Arbitrary high order discontinuous Galerkin schemes

  • Michael Dumbser

    Università degli Studi di Trento, Italy
  • C.-D. Munz

    Universität Stuttgart, Germany
Arbitrary high order discontinuous Galerkin schemes cover

A subscription is required to access this book chapter.

Abstract

In this paper we apply the ADER one step time discretization to the discontinuous Galerkin framework for hyperbolic conservation laws. In the case of linear hyperbolic systems we obtain a quadrature-free explicit single-step scheme of arbitrary order of accuracy in space and time on Cartesian and triangular meshes. The ADER-DG scheme does not need more memory than a first order explicit Euler time-stepping scheme. This becomes possible because of an extensive use of the governing equations inside the numerical scheme. In the nonlinear case, quadrature of the ADER-DG scheme in space and time is performed with Gaussian quadrature formulae of suitable order of accuracy. We show numerical convergence results for the linearized Euler equations up to 10th order of accuracy in space and time on Cartesian and triangular meshes. Numerical results for the nonlinear Euler equations up to 6th order of accuracy in space and time are provided as well. In this paper we also show the possibility of applying a linear reconstruction operator of the order 3N + 2 to the degrees of freedom of the DG method resulting in a numerical scheme of the order 3N + 3 on Cartesian grids where N is the order of the original basis functions before reconstruction.