The second part is devoted to basic classical and recent results concerning the Hochschild extensions of finite dimensional algebras by duality bimodules and their module categories. Moreover, the shapes of connected components of the stable Auslander-Reiten quivers of Frobenius algebras are described.

The only prerequisite in this volume is a basic knowledge of linear algebra and some results of the first volume. It includes complete proofs of all results presented and provides a rich supply of examples and exercises.

The text is primarily addressed to graduate students starting research in the representation theory of algebras as well mathematicians working in other fields.]]>

Altogether the volume presents a collection of research papers which will be of interest to any active scientist working in one of the above mentioned fields.]]>

These notes are addressed to graduate students and mathematicians having a working knowledge of basic elements of the theory of function spaces, especially of Besov-Sobolev type and interested in mathematical biology and physics.]]>

One of the ramifications of this topic is the analysis of (small) proportional transaction costs, such as a Tobin tax. The lecture notes present some striking recent results of the asymptotic dependence of the relevant quantities when transaction costs tend to zero.

An appealing feature of the consideration of transaction costs is that it allows for the first time to reconcile the no arbitrage paradigm with the use of non-semimartingale models, such as fractional Brownian motion. This leads to the culminating theorem of the present lectures which roughly reads as follows: for a fractional Brownian motion stock price model we always find a shadow price process for given transaction costs. This process is a semimartingale and can therefore be dealt with using the usual machinery of mathematical finance.]]>
**Winner of the 2016 EMS Monograph Award!**

Complex Monge–Ampère equations have been one of the most powerful tools in Kähler geometry since Aubin and Yau’s classical works, culminating in Yau’s solution to the Calabi conjecture. A notable application is the construction of Kähler-Einstein metrics on some compact Kähler manifolds. In recent years degenerate complex Monge–Ampère equations have been intensively studied, requiring more advanced tools.

The main goal of this book is to give a self-contained presentation of the recent developments of pluripotential theory on compact Kähler manifolds and its application to Kähler–Einstein metrics on mildly singular varieties. After reviewing basic properties of plurisubharmonic functions, Bedford–Taylor’s local theory of complex Monge–Ampère measures is developed. In order to solve degenerate complex Monge–Ampère equations on compact Kähler manifolds, fine properties of quasi-plurisubharmonic functions are explored, classes of finite energies defined and various maximum principles established. After proving Yau’s celebrated theorem as well as its recent generalizations, the results are then used to solve the (singular) Calabi conjecture and to construct (singular) Kähler–Einstein metrics on some varieties with mild singularities.

The book is accessible to advanced students and researchers of complex analysis and differential geometry.]]>

Apart from the articles by former postdocs supported by the priority program, the volume contains a number of invited research and survey articles, many of them are extended versions of talks given at the last joint meeting of the priority program in Bad Honnef in March 2015. This volume is covering current research topics from the representation theory of finite groups, of algebraic groups, of Lie superalgebras, of finite dimensional algebras and of infinite dimensional Lie groups.

Graduate students and researchers in mathematics interested in representation theory will find this volume inspiring. It contains many stimulating contributions to the development of this broad and extremely diverse subject.]]>

The presentation is essentially self-contained, with an appendix wherein one can find precise statements of all the results used from different areas (linear algebra, convex geometry, measure theory, nonlinear analysis, and PDEs).

This book is intended for graduate students and researchers interested in nonlinear PDEs: explanatory figures, detailed proofs, and heuristic arguments make this book suitable for self-study and also as a reference.]]>

Since the presentation involves many notions of spectral theory and semiclassical analysis, it begins with a concise account of concepts and methods used in the book and is illustrated by many elementary examples.

Assuming various points of view (power series expansions, Feshbach–Grushin reductions, WKB constructions, coherent states decompositions, normal forms) a theory of Magnetic Harmonic Approximation is then established which allows, in particular, accurate descriptions of the magnetic eigenvalues and eigenfunctions. Some parts of this theory, such as those related to spectral reductions or waveguides, are still accessible to advanced students while others (e.g., the discussion of the Birkhoff normal form and its spectral consequences, or the results related to boundary magnetic wells in dimension three) are intended for seasoned researchers.]]>

The lecture of Diana Davis is devoted to billiard flows on polygons, a simple-sounding class of continuous time dynamical system for which many problems remain open.

Bryce Weaver focuses on the dynamics of a 2x2 matrix acting on the flat torus. This example introduced by Vladimir Arnold illustrates the wide class of uniformly hyperbolic dynamical systems, including the geodesic flow for negatively curved, compact manifolds.

Roland Roeder considers a dynamical system on the complex plane governed by a quadratic map with a complex parameter. These maps exhibit complicated dynamics related to the Mandelbrot set defined as the set of parameters for which the orbit remains bounded.

Pablo Lessa deals with a type of non-deterministic dynamical system: a simple walk on an infinite graph, obtained by starting at a vertex and choosing a random neighbor at each step. The central question concerns the recurrence property. When the graph is a Cayley graph of a group, the behavior of the walk is deeply related to algebraic properties of the group.]]>

In the last twenty years, sub-Riemannian geometry has emerged as an independent research domain, with extremely rich motivations and ramifications in several parts of pure and applied mathematics, such as geometric analysis, geometric measure theory, stochastic calculus and evolution equations together with applications in mechanics, optimal control and biology.

The aim of the lectures collected here is to present sub-Riemannian structures for the use of both researchers and graduate students.]]>