Abstract. Combinatorics is a fundamental mathematical discipline which focuses on the study of discrete objects and their properties. The current workshop brought together researchers from diverse fields such as Extremal and Probabilistic Combinatorics, Discrete Geometry, Graph theory, Combinatorial Optimization and Algebraic Combinatorics for a fruitful interaction. New results, methods and developments and future challenges were discussed. This is a report on the meeting containing abstracts of the presentations and a summary of the problem session.

Introduction by the Organisers

The workshop Combinatorics organized by Jeff Kahn (Piscataway), Angelika Steger (Zürich), and Benny Sudakov (Los Angeles) was held January 5th - January 11th, 2014. Despite the early point in the year the meeting was extremely well attended with roughly 50 participants from the US, Canada, Australia, UK, Israel, and various European countries. The program consisted of 13 plenary lectures, accompanied by 17 shorter contributions and the special session of the presentations by Oberwolfach Leibniz graduate students. There was also a vivid problem session led by Andrew Thomason. The plenary lectures were intended to provide overviews of the state of the art in various combinatorial areas and/or in-depth treatments of major new results. The short talks ranged over a wide variety of topics including graph theory, coding theory, discrete geometry, extremal combinatorics, Ramsey
theory, theoretical computer science, and probabilistic combinatorics. Special attention was paid throughout to providing a platform for younger researchers to present themselves and their results.

This report contains extended abstracts of the talks and the statements of the problems that were posed during the problem session. This was a particularly successful edition of the meeting Combinatorics, in large part because of the exceptional strength and range of the results discussed. Here we mention just two of these, each of which involved spectacular progress on some well-known, longstanding conjecture. These two snapshots also provide a nice, if small, sample of the large variety of topics and methodologies that were presented during a fascinating week in Oberwolfach. We add in passing that we deliberating did not offer a long talk for one of the most spectacular – and far reaching – results in combinatorics, proved just two years ago: the so called hypergraph container theorem. While the results (and the authors!) certainly would have deserved this, we felt we would bore a large part of the audience (who likely heard reports on hypergraph containers already several times) by adding a formal talk. Thus, this result was just present at lunch and dinner tables and, indirectly, in various small talks.

Now back to the two talks that we would like to explain in a little detail. A Steiner system with parameters \((n, q, r)\) is a set \(S\) of \(q\)-subsets of an \(n\)-set \(X\), such that every \(r\)-subset of \(X\) belongs to exactly one element of \(S\). The question of whether there is a Steiner system with given parameters is one of the oldest problems in combinatorics, dating back to work of Plücker (1835), Kirkman (1846) and Steiner (1853). More generally, we say that a set \(S\) of \(q\)-subsets of an \(n\)-set \(X\) is a design with parameters \((n, q, r, \lambda)\) if every \(r\)-subset of \(X\) belongs to exactly \(\lambda\) elements of \(S\).

There are some obvious necessary ‘divisibility conditions’ for the existence of such \(S\), namely that \(\binom{n}{r} / \binom{r}{i}\) divides \(\lambda \binom{n}{r-i}\) for every \(0 \leq i \leq r - 1\) (fix any \(i\)-subset \(I\) of \(X\) and consider the sets in \(S\) that contain \(I\)). It is a very old Existence conjecture that the divisibility conditions are also sufficient, apart from a finite number of exceptional \(n\) given fixed \(q, r\) and \(\lambda\). The case \(r = 2\) has received particular attention because of its connections to statistics, under the name of ‘balanced incomplete block designs’. The Existence Conjecture even for \(r = 2\) was a long-standing open problem, eventually resolved by Wilson in 70’s in a series of papers that revolutionized Design Theory. In his talk at the workshop Peter Keevash announced a proof of the Existence Conjecture in general, via a new method, which can be called Randomized Algebraic Constructions.

In 1912 George Birkhoff introduced a function \(\chi_q(G)\), defined for all positive integers \(q\) and finite graphs \(G\), which counts the number of proper colorings of \(G\) with \(q\) colors. It turns out that \(\chi_q(G)\) is a polynomial of \(q\) with integer coefficients. This polynomial is called the chromatic polynomial of \(G\). It appears that coefficients of the chromatic polynomial have many intriguing properties. One such property was conjectured more than 40 years ago by Read. A sequence of real numbers \(a_0, a_1, \ldots, a_n\) is called log-concave if for all \(0 < i < n\),

\[a_{i-1}a_{i+1} \leq a_i^2. \]
In 1968 Read conjectured that if $\chi_q(G) = a_nq^n - a_{n-1}q^{n-1} + \cdots + (-1)^n a_0$ is the chromatic polynomial of the graph G, then the sequence a_0, a_1, \ldots, a_n is log-concave. At the workshop, June Huh discussed how tools from Algebraic Geometry can be used to attack such problems and presented a proof of Read’s conjecture.

On behalf of all participants, the organizers would like to thank the staff and the director of the Mathematisches Forschungsinstitut Oberwolfach for providing such a stimulating and inspiring atmosphere.
Workshop: Combinatorics

Table of Contents

Noga Alon (joint with Jean Bourgain)
 Sum-free subgroups .. 13

Günter M. Ziegler (joint with Pavle V. M. Blagojević and Florian Frick)
 Tverberg plus constraints ... 14

Choongbum Lee (joint with Jeong Han Kim, Joonkyung Lee)
 Two approaches to Sidorenko’s conjecture 16

Ron Peled
 Probabilistic existence of regular combinatorial structures 19

Reinhard Diestel (joint with Johannes Carmesin, Fabian Hundertmark, Maya Stein)
 Blocks, profiles and tangles ... 19

David Conlon (joint with Jacob Fox and Benny Sudakov)
 Cycle packing .. 20

Oliver Riordan (joint with Bálint Bollobás)
 Counting connected hypergraphs via the probabilistic method 22

Asaf Shapira (joint with Guy Moshkovitz)
 A Short Proof of Gowers’ Lower Bound for the Regularity Lemma .. 23

June Huh (joint with Eric Katz)
 The tropical Laplacian and unimodality conjectures 25

Yufei Zhao (joint with David Conlon and Jacob Fox)
 The Green-Tao theorem and a relative Szemerédi theorem 27

Volkmar Welker (joint with Francisco Santos, Christian Stump)
 Noncrossing k-tuples ... 29

Roman Glebov (joint with Tereza Klimošová, Daniel Král, and Jan Volec)
 Finitely forcible graphons ... 31

Ehud Friedgut (joint with Jeff Kahn, Clara Shikhelman)
 Coarse thresholds for monotone properties with bounded minterms . 33

Julia Böttcher (joint with Jan Hladký, Diana Piguet, Anusch Taraz)
 Packing bounded degree trees 33

Van Vu (joint with Hoi Nguyen, Oanh Nguyen)
 The number of real roots of a random polynomial 36
Eyal Lubetzky (joint with Jeff Kahn, Nick Wormald)
Cycle factors and renewal theory .. 39

Michael Krivelevich (joint with Asaf Ferber, Benny Sudakov)
Permanent Hamiltonicity .. 43

Nathan Linial
Combinatorics: Local and local-to-global 45

Jacob Fox (joint with David Conlon, Choongbum Lee, Benny Sudakov)
Ramsey numbers .. 48

Amin Coja-Oghlan
Chasing the k-SAT threshold ... 51

Maria Chudnovsky (joint with Peter Maceli, Juraj Stacho, Mingxian Zhong)
Coloring graphs with excluded induced paths 53

Karl Bringmann (joint with Thomas Sauerwald, Alexandre Stauffer, He Sun)
Balls into bins via local search: (cover time and) maximum load 55

Andreas Noever
Online Ramsey Games in Random Graphs 56

Peter Heinig
Hamilton-generated flow-lattices of dense and random graphs:
consequences of embedding spanning substructures 57

Anders Björner (joint with Karim Adiprasito)
Filtered geometric lattices and tropical Lefschetz theorems 61

Penny Haxell (joint with Fidel Barrera-Cruz, Anna Lubiw)
Morphing planar graphs ... 61

Wojciech Samotij (joint with József Balogh, Robert Morris, and Lutz
Warnke)
Enumerative problems in extremal combinatorics 62

Peter Keevash
The existence of designs ... 66

Sergey Norin (joint with Liana Yepremyan)
Lagrangians of intersecting families 70

Po-Shen Loh (joint with Wenying Gan, Benny Sudakov)
Maximizing the number of independent sets of a fixed size 71

József Solymosi (joint with Ryan Schwartz)
Combinatorial applications of the Subspace Theorem 73

Mathias Schacht (joint with Ehud Friedgut, Hiệp Hàn, and Yury Person)
Sharp threshold for van der Waerden’s theorem 75

Dhruv Mubayi
Independent sets in hypergraphs ... 76