half-workshop on Learning Theory and Approximation that was running in parallel. There was a lively interaction between the participants of the two workshops with complementary themes.

Acknowledgement: The MFO and the workshop organizers would like to thank the National Science Foundation for supporting the participation of junior researchers in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”. Moreover, the MFO and the workshop organizers would like to thank the Simons Foundation for supporting Jon A. Wellner in the “Simons Visiting Professors” program at the MFO.
Workshop: Statistics for Shape and Geometric Features

Table of Contents

J. S. Marron
Object Oriented Data Analysis .. 1825

Bertrand Michel (joint with Frédéric Chazal, Brittany Fasy, Fabrizio Lecci,
Pascal Massart, Alessandro Rinaldo, Larry Wasserman)
Rates of convergence for robust geometric inference 1825

Christopher R. Genovese
Inference for Geometric Features 1828

Jon A. Wellner (joint with Charles Doss)
*Inference for the mode of a log-concave density: a likelihood ratio test
and confidence intervals* .. 1829

Axel Munk (joint with Timo Aspelmeier)
Nanostatistics .. 1830

J.E. Chacón (joint with W. Polonik)
Asymptotics and optimal bandwidth selection for level set estimation ... 1832

Kim Hendrickx (joint with Piet Groeneboom)
Current status linear regression ... 1834

Armin Schwartzman (joint with Alison Wu)
Nonparametric estimation of surface flow lines 1837

Bodhisattva Sen (joint with Cecile Durot, Moulinath Banerjee)
Divide and Conquer in Non-Standard Problems and the Super-efficiency Phenomenon .. 1840

Max Sommerfeld (joint with Axel Munk)
Distributional Limits for Wasserstein Distance on Discrete Spaces 1840

Richard J. Samworth (joint with Arlene Kyoung Hee Kim and Aditya
Guntuboyina)
Adaptation in log-concave density estimation 1841

Anuj Srivastava
Elastic Shape Analysis and Shape-Constrained Density Estimation 1844

Wolfgang Polonik (joint with Gabriel Chandler)
Multiscale feature extraction with applications to classification 1847

Eni Musta (joint with Hendrik P. Lopuhaä)
Smooth estimation of a monotone baseline hazard in the Cox model 1851
Jessi Cisewski
 Investigating the Cosmic Web with Persistent Homology 1853

Sabyasachi Chatterjee
 On Estimation in Tournaments and Graphs under Monotonicity
 Constraints ... 1854

Stephan Huckemann (joint with Benjamin Eltzner)
 Dimension Reduction .. 1861

Holger Dette (joint with Philip Preuß, Kemal Sen)
 *Constrained or unconstrained inference in long-range dependent locally
 stationary processes?* .. 1864

Ery Arias-Castro (joint with Beatriz Pateiro-López, Alberto Rodríguez-Casal)
 *Volume and Perimeter Estimation Using the Sample α-Shape or the
 Sample α-Convex Hull* .. 1865

Enno Mammen
 Structured Nonparametric Curve Estimation 1868