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Collapse transition of the interacting prudent walk

Nicolas Pétrélis and Niccolò Torri1

Abstract. This article is dedicated to the study of the 2-dimensional interacting prudent

self-avoiding walk (referred to by the acronym IPSAW) and in particular to its collapse

transition. The interaction intensity is denoted by ˇ > 0 and the set of trajectories consists

of those self-avoiding paths respecting the prudent condition, which means that they do

not take a step towards a previously visited lattice site. The IPSAW interpolates between

the interacting partially directed self-avoiding walk (IPDSAW) that was analyzed in details

in, e.g., [16], [4], [5] and [10], and the interacting self-avoiding walk (ISAW) for which the

collapse transition was conjectured in [11].

Three main theorems are proven. We show first that IPSAW undergoes a collapse

transition at finite temperature and, up to our knowledge, there was so far no proof in

the literature of the existence of a collapse transition for a non-directed model built with

self-avoiding path. We also prove that the free energy of IPSAW is equal to that of a

restricted version of IPSAW, i.e., the interacting two-sided prudent walk. Such free energy

is computed by considering only those prudent path with a general north-east orientation.

As a by-product of this result we obtain that the exponential growth rate of generic prudent

paths equals that of two-sided prudent paths and this answers an open problem raised in

e.g., [3] or [8]. Finally we show that, for every ˇ > 0, the free energy of ISAW itself is

always larger than ˇ and this rules out a possible self-touching saturation of ISAW in its

conjectured collapsed phase.

Mathematics Subject Classification (2010). 82B26, 60K35, 82B41, 60K15, 05D40.

Keywords. Polymer collapse, phase transition, prudent walk, self-avoiding random walk,

free energy.

1 N. Torri was supported by the “Investissements d’avenir” program (ANR-11-LABX-0020-

01).



388 N. Pétrélis and N. Torri

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

2 The interacting prudent self-avoiding walk (IPSAW) . . . . . . . . . . 389

3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

4 Decomposition of a generic prudent path . . . . . . . . . . . . . . . . 396

5 Proof of Theorem 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

6 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

7 Proof of Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 430

8 Free energy: convergence in the right hand side of (2.4) . . . . . . . . 431

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

1. Introduction

The collapse transition of self-interacting random walks is a challenging issue,

arising in the study of the �-point of an homopolymer dipped in a repulsive

solvent. Different mathematical models have been built by physicists to try and

improve their understanding of this phenomenon. For such models, the possible

spatial configurations of the polymer are provided by random walk trajectories.

In [11], Saleur studies the interacting self-avoiding walk (referred to as ISAW) that

is built with self-avoiding paths which are relevant from the physical viewpoint

because they fulfill the exclusion volume effect, a feature that real-world polymers

indeed satisfy. However, self-avoiding paths, especially in dimension 2 and 3,

are complicated objects. This is the reason why, in the mathematical literature,

collapse transition models were rather built by either relaxing the self-avoiding

feature of the paths (see for instance [14] or [15]) or by considering partially

directed paths. This is the case for the interacting partially directed self-avoiding

walk (referred to as IPDSAW) that was introduced in [16] and subsequently studied

in e.g. [4] or [10], [5] and [6]).

In the present paper, we focus on the interacting prudent self-avoiding walk

(referred to as IPSAW), a model built with prudent paths, i.e., non-directed self-

avoiding paths which can not take a step towards a previously visited lattice

site. The IPSAW clearly interpolates between IPDSAW and ISAW since partially

directed paths are prudent paths which themselves are self-avoiding paths. An

interesting feature of prudent paths is that although they are non-directed and

self-avoiding, the prudent condition, especially in dimension 2, imposes some

geometric constraints that makes them more tractable than self-avoiding paths

themselves. This can be observed in the existing literature dedicated to prudent

walks e.g., in [3] or [2].
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Organization of the paper. In Section 2, we give a rigorous mathematical

definition of IPSAW and we state our main results. Section 3 is dedicated to the

comparison of our result with the existing literature. We will in particular show

how IPSAW can be viewed as a limiting case of the undirected polymer in a poor

solvent studied in [14] and [15] and therefore shed some new light on the existence

of a conjectured critical curve for this model. In Section 4, we start by increasing

the complexity of the partially directed self-avoiding path by introducing the two-

sided prudent self-avoiding path. Then, we show how to decompose a generic

prudent path into a collection of two-sided paths. Section 5 is dedicated to the

proof of Theorem 2.2 that states the existence of a collapse transition for IPSAW

at finite temperature. Section 6 provides an algorithm which shows that the free

energy of IPSAW coincides with that of North-East interacting prudent self-

avoiding walk (referred to as NE-IPSAW), which is a restriction of IPSAW built

with a particular type of two-sided paths, i.e., the Nort-East prudent paths. With

Section 7, we provide a lower bound on the free energy of ISAW which allows

us to compare the nature of the collapse transitions of IPDSAW or IPSAW with

that of ISAW. Finally, in Section 8 we prove the existence of the free energy of

NE-IPSAW.

2. The interacting prudent self-avoiding walk (IPSAW)

2.1. Description of the models. Let L 2 N be the system size and let �SAWL be

the set of L-step prudent paths in Z
2, i.e.,

�PSAWL D
®

w WD .wi /
L
iD0 2 .Z2/LC1W w0 D 0; wiC1 �wi 2 ¹ ;!;#;"º;

0 � i � L � 1;
w satisfies the prudent condition

¯

;

(2.1)

where the prudent condition for a path w means that it does not take any step in

the direction of a lattice site already visited. We also consider a subset of �PSAWL

denoted by �NEL containing those L-step prudent paths with a general north-east

orientation. We postpone the precise definition of�NEL to Section 4.2 because this

requires some additional notations but one easily understands what such path look

like with Figure 1 (b).

At this stage we build two polymer models: the IPSAW for which the set of

allowed spatial configurations for the polymer is given by �PSAWL and its North-

East counterpart (NE-IPSAW) for which the set of configurations is given by�NEL .

For both models, each step of the walk is an abstract monomer and we want to take
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into account the repulsion between monomers and the environment around them.

This is achieved indirectly, by encouraging monomers to attract each other, i.e.,

by assigning an energetic reward ˇ � 0 to any pair of non-consecutive steps of the

walk though adjacent on the lattice Z2. To that aim, we associate with every pathw

the sequence of those points in the middle of each step, i.e., ui D wi�1C wi�wi�1

2

(1 � i � L) and we reward every non-consecutive pair .ui ; uj / at distance one,

i.e, kui � uj k D 1, see Figure 1. The energy associated with a given w 2 �L is

defined by an explicit Hamiltonian, that is

H .w/ WD
L

X

i;jD0
i<j

1¹kui�uj kD1º; (2.2)

so that Zˇ;L the partition function of IPSAW and ZNE
ˇ; L

the partition function of

the North-East model equal

Zˇ; L WD
X

w2�PSAW
L

e ˇ H .w/ and ZNEˇ; L WD
X

w2�NE
L

e ˇ H .w/: (2.3)

The key objects of our analysis are the free energies of both models, i.e., F.ˇ/

and FNE.ˇ/ which record the exponential growth rate of the partition function

sequences .Zˇ; L/L2N and .ZNE
ˇ; L

/L2N, respectively. Thus,

F.ˇ/ WD lim
L!1

1

L
log Zˇ; L and FNE.ˇ/ WD lim

L!1

1

L
log ZNEˇ; L: (2.4)

The convergence in the right hand side of (2.4) will be proven in Section 8. The

convergence in the left hand side of (2.4) is more complicated and it will be

obtained as a by-product of Theorem 2.1 below.

2.2. Main results. In the present Section we state our main results and we

give some hints about their proof. We pursue the discussion in Section 3 below,

by explaining how our results answer some open problems leading to a better

comprehension of interacting self-avoiding walk.

With Theorem 2.1 below, we state that the free energies of IPSAW and of NE-

IPSAW are equal. Our proof is displayed in Section 6 and is purely combinatorial.

It consists in building a sequence of path transformations .ML/L2N such that for

every L 2 N, ML maps every generic path in �PSAWL onto a 2-sided prudent path

in �NEL and satisfies the following properties:

� for every w 2 �PSAWL , the difference between the Hamiltonians of w and of

ML.w/ is o.L/,
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� the number of ancestors of a given path in �NEL by ML can be shown to be

eo.L/.

Such a mapping allows us to prove the following theorem.

Theorem 2.1. For ˇ � 0,
F.ˇ/ D FNE.ˇ/: (2.5)

The free energy equality in (2.5) will subsequently be used to establish Theo-

rem 2.2 below, which states that IPSAW undergoes a collapse transition at finite

temperature.

Theorem 2.2. There exists a ˇIPSAWc 2 .0;1/ such that

F.ˇ/ > ˇ for every ˇ < ˇIPSAWc ; (2.6a)

F.ˇ/ D ˇ for every ˇ � ˇIPSAWc : (2.6b)

Thus, the phase diagram Œ0;1/ is partitioned into a collapsed phase, C WD
ŒˇIPSAWc ;1/ inside which the free energy (2.4) is linear and an extended phase,

E D Œ0; ˇIPSAWc /.

The proof of Theorem 2.2 is displayed in Section 5. It requires to exhibit a loss

of analyticity for ˇ 7! F.ˇ/ at some positive value of ˇ (which is subsequently

denoted by ˇIPSAWc /. The nature of the proof is much more probabilistic than that of

Theorem 2.1. It indeed relies, on the one hand, on the random walk representation

of the partially directed version of our model displayed initially in [10] and, on the

other hand, on the fact that prudent path can be naturally decomposed into shorter

partially directed paths.

Since a partially directed self-avoiding path is in particular a generic prudent

path, we can compare the critical point of IPSAW with the critical point of

IPDSAW, which was computed explicitly in e.g. [4, 10]. We obtain that

ˇIPDSAWc � ˇIPSAWc : (2.7)

The inequality in (2.7) is somehow not satisfactory since one wonders whether it

is strict or not. This issue is left as an open question and will be discussed further

in Section 3.3.
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We conclude this section by considering the 2-dimensional Interacting Self-

Avoiding Walk (ISAW) defined exactly like the IPSAW in (2.2) but with a larger

set of allowed configurations, that is (in size L 2 N)

�SAWL WD
®

w WD .wi /
L
iD0 2 .Z2/LC1Ww0 D 0; wiC1 �wi 2 ¹ ;!;#;"º;

0 � i � L � 1;
w satisfies the self-avoiding condition

¯

:

(2.8)

We denote by ZISAW
L;ˇ

the partition function of ISAW and we define its free energy

as

F ISAW.ˇ/ WD lim inf
L!1

1

L
logZISAWL;ˇ ; (2.9)

where the lim inf in (2.9) is chosen to overstep the fact that the convergence of the

free energy remains an open issue.

Theorem 2.3. For every ˇ 2 Œ0;1/,

FISAW.ˇ/ > ˇ: (2.10)

A straightforward consequence of Theorem 2.3 is that the conjectured collapse

transition displayed by ISAW at some ˇISAWc does not correspond to a self-touching

saturation as it is the case for IPDSAW and IPSAW.

3. Discussion

3.1. Background. The ISAW has triggered quite a lot of attention from both the

physical and the mathematical communities. Much efforts have been put, for in-

stance, to estimate numerically the value of the critical point ˇISAWc (see e.g. [12]

or [13] in dimension 3) or to compute the typical end to end distance of a path

at criticality (see e.g. [11]). However, only very few rigorous mathematical results

have been obtained about it so far. For example, the existence of a collapse transi-

tion is conjectured only and if such transition turns out to occur, obtaining some

quantitative results about the geometric conformation adopted by the path inside

each phase is even more challenging. In view of the mathematical complexity

of ISAW, other models have been introduced, somehow simpler than ISAW and

therefore more tractable mathematically.
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The first attempt to investigate a simplified version of ISAW is due to [16]

with the Interacting Partially Directed Self-Avoiding Walk (IPDSAW). Again the

model is defined as in (2.2), but with a restricted set of configurations, i.e.,

�PDSAWL WD
®

w WD .wi /
L
iD0 2 .N � Z/LC1Ww0 D 0; wiC1 � wi 2 ¹!;#;"º;

0 � i � L� 1;
w satisfies the self-avoiding condition

¯

:

(3.1)

The IPDSAW was first investigated with combinatorial methods in e.g., [4] where

the critical temperature, ˇIPDSAWc , is computed. Subsequently, in [10] and [5] and [6]

a probabilistic approach allowed for a rather complete quantitative description of

the scaling limits displayed by IPDSAW in each three regimes (extended, critical

and collapsed).

Another simplification of ISAW gave birth to the Interacting Weakly Self-

Avoiding Walk (IWSAW), which is built by relaxing the self-avoiding condition

imposed to ISAW such that the set of configurations �L contains every L-step

trajectory of a discrete time simple random walk on Z
d (d � 1). The Hamiltonian

associated with every path rewards the self-touchings and penalizes the self-

intersections, i.e, for every w 2 �L,

H .w/ D �
X

0�i<j�L

1¹wi�wjD0º C ˇ
X

0�i<j�L

1¹jui�uj jD1º: (3.2)

Thus,  � 0 is a parameter that can be tuned to approach the ISAW through

the IWSAW, since in the limit  D 1 both models coincide. The IWSAW is

investigated in two papers, i.e., [14] and [15] whose results are reviewed in [7,

Section 6.1]. In [15], the existence of a critical curve  D 2dˇ between a localized

phase and a collapsed phase (also referred to as minimally extended) is proven in

every dimension d � 1. Inside the localized phase (i.e., for ˇ > =2d ) and with

probability arbitrarily close to 1 the polymer is confined inside a squared box of

finite size. Inside the collapsed phase in turn, the typical diameter of the polymer

is proven to be at least L1=d . It is conjectured that at criticality (ˇ D 2d), the

polymer scales asL1=dC1. This is made rigorous in [15] when d D 1. In dimension

d � 2, IWSAW is conjectured to undergo another critical curve  7! ˇ./

between the previously mentioned collapsed phase and an extended phase inside

which the typical extension of the path is expected to be the same as that of the

self-avoiding walk. This critical curve is expected to have an horizontal asymptote

ˇ D ˇ� 2 .0;1/ and ˇ� is itself expected to equal ˇISAWc .
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3.2. Discussion of the results. As mentioned above, one of the interest of

IPSAW is that it interpolates between IPDSAW, which is now very well under-

stood, and ISAW (or IWSAW at  D 1) about which most theoretical issues

remain open. From this perspective, Theorem 2.2 clearly constitutes a step for-

ward in the investigation of ISAW since, up to our knowledge, IPSAW is the first

non-directed model of interacting self-avoiding walk for which the existence of a

collapse transition is proven rigorously.

At first sight, Theorem 2.1 may appear as an intermediate step in the proof

of theorem 2.2. The fact that the free energies of IPSAW and of NE-IPSAW are

equal allows us to prove Theorem 2.2 with 2-sided prudent paths only. However,

the importance of Theorem 2.1 goes beyond IPSAW itself. The 2-sided prudent

trajectories have indeed been studied already in the mathematical litterature, see

e.g., [3], [8], or [1]. It was conjectured in [3] or [8] that the exponential growth rate

of the cardinality of 2-sided prudent paths (as a function of their length) equals

that of generic prudent paths and this is precisely what Theorem 2.1 says at ˇ D 0.
Moreover this result supports somehow the conjecture that the scaling limit of the

uniform prudent walk should be the same as that of its 2-sided counterpart, see [3].

We discuss this conjecture in Section 3.3 below.

As mentioned below Theorem 2.3, the fact that ISAW does not give rise to a

self-touching saturation when ˇ becomes large enough indicates that the nature

of its phase transition differs from that of IPDSAW and IPSAW. Theorem 2.3

tells us that for every ˇ > 0, one can display a subset of trajectories whose

contribution to the free energy is strictly larger than ˇ. As a consequence, there

is no straightforward inequality between the conjectured critical point ˇISAW
c and

ˇIPDSAW
c or between ˇISAW

c and ˇIPSAW
c .

3.3. Open problems. We state 3 open problems which, in our opinion, are

interesting but require to bring the instigation of IPSAW and ISAW some steps

further. We discuss those 3 issues subsequently.

(1) Compute ˇIPSAWc and therefore determine whether or not ˇIPSAWc > ˇIPDSAWc .

(2) Provide the scaling limit of IPSAW in its three regimes, i.e., extended,

critical and collapsed.

(3) Prove that ISAW also undergoes a collapse transition at some ˇ > 0.

Concerning the first open question above, one should keep in mind Theorem 2.1.

Proving that ˇIPSAWc > ˇIPDSAWc indeed requires to check that FNE.ˇIPDSAWc / >

ˇIPDSAWc . For simplicity we set ˇc D ˇIPDSAWc . We recall the grand canonical
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characterization of the free energy, i.e.,

FNE.ˇc/ � ˇc D inf
°

 > 0W
X

L�1

ZNEL;ˇc
e�.ˇcC/L <1

±

(3.3)

and we observe that a generic NE-prudent path is a concatenation of partially

directed path (see (4.3)) satisfying an additional geometric constraint called exit-

condition (see Definition 4.3). If we denote byZIPDSAW
L;ˇc

.�/ the partition function of

IPDSAW restricted to those configurations respecting the exit-condition and if we

forget about the interactions between the partially directed subpaths constituting

a NE-prudent path, we deduce that the inequality

X

L�4

ZIPDSAWL;ˇc
.�/ e�ˇcL > 1 (3.4)

would be sufficient to claim that the left hand side in (3.3) is positive. Without

the exit condition, i.e., with ZIPDSAW
L;ˇc

instead of its restricted counterpart, the

inequality (3.4) is true. This is a consequence of the random walk representation

of IPDSAW displayed in [10] which gives that
P

L�4Z
IPDSAW

L;ˇc
e�ˇcL D1 because

it equals the expected number of visits at the origin of a recurrent random walk

on Z. However, the exit condition imposed to every partially directed subpath

constituting a NE-prudent path induces a strong loss of entropy and this is why

we are not able to show that (3.4) also holds true.

The second open question would complete the scaling limit of the prudent walk

(at ˇ D 0). This problem has been investigated with combinatorial technics in, e.g.

[3, Proposition 8] for the 3-sided prudent walk. In this case the scaling limit is a

straight line along the diagonal and it is conjectured that also the generic prudent

walk displays the same scaling limit. With probabilistic tools, the scaling limit

of the (kinetic) prudent walk was explored in [2]. We refer to [2] for the precise

definition of the kinetic prudent walk, but let us emphasize that its scaling limit is

described by an explicit non trivial continuous process, cf. [2, Theorem 1].

We may assume that inside its extended phase the scaling limit of IPSAW

remains very similar to that of the prudent walk (at ˇ D 0). From this perspective,

it would be interesting to get a better understanding of the geometry of IPSAW

inside its collapsed phase as well. Since F.ˇ/ D ˇ when ˇ � ˇIPSAW
c , we can state

that the fraction of self-touching of a typical path is 1C o.1/. However, there are

various type of paths achieving this condition, e.g., the collapsed configurations

of IPDSAW (see [5, Section 4]) or configurations filling a square box by turning

around their range, and it is not clear at this stage which subclass would contribute

the most to the partition function.
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The third open question is the most difficult. The fact that one can not display

a subset of parameters in Œ0;1/ inside which the free energy of ISAW becomes

linear illustrates this difficulty.

(a) IPDSAW (b) NE-IPSAW (c) IPSAW

x

x x

Figure 1. Examples of a PDSAW (A), NE-PSAW (B) and PSAW (C) path. Any path starts

at x and its orientation is given by the arrow. In (A) we have drawn an IPDSAW path made

of 11 stretches: `1D9; `2D�7; `3D9; `4D0; `5D�12; `6 D 0; `7D5; `8D0; `9D5,
`10D�7; `11D0. That path performs 19 self-touching (drawn in red).

4. Decomposition of a generic prudent path

In this section we describe the different type of path that we will have to take into

account in the paper. By order of increasing complexity, we will first introduce

in Section 4.1 the partially directed self-avoiding paths and their counterparts

satisfying the so called exit condition which is an additional geometric constraints

allowing for their concatenation. In section 4.2, we concatenate such partially

directed paths to build the two-sided prudent paths. Those two-sided paths have 4

possible general orientations; north-east (NE), north-west (NW), south-east (SE)

and south-west (SW). Finally in Section 4.3, we will introduce the generic prudent

path and observe that each such path can be decomposed in a unique manner into

a succession of macro-blocks. Those macro-blocks are particular cases of two-

sided prudent paths obeying some additional constraints imposed by the prudent

condition to allow for their concatenation.

We need to define˚ a concatenation operator on prudent path. We pick r 2 N

and we consider r prudent paths denoted byw1; : : : ; wr . We letw1˚w2˚� � �˚wr

be the path obtained by attaching the last step of wi�1 with the first step of wi for

every 2 � i � r . Then, the sequence .w1; : : : ; wr/ is said to be concatenable

if w1 ˚ � � � ˚ wr itself is a prudent path. Finally, we extend the notation ˚ to the

concatenation of sets of prudent path. Therefore, if .Ai /
r
iD1 are r sets of paths such
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that any sequence in A1 � � � � �Ar is concatenable, then A1 ˚ � � � ˚ Ar contains

all paths obtained by concatenating sequences in A1 � � � � �Ar .

4.1. Partially directed self-avoiding walk (PDSAW). The partially directed

self-avoiding walk is a random walk on Z
2 whose increments are unitary and

can take only three possible directions. For instance, when the increments of the

path are chosen in ¹"; #; !º, then the path is west-east oriented. By rotating an

west-east path by �=2 radians we obtain a south-north path, whose increments are

chosen in ¹";  ; !º, see Figure 2 for two examples of such paths. By repeating

twice this rotation, we recover the east-west and the north-south paths. In what

follows and for L 2 N, the set of west-east partially directed paths of length L

(south-north, east-west, north-south respectively) will be denoted by�!
L;pd (�

"
L;pd,

� 
L;pd, �

#
L;pd respectively).

Definition 4.1 (inter-stretch). We call inter-stretch every increment in the direction

which gives the orientation of a given partially directed path. Therefore, any par-

tially directed path of finite length can be partitioned into .N � 1/-inter-stretches

and N -stretches, .`1; : : : ; `N / 2 Z
N , for some N 2 N. For i 2 ¹1; : : : ; N º, the

modulus of `i gives the number of unitary steps composing the i-th stretch and

when `i ¤ 0, the sign of `i gives its orientation. In a west-east or east-west path,

we say that `i has a south-north orientation (") if `i > 0 and north-south (#)
if `i < 0. In a south-north or north-south path, we say that `i has an west-east

orientation (!) if `i > 0 and east-west ( ) if `i < 0 (see Figure 2). Thus, e.g.,

�!L;pd D
L

[

ND1

¹` D .`i /
N
iD1 2 Z

N W N � 1C j`1j C � � � C j`N j D Lº:

Remark 4.2. In this paper we also take into account those partially directed

path with only one vertical stretch and zero inter-stretches (thus N D 1 in

Definition 4.1). This is a slight difference with respect to [5]), in which N � 2.

In Section 4.2 we define the two-sided path. They are obtained by concate-

nating alternatively, e.g., some west-east partially directed paths with some south-

north partially directed paths. However, concatenating such oriented path requires

an additional geometric constraint called exit-condition which requires a proper

definition.
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Definition 4.3 (exit condition). Let N 2 N and let ` D .`1; : : : ; `N / 2 Z
N be an

arbitrary sequence of stretches. Then, ` satisfies the upper exit condition if its last

stretch finishes strictly above all other stretches, i.e.,

`1 C � � � C `N > max
0�i<N

¹`1 C � � � C `iº;

and ` satisfies the lower exit condition or if its last stretch finishes strictly below

all other stretches, i.e.,

`1 C � � � C `N < min
0�i<N

¹`1 C � � � C `iº:

Definition 4.4 (oriented blocks). An arbitrary west-east partially directed path

.`1; `2; : : : ; `N / is called upper oriented if its first stretch is negative and if it obeys

the upper exit condition (see Figure 2 (A)). Otherwise, it is called lower oriented

if its first stretch is positive and if it obeys the lower exit condition. We denote by

O
!;C
L the set of upper west-east oriented blocks of size L and by and by O

!;�
L the

set of lower west-east oriented blocks, i.e.,

O
!;C
L WD ¹` 2 �!L;pdW `1 < 0 and ` satisfies the upper exit conditionº; (4.1)

O
!;�
L WD ¹` 2 �!L;pdW `1 > 0 and ` satisfies the lower exit conditionº: (4.2)

We define analogously the sets O
";C
L and O

";�
L of upper south-north oriented

blocks and of lower south north oriented blocks, respectively, and so on.

We stress that for satisfying the exit condition it must hold that N � 2, i.e., we

need at least two stretches.

4.2. Two-sided prudent path. With the oriented blocks (recall definition 4.4)

in hand, we can define a larger class of prudent paths: the 2-sided prudent paths,

which ultimately will constitute the building bricks of the prudent path. Those

2-sided prudent path have a general orientation that can be north-east (NE), north-

west (NW), south-west (SW) or south-east (SE). In the rest of the section we focus

on NE-prudent path, but all definitions we give can easily be adapted to consider

a generic oriented (NE, NW, SE, SW) prudent self-avoiding path.

As mentioned above, north-east prudent path are obtained by considering a

family of west-east oriented blocks and a family of south-north oriented blocks

and by concatenating them alternatively.
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(a) A west-east block. (b) A south-north block.

x

x

Figure 2. The west-east oriented block (A) is made of 12 stretches and is upper oriented

since `1 < 0 and `1 C � � � C `12 > max
1�i�11

¹`1 C � � � C `i º. Analogously, the south-north

block (B) is upper oriented as well.

Definition 4.5 (NE-prudent path). To define a NE-prudent self-avoiding path of

length L 2 N we consider r 2 N oriented blocks, .�1; : : : ; �r/, of length t1; : : : ; tr

respectively, with t1C� � �Ctr D L and ti � 4. We assume that those blocks indexed

by odd integers are either all upper west-east oriented (in which case all blocks

indexed by even integers are upper south-north oriented) or all upper south-north

oriented (in which case all blocks indexed by even integers are upper west-east

oriented). In Definition 4.4 we have imposed that an upper oriented block starts

with a negative stretch but this constraint can be relaxed for �1 (the first oriented

block of the sequence). We have also imposed that an upper oriented block satisfies

the upper exit condition but this constrain can be relaxed for �r (the last block of

the sequence). See Figure 3 for an example of a NE-prudent path with these 2

constraints relaxed. Then, we concatenate �1; : : : ; �r (which is possible because

the first r � 1 blocks satisfy the exit condition) and the resulting path is denoted

by �1˚� � �˚�r . We call such path a NE-prudent self-avoiding path, see Figure 3.

The sequence .�1; : : : ; �r/ is called the block decomposition of the path and it is

unique.

We now provide a formal definition of �NEL :

�NEL D
[

r22N

[

t1C���CtrDL

ŒO
!;C
t1;� ˚ O

";C
t2
˚ � � � ˚ O

!;C
tr�1
˚ O

";C
tr ;�

�

[ ŒO";C
t1;� ˚ O

!;C
t2
˚ � � � ˚ O

";C
tr�1
˚ O

!;C
tr ;�

�

[
[

r22N�1

[

t1C���CtrDL

ŒO
!;C
t1;� ˚ O

";C
t2
˚ � � � ˚ O

";C
tr�1
˚ O

!;C
tr ;�

�

[ ŒO";C
t1;� ˚ O

!;C
t2
˚ � � � ˚ O

!;C
tr�1
˚ O

";C
tr ;�

�;

(4.3)
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where the notations O
� ;C
t;� means that the condition `1 < 0 has been removed

from (4.1) and O
� ;C
t;�

means that the exit condition has been removed from (4.1).

x

y

z

Figure 3. A NE-PSAW path made of three blocks: the first and the third blocks are west-

east (in green) and the second block is south-north (in blue). The first block starts at x, the

second block starts at y and the third block starts at z. Their orientation is given by the

arrow. Interactions in each block and between different blocks are highlighted in red.

Remark 4.6. Let us observe that indeed �!
L;pd and �

"
L;pd are NE-prudent self-

avoiding walk. It corresponds to the case in which we have only one block, i.e.,

r D 1.

4.3. Interacting prudent self-avoiding walk. In this section we show how a

general prudent path can be decomposed in a unique manner into a sequence of

2-sided prudent paths called macro-blocks. There is a difference between the de-

composition of a two-sided path into oriented blocks and that of a generic prudent

path into macro-blocks. We have indeed seen in Section 4.5 above that the exit

condition, which is an intrinsic constraint, was sufficient to make sure that ori-

ented blocks alternatively west-east and south-north are concatenable. However,

to make sure that a given family of 2-sided prudent paths is concatenable, one

can not rely on some intrinsic geometric constraint anymore. Such a family must

indeed satisfy a global constraint, that is, each 2-sided prudent path has to satisfy
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the prudent condition with the all path it will be attached to and this condition is

not intrinsic anymore, see Figure 5.

We recall that a walk is said to be prudent if none of its steps point in the

direction of its range. In the sequel we refer to this constraint as the prudent

condition.

f1

f1

d3

d3

zN2

zN2

Figure 4. On the left, a NE-PSAW path made of three blocks. In the picture we zoom in

on the interactions between the third block and the rest of path. We recall that the third

block can only interact with its two preceding blocks, i.e., the first and the second one. We

call f1 the last vertical stretch of the first block and d3 the first vertical stretch of the third

block. The interactions between the first and the third blocks involve f1 and d3 while the

interactions between the second and the third blocks involve d3 and zN2 (the number of

inter-stretches in the second block that may truly interact with d3, on the picture zN2 D 1).
Such interactions are bounded above by . zN2 C f1/ ẑ d3.

4.3.1. Macro-block decomposition. Let us start by noticing that a prudent walk

can be viewed as a sequence of NE, NW, SE, SW two-sided sub-paths that we will

call macro-block, see Figure 5.

Definition 4.7. For very m;L 2 N we denote by ‚m;L the set gathering all

concatenable sequences of m two-sided paths such that the cumulated length of

the two-sided paths in the sequence is L and such that:
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Figure 5. Decomposition of a prudent walk into macro-blocks. In the picture we have

a sequence of three macro-blocks, A;B; andC . The first macro-block (A) has a NE-

orientation. The second block (B) has a SW-orientation and it is compatible with the first

macro-block, that is, the prudent condition is satisfied. This allows us to concatenate A with

B. The third macro-block (C) has a NE-orientation and it satisfies the compatibly condition

with A˚ B . The interaction between macro-blocks are highlighted in red.

(1) two consecutive two-sided paths in the sequence do not have the same

orientation,

(2) the first m � 1 two-sided paths in the sequence contain at least 2 oriented

blocks.

For the ease of notation, we recall (4.3) and we let �NEL;4 be the set of north-east

prudent path containing at least two oriented blocks (the same definition holds
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with the 3 others possible orientations of a two-sided path). Thus,

‚m;L D
[

t1C���CtmDL

[

.xi /m
iD1
2¹NE;NW;SE;SWº

xi�1¤xi ; i�r

¹.ƒ1; : : : ; ƒm/ 2 �x1

t1;4 � � � � ��
xm�1

tm�1;4 ��
xm
tm
W

.ƒ1; : : : ; ƒm/ is concatenableº:
(4.4)

Finally, we observe that any prudent path of length L can be decomposed into

a sequence of macro-blocks in
S

m�1‚m;L and moreover, thanks to the conditions

(1) and (2) in Definition 4.7 we can assert that such decomposition is unique.

Therefore, we may partition �PSAWL as

�PSAWL D
[

m�1

¹ƒ1 ˚ � � � ˚ƒmW .ƒ1; : : : ; ƒm/ 2 ‚m;Lº (4.5)

An example of such decomposition is provided in Figure 5.

4.3.2. Upper bound on the number of macro-block in the decomposition of a

generic prudent path. The prudent condition imposes strong constraints on the

number of macro-block composing the path: if we consider the smallest rectangle

embedding the whole path, then whenever the random walk wants to start a

new macro-block, it must cross the whole rectangle in one direction and in such

direction the length of the rectangle is increased by at least one unit. Therefore the

longer it is the path, the harder (expensive) it becomes to start a new macro-block.

In Lemma 4.8 we provide an upper bound on the number of macro-blocks in a

prudent path of a given length.

Lemma 4.8. LetL be the path length. Then the number of macro-blocks compos-

ing the path is bounded from above by O.
p
L/.

Proof. Pick w 2 �L, and let r be the number of macro-blocks in w. For j 2
¹1 : : : ; rº, we denote by Rj the smallest rectangle containing the first j macro-

blocks of w. In order to complete the j -th macro-block and to start a new one, the

path should either cross Rj horizontally and increase the width of Rj by at least

1 or vertically and increase the height of Rj by at least 1. Therefore, we define

nv the number of times that a macro-block ends with a vertical cross, and nh its

horizontal counterpart. As a consequence, by keeping in mind that w has length

L, it must hold that
nv
X

iD1

i C
nh
X

jD1

j � L: (4.6)
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From (4.6) it comes that nv.nvC1/Cnh.nhC1/ � 2L and therefore n2
vCn2

h
� 2L.

Under such condition, the quantity nv C nh is maximal when nv D nh D
p
L.

Thus, the number of macro-blocks made by w is not larger than 2
p
L. �

5. Proof of Theorem 2.2

In this section we prove Theorem 2.2 subject to Theorem 2.1 which ensures that

FNE.ˇ/ D F.ˇ/ for any ˇ 2 Œ0;1/. Therefore it is sufficient to prove Theorem 2.2

for NE-PSAW. Theorem 2.1 will be proven in Section 6.

We consider the free energy of NE-IPSAW

FNE.ˇ/ WD lim
L!1

1

L
log ZNEˇ; L: (5.1)

In Section 8 we prove that this limit exists and is finite. Let us observe that, by

Remark 4.6, FNE.ˇ/ � FIPDSAW.ˇ/, thus it follows that FNE.ˇ/ � ˇ cf. (1.9) in [5].

To complete the proof of Theorem 2.2 we have to show that there exists a ˇ0

such that ZNE
ˇ; L
� eˇ.LCo.L// for any ˇ � ˇ0 and L 2 N. To that purpose we

disintegrate the partition function ZNE
ˇ; L

by using the decomposition of any L-step

NE-PSAW path � into a family of oriented blocks .�1; : : : ; �r/ with r � L=4

(cf. Definition 4.3). As displayed in (4.3), we can distinguish between 4 types

of NE-PSAW paths depending on the orientation of their first and last oriented

block. For simplicity we will only consider yZ NE
ˇ; L

which is computed by restricting

the partition function to those paths starting with a west-east block and ending

with a south-north block (this corresponds to the first decomposition in (4.3)).

The contribution to ZNE
ˇ; L

of those path satisfying one of the 3 other possible

decompositions in (4.3) are handled similarly. Therefore,

yZNEˇ;L D
X

r22N

X

t1C���CtrDL

X

.�1;:::;�r /2O
exp

°

ˇ

r
X

jD1

H.�i/C ˇ ˆ.�1; : : : ; �r/
±

; (5.2)

where

O D O
!;C
t1;� � O

";C
t2
� � � � � O

!;C
tr�1
� O

";C
tr ;�

;

andˆ.�1; : : : ; �r/ is a suitable function that takes into account the interactions be-

tween different oriented blocks, i.e., counts the number of self-touchings involving

monomers belonging to two different oriented blocks.

Henceforth, for every i 2 ¹1; : : : ; rº we let di (respectively fi ) be the

first stretch (resp. last stretch) of �i and we let Ni be the number of stretches

constituting �i . We note that ˆ.�1; : : : ; �r/ can be computed by summing for
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i D 1; : : : ; r � 1 the number of self-touchings between �iC1 and the sub-path

�1˚� � �˚�i . Moreover, the prudent condition implies that �iC1 can interact with

�1˚� � �˚�i only through �i�1 and �i . To be more specific (see Figure 4), the self-

touchings between �i and �iC1 may only happen between diC1 (the first stretch

of �iC1) and some of the inter-stretches of �i (whose number is denoted by zNi ),

while the self-touchings between �i�1 and �iC1 may only happen between diC1

and fi�1 (the last stretch of �i�1). Of course, for every i 2 ¹0; : : : ; r � 1º, the

number of inter-stretches in �i that may interact with diC1 is not larger than the

number of inter-stretches in �i , i.e., zNi � Ni�1. By assigning to zNi the same sign

as fi�1, we can check without further difficulty (see Figure 4) that the number of

self-touchings between �i�1; �i and �iC1 is bounded from above by

. zNi C fi�1/ ẑ diC1;

where the ẑ operator is defined in (5.5) below. We stress again that zNi and fi�1

have the same sign, while diC1 has the opposite orientation. By using the definition

of ẑ in (5.5) and the triangle inequality, we have the following inequality for every

c 2 .0; 1=2/, i.e.,

. zNiCfi�1/ ẑ diC1 �
1

2
jdiC1jC

1

2
jfi�1jC

�1

2
Cc

�

jNi�1j�c jfi�1CdiC1j; (5.3)

for i D 1; � � � ; r � 1, where f0 D 0 by definition. It turns out that the value of c is

worthless: in the sequel we choose c D 1=4. We use (5.3) to conclude that

e ˇ ˆ.�1;:::;�r / � e
ˇ
2 .jd2jC���Cjdr j/e

ˇ
2 .jf1jC���Cjfr�2j/

e
3
4

ˇ .N1C���CNr�r/e�
ˇ
4

.jf0Cd2jC���Cjfr�2Cdr j/:
(5.4)

At this stage, we let yQˇ;t;d;f;N be the partition function associated with those

oriented blocks made of N stretches .`1; : : : ; `N /, of total length t , starting with

a stretch `1 D d , finishing with a stretch `N D f . Since yQˇ;t;d;f;N is a partition

function involving partially directed paths only, we can use the Hamiltonian repre-

sentation displayed in [5] with the help of the operator ẑ : for any pair .x; y/ 2 Z
2

we let

x ẑ y WD 1

2
.jxj C jyj � jx C yj/ D

´

min¹jxj; jyjº if xy < 0;

0 otherwise.
(5.5)

In such a way for a given sequence of N -stretches, .`1; : : : ; `N /, the Hamiltonian

in (2.2) becomes

H..`1; : : : ; `N // D
N�1
X

iD1

.`i ẑ `iC1/: (5.6)
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Since we are looking for an upper bound on yZ NE
ˇ; L

, we forget about the exit

condition that a block must satisfy (cf. Definition 4.3) and we define Qˇ; t;d;f;N ,

on LN;t , the set of all partially-directed paths of length t withN �1 inter-stretches.

To be more specific, for N 2 N we let

LN;t WD
°

` D .`1; : : : ; `N /W
N

X

iD1

j`i j D t �N C 1
±

; (5.7)

and we define

Qˇ;t;d;f;N WD
X

`2LN;t

`1Dd;`NDf

exp
°

ˇ

N�1
X

nD1

.`n ẑ `nC1/
±

: (5.8)

In such way yQˇ;t;d;f;N � Qˇ;t;d;f;N . It follows that an upper bound on yZ NE
ˇ; L

can

be obtained from (5.2). To that aim, for a given r 2 ¹1; : : : ; L=4º and t1C� � �Ctr D
L, we rewrite the inner summation in (5.2) depending on the value taken by

.di ; fi ; Ni / for i 2 ¹1; : : : ; rº. We recall that di < 0 for i � 2 and we lighten

the notation with

„.t1;:::;tr / D
°

.di ; fi ; Ni /
r
iD1W jdi j C jfi j CNi � 1 � ti ; di < 0; for all i � 2;

Ni � 2; for all i ¤ rº;

where the .t1; : : : ; tr/-dependency of „ may be omitted when there is no risk of

confusion. We plug (5.4) inside (5.2) to obtain

yZ NEˇ; L �
L=4
X

rD1

X

t1C���CtrDL

X

.di ;fi ;Ni /r
iD1
2„

�

r
Y

iD1

Qˇ; ti ;di ;fi ;Ni

�

e
ˇ
2

.jd2jC���Cjdr j/e
ˇ
2

.jf1jC���Cjfr�2j/

e
3
4

ˇ .N1C���CNr�r/e�
ˇ
4

.jf0Cd2jC���Cjfr�2Cdr j/

(5.9)

Remark 5.1. According to Definition 4.4 and 4.3, we want to stress that �r , the

last block of the path, can have zero inter-stretches, i.e., it may happen thatNr D 1.
For the other blocks, �1; : : : ; �r�1, Ni must be larger or equal to 2, because the

exit condition (cf. Definition 4.3) implies that each such block contains at least

two stretches.



Collapse transition of the interacting prudent walk 407

With the help of (5.5) we can rewrite Qˇ; t;d;f;N in (5.8) as

Qˇ; t;d;f;N D
X

`2LN;t

`1Dd;`NDf

exp
°

ˇ

N
X

nD1

j`nj �
ˇ

2

N�1
X

nD1

j`n C `nC1j �
ˇ

2
jf j � ˇ

2
jd j

±

:

(5.10)

Recall (5.7). For every ` 2 LN;t , the equality
PN

nD1 j`nj D t � N C 1 can be

plugged into (5.10) to obtain

Qˇ; t;d;f;N D e ˇ . t�NC1� 1
2
jf j� 1

2
jd j/

X

`2LN;t

`1Dd;`NDf

N�1
Y

nD1

exp
°

� ˇ
2
j`n C `nC1j

±

: (5.11)

According to the method used in [5, Section 2.1], the right hand side of (5.11)

admits a probabilistic representation. Let us introduce a random walk

V WD .Vi /i2N

with i.i.d. increments .Ui /i2N following a discrete Laplace distribution, i.e.,

Pˇ .U1 D k/ D
e�

ˇ
2
jkj

cˇ

; k 2 Z; (5.12)

where cˇ is the normalization constant, i.e.,

cˇ D
X

k2Z
e�

ˇ
2 jkj D 1C e�ˇ

2

1� e�ˇ
2

: (5.13)

In such a way the relation Vi D .�1/i�1`i for i D 0; : : : ; N which is equivalent to

Ui D .�1/i�1.`i�1 C `i /; for i D 1; � � � ; N; (5.14)

with `0 D 0, defines a one-to-one map between LN;t and the set of all possible

random walk paths of length t and geometric area GN .V / that satisfies

GN .V / WD
N

X

nD1

jVnj D t �N C 1: (5.15)

Therefore (5.11) becomes

Qˇ; t;d;f;N D cN�1
ˇ e ˇ. t�NC1� 1

2 jf j� 1
2 jd j/

Pˇ .GN .V / D t �N C 1; VN D .�1/N�1f j V1 D d/:
(5.16)

We plug (5.16) into (5.9) and we observe that all the factors e
ˇ
2
jdi j; i D 2; : : : ; r

and e
ˇ
2
jfi j; i D 1; : : : ; r � 2 in the second line of (5.9), are simplified by the
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corresponding quantities appearing in the exponential factor of (5.16), with

f D fi , d D di , and N D Ni . Since t1 C � � � C tr D L, we obtain that

yZ NEˇ; L � e ˇL

L=4
X

rD1

X

t1C���CtrDL
X

.di ;fi ;Ni /r
iD1
2„

e�
ˇ
4

.N1C���CNr�r/c
N1C���CNr�r

ˇ
e�

ˇ
2
jd1je�

ˇ
2
jfr je�

ˇ
2
jfr�1j

r
Y

iD1

Pˇ .GNi
.V / D ti �Ni C 1; VNi

D .�1/Ni�1fi j V1 D di /

r�2
Y

iD0

e�
ˇ
4 .jfiCdiC2j/;

(5.17)

At this stage we consider the homogeneous Markov chain kernel (recall (5.12))

�.x; y/ WD e�
ˇ
4

.jxCyj/

cˇ=2

D Pˇ=2.V1 D �y j V0 D x/; (5.18)

where the ˇ dependency of � is dropped for simplicity. We observe that � is

symmetric, i.e. �.x; y/ D �.�x;�y/. Since we are working with upper bounds

we can safely replace ˇ=2 in e�
ˇ
2
jfr j; e�

ˇ
2
jfr�1j and e�

ˇ
2
jd1j by ˇ=4 and (5.17)

becomes (with f�1 D f0 D 0 and drC1 D drC2 D 0)

yZ NEˇ; L � cˇ=2 e
ˇL

L
X

rD1

cr
ˇ=2

X

t1C���CtrDL

X

.di ;fi ;Ni /r
iD1
2„

� cˇ

e
ˇ
4

�.N1C���CNr�r/

r
Y

iD1

Pˇ .GNi
.V / D ti �Ni C 1; VNi

D .�1/Ni�1fi j V1 D di /

r
Y

iD�1

�.fi ; diC2/:

(5.19)

Now, we focus on the second line in (5.19), our aim is to concatenate all the even

blocks on the one hand, and all the odd blocks on the other hand (see Figure 6).

For this purpose, for a given sequence .N1; : : : ; Nr/ 2 N
r and for a given index

subset � D ¹�1; : : : ; �mº � ¹�1; : : : ; rº we set

Nk WD
X

i2�; 1�i�k

Ni ; for k D �1; : : : ; r: (5.20)
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Note that N�1 D N0 D 0. We let .zPˇ;�;V/ be a non-homogeneous random walk

V D .Vi /
NrC1
iD0 , starting from 0, for which all increments have law Pˇ except those

between VNi
and VNiC1 for i 2 ¹�1; : : : ; �mº that have law Pˇ=2 (cf. (5.18)). In

other words,

zPˇ;�.VNiC1 D y j VNi
D x/ D Pˇ=2.V1 D y j V0 D x/ (5.21a)

for � 2 ¹�1; : : : ; �mº, and

zPˇ;�.VaC1 D y j Va D x/ D Pˇ .V1 D y j V0 D x/; (5.21b)

for a … ¹N�1
; : : : ;N�mº. We set, for k 2 ¹�1; : : : ; rº,

Ne
k D

X

i2¹1;:::;kº\2N

Ni and No
k D

X

i2¹1;:::;kº\.2N�1/

Ni ; (5.22)

We let .zPe
ˇ
;Ve/; .zPo

ˇ
;Vo/ be two independent Markov chains of law

zPe
ˇ WD zPˇ;¹�1;:::;rº\2Z

and

zPo
ˇ WD zPˇ;¹�1;:::;rº\.2ZC1/

respectively. We have to look at .Ve
i /

Ne
rC1

iD0 and .Vo
i /

No
rC1

iD0 as the random walks

obtained by concatenating the even blocks and the odd blocks respectively, see

Figure 6.

For a random walk trajectory V 2 Z
N and for two indices i < j we let

Gi;j .V / WD
Pj

sDi jVsj: be the geometric area described by V between i and j .

We are now ready to concatenate the even blocks and the odd blocks in (5.19).

We consider separately the odd and even terms in the second line of (5.19). For

the odd terms, since �.x; y/ D �.�x;�y/ (cf. (5.18)), and since for any odd index

i � r , No
i D No

i�2CNi , the odd terms in the integrand of (5.19) can be rearranged

as follows (f�1 D f0 D drC1 D drC2 D 0 by definition)
Y

i2¹1;:::;rº
i22ZC1

Pˇ .GNi
.V / D ti �Ni C 1; VNi

D .�1/Ni�1fi j V1 D di /

Y

i2¹�1;:::;rº
i22ZC1

Pˇ=2.V1 D .�1/NidiC2 j V0 D .�1/Ni�1fi /

D zPo
ˇ

0

B

B

@

GNo
i�2
C1;No

i
.Vo/ D ti � Ni C 1; Vo

No
i�2
C1
D .�1/No

i�2di ;

Vo
No

i

D .�1/No
i
�1fi ; for all i 2 ¹1; : : : ; rº \ .2ZC 1/;

Vo
No

rC1
D 0

1

C

C

A

;

(5.23)
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An analogous decomposition holds true for the even terms in the integrand

of (5.19).

With the help of (5.23) we interchange the sum over the ti ’s with the sum over

the Ni ’s in (5.19) and we remove the restriction t1 C � � � C tr D L to obtain the

following upper bound,

X

t1C���CtrDL

X

.di ;fi ;Ni /r
iD1
2„

� cˇ

e
ˇ
4

�.N1C���CNr�r/

r
Y

iD1

Pˇ .GNi
.V / D ti � Ni C 1; VNi

D .�1/Ni�1fi j V1 D di /

r
Y

iD�1

�.fi ; diC2/

�
X

N1C���CNr�LCr;
Ni�2 iD1;:::;r�1

� cˇ

e
ˇ
4

�.N1C���CNr�r/

X

ti Wti�Ni�1
iD1;:::;r

zPo
ˇ

0

B

B

@

GNo
i�2
C1;No

i
.Vo/ D ti �Ni C 1;

for all i 2 ¹1; : : : ; rº \ .2ZC 1/;
Vo

No
rC1
D 0

1

C

C

A

zPe
ˇ

0

B

B

@

GNe
i�2
C1;Ne

i
.Ve/ D ti �Ni C 1;

for all i 2 ¹1; : : : ; rº \ 2Z;
Ve

Ne
rC1
D 0

1

C

C

A

:

(5.24)

We note that the sum over the ti ’s in the right hand side of (5.24) is bounded from

above by 1. It remains to plug (5.24) into (5.19) in which we have exchanged the

summation over the ti ’s with that over the Ni ’s. This leads to

yZ NEˇ; L � cˇ=2e
ˇL

L=4
X

rD1

cr
ˇ=2

X

N1C���CNr�LCr;
Ni�2 iD1;:::;r�1

� cˇ

e
ˇ
4

�.N1C���CNr�r/

� cˇ=2e
ˇL

h

cˇ=2

1
X

ND0

� cˇ

e
ˇ
4

�N i

1
X

rD0

cr
ˇ=2

h

1
X

ND1

� cˇ

e
ˇ
4

�N ir

:

(5.25)

At this stage, by using the definition of cˇ in (5.13), there exists ˇ0 2 .0;1/
such that cˇ=e

ˇ=4 < 1=4 and cˇ=2 � 2, for any ˇ > ˇ0. This implies that
yZ NE

ˇ; L
� C.ˇ/ e ˇ L for some suitable constant C.ˇ/ 2 .0;1/.
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Figure 6. A NE-prudent path made of two west-east blocks (the first and the third, in green)

and two south-north blocks (the second and the fourth, in blue). The blocks start at x; y; z;w

respectively and the orientation of each block is given by the arrow next to its starting point.

Then we can concatenate the even blocks (see top right picture) and the odd blocks (see

bottom right picture), obtaining two partially directed self-avoiding path.

6. Proof of Theorem 2.1

To prove Theorem 2.1, we show that for any ˇ � 0 the partition function of

IPSAW can be bounded from below and from above by the partition function of

NE-IPSAW, by paying at most a sub-exponential price, i.e.,

ZNEˇ;L � Zˇ;L � eo.L/ ZNEˇ;L; for all L 2 N; ˇ 2 Œ0;1/: (6.1)

Where the o.L/ depends on ˇ.

The lower bound in (6.1) is trivial because NE-paths are a particular subclass

of prudent paths. The proof of the upper bound is harder and needs some work. In a

few word, we will apply a strategy which consists, for everyL 2 N andˇ 2 .0;1/,
in building a mappingMLW�PSAWL ! �NEL which satisfies the following conditions:

(1) there exists a real function f1 such that j.ML/
�1. Ow/j � ef1.L/;where f1.L/

is uniform in Ow 2 �NEL and f1.L/ D o.L/;

(2) there exists a real function f2 such thatH .w/�H
�

ML.w/
�

� f2.L/;where

f2.L/ is uniform in w 2 �PSAWL and f2.L/ D o.L/.
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The existence of .ML/L2N satisfying the aforementioned properties is sufficient

to prove the upper bound in (6.1). The dependency in ˇ is dropped for simplicity.

We will build the mapping with the help of the macro-block decomposition of

every path w 2 �PSAWL (recall Section 4.3). By a succession of systematic trans-

formations we will indeed map each macro-block onto an associated NE-macro-

block in such a way that the resulting NE-macro-blocks can be concatenated into

a NE-prudent path which will be the image of w by ML. Then, it will be enough

to check that .ML/L2N satisfies the aforementioned properties.

The first property, (1), will be rigorously proven below and it is mostly a

consequence of Lemma 4.8 which states that the macro-block number is at most

O.
p
L/. The second property, (2), is the hardest to check. On the energetic point

of view, the main difference between a generic prudent paths and their North-

East counterpart is that generic paths undergo interactions between macro-blocks.

Such interactions turn out to be tuned by the first stretches of each macro-blocks.

Moreover, Lemma 4.8 implies that an important loss between w and ML.w/ can

only be observed when those first stretches are very large. This is the reason why

we remove such stretches from the path as soon as they are larger than a prescribed

size, e.g., L1=4. This only triggers a sub-exponential loss of entropy since those

large stretches are at most L3=4. It might cause a large loss of energy, but this loss

will be compensated by the construction of a large square block (i.e., maximizing

the energy) containing all those stretches that we have removed.

We now start with the precise construction of ML. For such purpose, we

define four sequences of applications that are mapping trajectories onto other

trajectories. To be more specific, for every L 2 N, we define 5 sets of trajectories

Wi;L; i D 1; : : : ; 5, interpolating �PSAWL D W1;L with �NEL D W5;L, and four

sequences of applications  i
LWWi;L ! WiC1;L, cf. Steps 1–4 below. We define

ML as the composition of such maps  4
L; : : : ;  

1
L, i.e.,ML WD  4

L ı 3
L ı 2

L ı 1
L.

To prove property (1) we show that each  i
L, for i D 1; : : : ; 4 is sub-exponential,

i.e,

Definition 6.1. The sequence of mappings . L/L2N, with  LWWL !W0L, is sub-

exponential if there exist c1; c2 2 .0;1/ and ˛ 2 Œ0; 1/ such that for every L 2 N

and every w 2W0L

j. L/
�1.w/j � c1e

c2L˛

: (6.2)

In Step 5 we complete the proof by showing that such ML satisfies also the

second property (2).
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6.1. Step 1. Let w 2 �PSAWL be a prudent path. We can decompose w into

a sequence of macro-blocks, ƒ D .ƒ1; : : : ; ƒm/, where m D m.w/ 2 N,

cf. (4.5) and Section 4.3. We observe that each macro-block ƒi 2 �
xi

Li
, with

xi 2 ¹NE, NW, SE, SWº and Li 2 N such that L1 C � � � C Lm D L. Each

macro-block ƒi can be decomposed into a sequence of blocks .� i
1; : : : ; �

i
ri
/,

cf. Section 4.2. We stress that both such decompositions are uniques. For every

i D 1; : : : ; m, we consider separately the subsequence of blocks with odd indices,

i.e., �.o/;i WD .� i
k
/k2¹1;:::;ri º\.2N�1/ and the subsequence of blocks with even

indices, i.e., �.e/;i WD .� i
k
/k2¹1;:::;ri º\2N. We apply to each of them the following

procedure (1-4), drawn in Figure 7. In the sequel, this procedure will be referred

to as the large stretches removing procedure.

(1) We consider the first macro-block ƒ1 and the odd block subsequence,

�.o/;1 D .�1
k
/k2¹1;:::;r1º\.2N�1/. We start by considering the first stretch of

the first block,�1
1 . If this stretch is not larger thanL1=4 we stop the procedure

for the subsequence �.o/;1 and we jump to (2). Otherwise, if the first stretch

is larger than L1=4, we pick it off, and we reapply the procedure to the next

stretch of the block.

It may be that the procedure leads to removing all the stretches in the first

block. In such case we re-apply the same procedure to the next block of

�.o/;1 and so on, until we find the first stretch smaller thanL1=4. For instance,

in the odd subsequence, if we have entirely removed the first block, then

we re-apply the procedure to the third block. If none of the stretches in

the subsequence �.o/;1 is smaller than L1=4, then the whole subsequence

of blocks is removed and we stop the procedure for the subsequence.

(2) We apply the procedure (1) to the even block subsequence,

�.e/;1 D .�1
k /k2¹1;:::;r1º\2N;

i.e., we start with the procedure (1) by considering the first stretch of the

second block, �1
2 .

(3) We apply the procedure (1) to the very last block of the macro-block ƒ1 (if

it has not been already modified).

We will see in Step 3 below the importance of applying the large-stretch

removing procedure to the very last block.

(4) We repeat (1-3) for the macro-blocks ƒ2; : : : ; ƒm.
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Figure 7. A NE-prudent path decomposed into 4 blocks .�1; �2; �3; �4/. We apply the

large-stretch removing procedure. The first 2 stretches of �1 are longer than L1=4, there-

fore we pick them off. The third stretch is smaller thanL1=4 and thus we stop the procedure

on the odd subsequence. We apply the large-stretch removing procedure to the even subse-

quence. In this case we remove only the first stretch of �2 and we stop the procedure. Since

�4 is the last block of the trajectory we re-apply the large-stretch removing procedure to

�4. Also in this case we remove only the first stretch. The result is the block sequence

. Q�1; Q�2; Q�3; Q�4/.

Remark 6.2. We note that picking off stretches does not change the exit condition,

cf. Definition 4.3. To be more precise, given an oriented block with N -stretches,

.`1; : : : ; `N /, if we remove the first k-stretches (k < N ), then the path obtained

by concatenating .`kC1; : : : ; `N / still satisfies the same exit condition. The exit

condition indeed means that `1 C � � � C `N > max¹0; `1; : : : ; `1 C � � � C `N�1º
and therefore `kC1C � � � C `N > max¹0; `kC1; : : : ; `kC1C � � � C `N�1º. However,

picking off stretches can change the initial condition of a block, it could happen

that the first stretch of the modified block is positive, i.e., `kC1 � 0.

At this stage, we need to give a mathematical definition of the large stretch

removing procedure. To that aim, for every L 2 N, we denote by  1
LW�PSAWL !

 1
L.�

PSAW

L / the map that realizes the large stretches removing procedure. At the end

of the present section, we will show that . 1
L/l�1 is sub-exponential. However, for

the sake of conciseness, the fine details of the proof will be displayed only in the

case for which we do not reapply the large stretch removing procedure to modify

the very last block of each macro-block. The proof in that case is very similar, see

Remark 6.5 below.
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6.1.1. Large stretch removing procedure in a single macro-block. We pick

l 2 N and an orientation x 2 ¹NE, NW, SE, SWº. In the present section, we

define the large stretch removing procedure on those macro-blocks in �x
l
. To that

aim, we define with (6.3)–(6.5) an application Tl;LW�x
l
7! �

l;x
�;L that performs

Procedure (1), i.e., removes the large stretches in a single macro-block. A rigorous

definition of the image set �
l;x
�;L will be provided in Definition 6.4 below.

Before defining Tl;L, let us briefly recall that we can associate with any arbi-

trary macro-block � 2 �x
l

an unique block sequence .�1; : : : ; �r/, with r D r.�/.
In particular it holds that � D �1 ˚ � � � ˚ �r , see Section 4.2. Therefore, in

the rest of the section, we identify the macro-block with its block decomposi-

tion, i.e., � D .�1; : : : ; �r/. For every i 2 ¹1; : : : ; rº, we let Ni D Ni .�/ be

the number of stretches in the i-th block (thus, cf. Section 4.1, the number of

inter-stretches is Ni � 1), and we let .`
.i/
1 ; � � � ; `.i/

Ni
/ be the sequence of stretches

in the i-th block. Since the sequence of stretches identifies the block, with a

slight abuse of notation, we write �i D .`
.i/
1 ; � � � ; `.i/

Ni
/. The sequence of blocks

.�1; : : : ; �r/ can be partitioned into two subsequences ı.o/ D .�i /i2¹1;:::;rº\.2N�1/

and ı.e/ D .�i /i2¹1;:::;rº\2N.

At this stage, we are ready to introduce the specific notations for the large

stretches removing procedure. We let k1; k2 D k1.�/; k2.�/ 2 ¹1; : : : ; rº be the

indices of the last block modified by the large stretches removing procedure in

the odd subsequence and in the even subsequence respectively (cf. (1)). Analo-

gously, let j1 D j1.�/ 2 ¹0; : : : ; Nk1
º and j2 D j2.�/ 2 ¹0; : : : ; Nk2

º be the

index of the last stretch we removed in �k1
and �k2

respectively. By definition of

r; k1; k2; j1; j2; Nm it holds that (note that the � dependency is dropped for sim-

plicity)

j`.m/
n j> L1=4; for m 2 ¹1; : : : ; k1 � 1º \ .2N� 1/; n 2 ¹1; : : : ; Nmº;(6.3)

j`.k1/
n j> L1=4; for n 2 ¹1; : : : ; j1º;

j`.k1/
j1C1j � L1=4I

j`.m/
n j> L1=4; for m 2 ¹1; : : : ; k2 � 1º \ 2N; n 2 ¹1; : : : ; Nmº; (6.4)

j`.k2/
n j> L1=4; for n 2 ¹1; : : : ; j2º;

j`.k2/
j2C1j � L1=4:
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We let Tl;L.�/ be the sequence of blocks remaining once the large stretch

removing procedure in the macro-block � is complete. To be more specific, the

subsequence of odd blocks .Tl;L.�/i /i2¹1;��� ;rº\.2N�1/ is defined as

Tl;L.�/k D ;; for all k 2 ¹1; : : : ; k1 � 1º \ .2N� 1/;

Tl;L.�/k1
D .`.k1/

j1C1; : : : ; `
.k1/
Nk1

/; (6.5)

Tl;L.�/k D �k; for all k 2 ¹k1 C 1; : : : ; rº \ .2N � 1/:

The subsequence of even blocks .Tl;L.�/i /i2¹1;:::;rº\2N is defined in the same way.

Remark 6.3. We stress that if we start with a sequence of blocks

� D .�1; : : : ; �r/ 2 �x
l ;

then, in general, it is not true that the sequence

Tl;L.�/ D .Tl;L.�/1; : : : ;Tl;L.�/r/

we defined in (6.5) is still a decomposition of a x-prudent path, i.e., Tl;L.�/ may

not belong to�x
s , for any s � l . For this reason we define here below a new set of

oriented paths, �
l;x
�;L, which gathers the images of all paths in �x

l
through Tl;L.

Definition 6.4. We say that a block sequence � D .�1; : : : ; �r/; r 2 ¹0; : : : ; Lº
belongs to �

l;x
�;L if and only if

� r � L and there exists k1 2 2N � 1 and k2 2 2N such that k1; k2 �
max

®

r; l

L1=4

¯

and �i D ; for i 2 ¹1; : : : ; k1 � 2º \ 2N � 1 and for

i 2 ¹1; : : : ; k2 � 2º \ 2N, whereas �i ¤ ; for i 2 ¹k1; : : : ; rº \ 2N � 1
and for i 2 ¹k2; : : : ; rº \ 2N.

� the x orientation is respected (cf. Section 4.2), e.g., in the case of x D NE,
then, every �i with i 2 ¹k1; : : : ; rº \ .2N � 1/ is south-north (resp. west-

east) and every�i with i 2 ¹k2; : : : ; rº \ 2N is west-east (resp. south-north).

� There is no restriction on the orientation and on the length of the first stretch

of �k1
and �k2

.

� The total length (the sum of the length of every stretches in .�1; : : : ; �r/) is

smaller than l .
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We conclude this section with the computation of an upper bound on the

cardinality of the ancestors of an arbitrary  2 �l;x
�;L by Tl;L. We denote by h the

total length of  . Let � 2 �x
l

be an ancestor of  by Tl;L. The total length of those

stretches removed from � by Tl;L to get  necessarily equals l � h. By definition,

cf. (6.5), the number of empty blocks in  is k
0

1 WD k1�1
2

(resp. k
0

2 WD k2�2
2

) for the

odd subsequence (resp. for the even subsequence) of blocks. Therefore, since Tl;L

may remove only stretches larger than L1=4, the number v of stretches removed

from � to get  satisfies k
0

1 C k
0

2 C 2 � v � .l � h/=L1=4. This suffices to write

the following upper bound

j.Tl;L/
�1./j �

.l�h/=L1=4
X

vDk
0

1
Ck

0

2
C2

2v

�

l � h
v

��

v

k
0

1 C k
0

2 C 2

�

: (6.6)

The summation in (6.6) runs over v which stands for the number of stretches

removed from �. Let us explain (6.6). Once v is chosen, reconstructing � requires

to choose the length of each removed stretches and these choices are less than the

binomial factor
�

l�h
v

�

. Once, the length of each removed stretch is chosen, one has

to chose their orientations which gives at most 2v choices. Finally, those deleted

stretches have to be distributed among the k
0

1C k
0

2C 2 blocks in  that have to be

completed by other stretches to recover �. This gives rise to the term
� v

k
0

1
Ck

0

2
C2

�

.

Then, the fact that k
0

1C k
0

2C 2 � .l � h/=L1=4 allows us to bound from above the

right hand side in (6.6) by

j.Tl;L/
�1./j � ec0l log.L/=L1=4

; (6.7)

for some constant c0 2 .0;1/.

6.1.2. Large stretch removing procedure for a generic prudent path. We are

ready to define the map  1
L, which defines the large stretch removing procedure

applied to generic prudent path. We recall equation (4.5), which asserts that a path

w 2 �PSAWL can be decomposed into m D m.w/ 2 N macro-blocks .ƒ1; : : : ; ƒm/.

Such macro-block decomposition is an element of ‚m;L and each macro-block

belongs to some �
xi
ti

(see (4.4)) with t1 C � � � C tm D L. Thus, we define  1
L by

applying, for every i � m, the map Tti ;L to ƒi , i.e.,

 1
L.w/ WD .Tt1;L.ƒ1/; : : : ;Ttm;L.ƒm//: (6.8)
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The image set of �PSAWL by  1
L is therefore

W2;L WD
[

m2N
 1

L.‚m;L/

which is a subset of

[

m2N

[

L1C���CLmDL

[

.xi /m
iD1
2¹NE;NW;SE;SWº

xi�1¤xi

�
L1;x1

�;L � � � � ��Lm;xm

�;L : (6.9)

Let us observe that the union overm is finite, because, by Lemma 4.8, the number

of macro-blocks m is at most cL1=2, for some universal constant c 2 .0;1/.
Moreover, let us observe that (6.9) is not a disjoint union.

The step will be complete once we show that  1
L is sub-exponential. To that

aim, we need an upper bound on the cardinality of . 1
L/
�1.zƒ/ that is uniform

on the choice of zƒ 2  1
L.�

PSAW

L /. Thus, we pick zƒ 2  1
L.�

PSAW

L / and we con-

sider its macro-block decomposition .zƒ1; : : : ; zƒm/. Before counting the num-

ber of ancestors of zƒ by  1
L, one should note that zƒ may belong to more than

one set of the form �
L1;x1

�;L � � � � � �Lm;xm

�;L . However, since m D O.L1=2/

(cf. Lemma 4.8) and since L1 C � � � C Lm D L, the number of such sets

is bounded from above by
Pc
p

L
mD1

�

L
m

�

, for some c 2 .0;1/. This quantity is

less than c
p
L

�

L

c
p

L

�

� e2c
p

L log.L/. It remains to count the number of an-

cestors of zƒ within a given �
x1

L1
� � � � ��xm

Lm
. By (6.7) above, this is at most

ec0L1 log.L/=L1=4 � � � �� ec0Lm log.L/=L1=4
which again is smaller than ec0L3=4 log.L/.

This suffices to conclude that  1
L is sub exponential.

Remark 6.5. When we prove that  1
L is sub exponential, we have not taken into

account the fact that the large stretch removing procedure should also be applied

to the very last block of each macro-block. However, this affects only marginally

our computations and does not modify the sub-exponentiality of  1
L. To be more

precise, if we also modify the very last block in any macro-block, then to bound

from above the number of ancestors of zƒ by  1
L, we consider separately two parts.

In the first part, we apply the large stretches removing procedure to each macro-

block without consider the very last block of any macro-block. This part has been

already considered in the discussion above, which gave rise to (6.6) and (6.7).

Then we consider the large stretches removing procedure apply only to any last

block of any macro-block. It is not difficult to check that (6.6) provides an upper

bound also for this part of the procedure. Therefore, we conclude that also in this

general case (6.7) still holds up to a constant.
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6.2. Step 2. In Step 1 we considered w 2 �PSAWL and we decomposed it into a

sequence of macro-blocks, cf. (4.5), ƒ D .ƒ1; : : : ; ƒm/, where m D m.w/ 2
N. We let .zƒ1; : : : ; zƒm/ D  1

L.w/ be the result of the large stretch removing

procedure. Each zƒi is defined by a sequence . Q� i
1; : : : ; Q� i

ri
/ which is not necessary

concatenable, cf. Remark 6.3 and Section 4. In this step we aim at modifying all the

sequences . Q� i
1; : : : ; Q� i

ri
/, for i D 1; : : : ; m, in order to recover a concatenable block

sequence. In the sequel this procedure will be referred to as the concatenating

block procedure.

Our procedure  2
L acts on W2;L (recall (6.9)). To be more specific,  2

L takes

as an argument an element

zƒ D .zƒ1; : : : ; zƒm/ 2 �L1;x1

�;L � � � � ��Lm;xm

�;L

where m � cL1=2, where .L1; : : : ; Lm/ is a sequence of length such that

L1 C � � � C Lm D L;

where .x1; : : : ; xm/ is a sequence of orientations and where we keep in mind that
zƒ is in the image set of 1

L . As a result,  2
L provides us with a sequence of macro-

blocks

 2
L.
zƒ/ D yƒ D .yƒ1; : : : ; yƒm/

where, for every i � m, yƒi 2 �xi
ti

with ti the total length of zƒi .

We describe the procedure on a single modified macro-block zƒ in Section 6.2.1

below. Later on, we generalize the procedure to the whole block-sequence in

Section 6.2.2.

6.2.1. Concatenating block procedure in a single macro-block. We pick h �
l 2 N and consider Q� D . Q�1; : : : ; Q�r/ 2 �l;x

�;L such that the total length of Q�
equals h.

Recall the definition of k1. Q�/ and k2. Q�/ in Definition 6.4. By Remark 6.2 it

turns out that Q� fails to be concatenable only if jk1 � k2j � 3 that is if there

exists an i � r such that Q�i ; Q�iC2 ¤ ; and Q�iC1 D ;. In such case indeed, if

the last stretch of Q�i and the first stretch of Q�iC2 have opposite orientations (see

Figure 8) then Q�i and Q�iC2 are not concatenable. Making Q�i and Q�iC2 concatenable

possibly requires to slightly modify their structure. To be more specific, if the first

stretch of Q�iC2 and/or the last stretch of Q�i have zero length, then Q�iC2 and Q�i

are always concatenable. In this case we do not need to change their structure

to make them concatenable. Otherwise, if the first stretch of Q�iC2 has non-zero

length, then it is always possible to modify the first step in the first stretch of
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Q�iC2 to transform it into an inter-stretch, see Figure 8, and after this simple

transformation Q�i and Q�iC2 become always concatenable. Thus, in the case where

k1 � k2�3 (the case k2 � k1�3 is similar) it suffices to apply the aforementioned

transformation to each blocks Q�k1C2; : : : ; Q�k2�1 and to concatenate Q�k1
; : : : ; Q�k2�1

into a unique oriented block, say O� 01. We remove those empty blocks Q�i indexed in

¹1; : : : ; k1�2º\2N�1 and in ¹1; : : : ; k2�2º\2N to get finally the concatenable

sequence . O� 01; Q�k2
; : : : ; Q�r/. The path O� WD O� 01 ˚ Q�k2

˚ � � � ˚ Q�r 2 �x
h
.

Figure 8. We consider a sequence . Q�1; Q�2; Q�3/ provided by the large stretch removing

procedure in Step 2. In this case we have that the large stretch removing procedure has

removed the block Q�2. We modify the first step of the fist stretch of Q�3 in order to appear

artificially an inter-stretch. In such a way we can safely concatenate the blocks O�1 with O�3

in a unique block O�1 ˚ O�3.

Remark 6.6. It is important to keep in mind that the concatenable sequence

. O� 01; Q�k2
; : : : ; Q�r/ is not a standard decomposition of a NE-prudent path, cf. Defi-

nition 4.5: in this case we do not have any constriction on the first stretch of Q�k2

and Q�r (if the last block was changed by the large stretches removing procedure)

other than to be smaller than L1=4, cf. Remark 6.2. It is necessary to slightly re-

define O� 01 and Q�k2
in order to obtain two proper oriented blocks, say O�1 and O�2.

We also modify Q�r�1 and Q�r in the same way to obtain the oriented blocks O�s�1

and O�s, where s D .k1 C k2/=2� 2. We observe that we can do this modification

to have that O�s � Q�r . In such a way the block sequence . O�1; : : : ; O�s/ is a proper

decomposition of a NE-prudent path. We observe that a very crude bound tells

us that the number of ancestors of a block by this last transformation is bounded

above by its total number of stretches, which is smaller than l .
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Remark 6.7. In principle, if the last stretch of Q�i and the first stretch of Q�iC2

have both non-zero length and the same orientation, then it would be possible to

concatenate Q�i with Q�iC2. Anyway, also in this case we modify the Q�iC2 structure,

as prescribed by the aforementioned transformation. We do that for computational

convenience, as it will be clear in (6.10) below.

The procedure described above corresponds to the mapping

Rl;LW�l;x
�;L 7�!

[

h�l

�x
h:

As we did in Section 6.1.1, we need to conclude this section by computing, for

h � l � L and x 2 ¹NE, NW, SE, SWº, the number of ancestors in �
l;x
�;L of

a given  2 �x
h

by Rl;L. To that aim, we write  WD . O�1; : : : ; O�s/ 2 �x
h

and

we consider Q� D . Q�1; : : : ; Q�r/ 2 �l;x
�;L an ancestor of  by Rl;L. For simplicity,

assume also that k1 D k1. Q�/ � k2. Q�/ D k2 and recall that, by Definition 6.4,

we have necessarily k1; k2 � l

L1=4 . Thus, we have necessarily that all blocks

. Q�1; Q�3; : : : ; Q�k1�2/ and all blocks . Q�2; Q�4; : : : ; Q�k2�2/ are empty. Moreover, we

explained above that O�1 is essentially obtained by modifying the first step of the

first stretch of some oriented blocks in . Q�k1
; Q�k1C2; : : : ; Q�k2�1/. This suffices to

write the following upper bound

j.Rl;L/
�1./j �

X

k1;k2�l=L1=4

l 2jk1�k2j
� l
jk1 � k2j

2

�

; (6.10)

The summation in (6.10) runs over k1; k2 which provides the number of empty

blocks at the beginning of the odd and even sequences of blocks in Q� and, once

k1 and k2 are chosen, one can reconstruct . Q�k1
; Q�k1C2; : : : ; Q�k2�1/ from O�1 by

decomposing O�1 into .k2 � k1/=2 groups of consecutive stretches. This provides

at most
� l

jk1�k2j

2

�

choices since the number of stretches in O�1 is at most l . Then

we have to take in account the transformation we made on the first step of the

first stretch of some oriented blocks in . Q�k1
; Q�k1C2; : : : ; Q�k2�1/. This provide at

most two configuration for each such block and thus the factor 2jk1�k2j. The factor

l is due to the fact that we have at most l different way to choose Q�k2�1 and

Q�k2
and Q�r�1 and Q�r , cf. Remark 6.6. At this stage, it is sufficient to recall that

k2 � k1 � l=L1=4 to rewrite (6.10) as

j.Rl;L/
�1./j � l3

L1=2
2l=L1=4

el log.L/=L1=4 � ec1l log.L/=L1=4

; (6.11)

for some c1 2 .0;1/.
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6.2.2. Concatenating block procedure for a generic path. We are ready to

define the map  2
L on those generic macro-block sequences from W2;L. We

recall Definition 6.9, we pick m � c
p
L and .L1; : : : ; Lm/ 2 N

m satisfying

L1 C � � � C Lm D L. Then, we pick

zƒ D .zƒ1; : : : ; zƒm/ 2 �L1;x1

�;L � � � � ��Lm;xm

�;L ;

and we define  2
L by applying, for every i � m, the map RLi ;L to zƒi , i.e.,

 2
L.
zƒ/ WD .RL1;L.zƒ1/; : : : ;RLm;L.zƒm//: (6.12)

The image set of W2;L by  2
L is therefore denoted by W3;L and it is a subset of

[

m�cL1=2

[

l1C���Clm�L

[

.xi /m
iD1
2¹NE;NW;SE;SWº

xi�1¤xi

�
x1

l1
� � � � ��xm

lm
; (6.13)

where the union over m is truncated at cL1=2 thanks to Lemma 4.8.

Remark 6.8. Let us stress the fact that, as explained in Section 6.1.2 above, a given
zƒ 2W2;L may well belong to more than one set of the form�

L1;x1

�;vh �� � ���
Lm;xm

�;vh .

This may be confusing because the definition of  2
L in (6.12) seems to depend on

the choice of L1; : : : ; Lm. However, this is not the case because the applications

Rl;L do actually not depend on l .

The step will be complete once we show that  2
L is sub-exponential. To that

aim, we need an upper bound on the cardinality of . 2
L/
�1.yƒ/ that is uniform on

the choice of yƒ 2  2
L.W2;L/. Thus, we pick yƒ 2  2

L.W2;L/ and we consider

its macro-block decomposition .yƒ1; : : : ; yƒm/ which belongs to �
x1

l1
� � � � ��xm

lm

for some l1 C � � � C lm � L. Before counting the number of ancestors of yƒ by

 2
L, one should note that the ancestors of yƒ may belong to any set of the form

�
L1;x1

�;L �� � ���Lm;xm

�;L with L1C� � �CLm � L andLi � li for every i � m. Again,

sincem � c
p
L, the number of such sets is bounded above by

�

L
c
p

L

�

� ec
p

L log.L/.

It remains to count the number of ancestors of yƒ within a given �
L1;x1

�;L � � � � �
�

Lm;xm

�;L and by (6.11) above, this is at most ec1L1 log.L/=L1=4�� � ��ec1Lm log.L/=L1=4

which again is smaller than ec1L3=4 log.L/. This suffices to conclude that  2
L is sub

exponential.

Step 3. In this step we consider a macro-block sequence .yƒ1; : : : yƒm/ 2 W3;L

and we begin by modifying each macro-block yƒi in order to recover a sequence
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of concatenable macro-blocks with only NE-orientations. Then we concatenate

those modified north-east macro-blocks to recover a two sided path. In the sequel

we refer to such procedures as macro-block concatenating procedure.

This procedure is defined through the function  3
L, which acts on W3;L (re-

call (6.13)). To be more specific,  3
L takes as an argument an element

yƒ D .yƒ1; : : : ; yƒm/ 2 �x1

l1
� � � � ��xm

lm
: (6.14)

By keeping in mind that yƒ is in the image set of  2
L. 

1
L/, in (6.14) m � cL1=2 by

Lemma 4.8, .l1; : : : ; lm/ 2 N
m
0 is a given integer vector such that l1C� � �C lm � L

and .x1; : : : ; xm/ is a sequence of orientations. As a result,  3
L provides us with a

north east prudent path of length l1 C � � � C lm, i.e., an element of �NE
l1C���Clm

.

6.2.3. Giving a macro-block a north-east orientation. In this section we pick

l 2 N, x an orientation and we consider O� D . O�1; : : : ; O�r/ 2 �x
l

a macro-

block such that O�r WD . Òr1 ; : : : ; ÒrNr
/ either satisfies the upper exit condition, i.e.,

` r
1 C� � �C` r

Nr
> max0�i<Nr

¹` r
1 C� � �C` r

i º; or satisfies the lower exit condition,

i.e., ` r
1 C � � � C ` r

Nr
< min 0�i<Nr

¹` r
1 C � � � C ` r

i º (we recall Definition 4.3).

Giving a north-east orientation to O� and making sure that it will be concaten-

able with other north east macro-blocks requires to perform 3 transformations on

each O�. Among those 3 geometric transformations, the first two are simple and the

third is more involved and we will describe it carefully below.

To begin with, we recall Section 4.2 and we observe that any two-sided prudent

path can be mapped onto a north-east prudent path subject to at most two axial

symmetries. Therefore, we map O� onto O�NE and we note that at most 4 ancestors

can be mapped onto the same north-east macro-block. For simplicity, we keep the

notation O�NE D . O�1; : : : ; O�s/ and we note that O�s still satisfies either the upper exit

condition or the lower exit condition. At this stage, we need to make sure that O�NE
will be concatenable with other north-east macro-blocks. To that aim, we follow

the procedure described in Step 2, i.e., in case O�1 does not start by an inter-stretch

(`1
1 ¤ 0) we modify the first step of its very first stretch, in such a way that this

step becomes an inter-stretch. This amounts to add a zero-length stretch at the

beginning of O�1 and to reduce the length of `1
1 by one unit. By reasoning as in

Step 2, this second transformation maps at most two macro-blocks onto the same

macro-block.

After these first two transformations, we can not yet claim that O�NE is con-

catenable with any other north-east macro-blocks. The macro-block O�NE is indeed

concatenable if O�s, the last oriented block of O�NE, satisfies the upper exit condi-

tion, but we have seen that it may well satisfy the lower exit condition. In this



424 N. Pétrélis and N. Torri

last case, we need to apply a third transformation to O�NE to make sure that its

last block satisfies the upper exit condition. For this purpose we recall that O�s�1

and O�s are obtained as a slight modification of Q�r�1 and Q�r and O�s � Q�r , cf.

Section 6.2.1 and Remark 6.6. Moreover, we recall that Q�r is the result of the

the large stretch removing procedure applied to �r , thus, the length of the first

stretch of Q�r is smaller than L1=4. This ensures that there exists a partially di-

rected path � contained in O�s�1[ O�s and that contains O�s such that its first stretch

is smaller than L1=4, it has the same orientation of O�s and it satisfies the lower

exit condition. For instance in Figure 9 we draw a case where � D O�s. To be

more specific, if O�s�1 WD .` s�1
1 ; : : : ; ` s�1

Ns�1
/ and O�s WD .` s

1 ; : : : ; `
s
Ns
/, then ei-

ther there exists k � N s�1
s�1 such that � D .` s�1

k
; : : : ; ` s�1

Ns�1
; ` s

1 ; : : : ; `
s
Ns
/, or

� D O�s (and thus j`s
1j � L1=4). The choice of � could be not unique. To over-

step this problem, among all the possible candidates for � , we choose the one

with the minor number of stretches which contains O�s. Therefore we replace � by

�� WD .�` s�1
k

; : : : ;�` s
Ns
/ inside O�s�1 [ O�s. It is easy to check that after this last

transformation, O�s achieves the upper exit condition. However, after this transfor-

mation it could be necessary to slightly redefine O�s�1 and O�s in order to obtain

two proper oriented blocks, say O� 0s�1 and O� 0s, as pictured in Figure 9. A very crude

bound tells us that the number of ancestors of a macro-block by this last transfor-

mation is bounded above by its total number of stretches, which is smaller than l .

The procedure described above corresponds to the application Al taking as

an argument any O� 2 �x
l

such that the last block of O� satisfies either the upper

exit condition or the lower exit condition and maps it onto some O�NE 2 �NEl . We

conclude that, for every  2 �NE
l

, we have

j.Al/
�1./j � 8l: (6.15)

6.2.4. Macro-block concatenating procedure. We consider a given yƒ D
.yƒ1; : : : yƒm/ 2W3;L and we recall (6.14) so that yƒ 2 �x1

l1
�� � ���xm

lm
. At this stage,

it is crucial to understand why, except maybe for j D m, all non empty macro-

blocks yƒj from yƒ have a last oriented block that satisfies either the upper exit con-

dition or the lower exit condition. To this purpose we considerƒj D .�1; : : : ; �rj
/

the ancestor of yƒj D . O�1; : : : ; O� Orj
/ by  2

L o 
1
L. There are two alternatives at this

stage: either the large stretch removing procedure in Step 1 has completely re-

moved �rj
and then O� Orj

is associated with one of the .�k/k�rj�1 which all satisfy

either the upper exit condition or the lower exit condition, or O� Orj
is associated

with �rj
. In this last case, we recall that the very last stretch of �ri

(which is also

the last stretch of ƒj ) must cross all the macro-block so that a new macro-block

with a different orientation can start (see Figure 5 or Figure 9). This last condition,
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depending on the orientation ofƒi , implies that �rj
also satisfies either the upper

exit condition or the lower exit condition and so do O� Orj
.

We are now ready to define  3
L. We begin with deleting the empty macro-

blocks in yƒ, so that it becomes .yƒi1 ; : : : ;
yƒi xm

/ 2 �
xi1

li1

� � � � � �xi xm

li xm

, where

.li1 ; : : : ; li xm
/ is the subsequence of .l1; : : : ; lm/ containing only its non-zero el-

ements. Then we set

xƒ D .xƒi1 ; : : : ;
xƒi xm

/ WD .Ali1
.yƒi1/; : : : ;Ali xm

.yƒi xm
// 2 �NEli1

� � � � ��NEli xm

(6.16)

and we let  3
L.
yƒ/ be the two-sided path obtained by concatenating all the macro-

blocks in xƒ, i.e.,

 3
L.
yƒ/ D xƒi1 ˚ � � � ˚ xƒi xm

: (6.17)

As a result, the image set of W3;L by  3
L is denoted by W4;L and it is a subset of

SL
nD1�

NE
n .

Figure 9. A prudent path obtained by the concatenation of two macro-blocks. We zoom in

on the first one, boxed in the rectangle. It has a NE-orientation. In (i) we observe that its last

block does not achieves the upper exit condition, but it satisfies the lower exit condition.

Therefore, in (ii) we apply a spatial symmetry to the last block in such a way that it satisfies

the upper exit condition. This changes the structure of the last two blocks. In (iii) we redefine

the last two blocks.
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The step will be complete once we show that  3
L is sub-exponential. To that

aim, we need an upper bound on the cardinality of . 3
L/
�1.�/ that is uniform on

the choice of � 2W4;L. Thus, we pick � 2W4;L, say� 2 �NEn with n � L and we

reconstruct an ancestor yƒ of� by 3
L. We must first choosem � cL1=2 the number

of macro-blocks in yƒ, then choose xm the number of non empty blocks in yƒ. Then,

we must choose the indices of those non-empty macro-blocks which gives us
�

m
xm
�

possibilities and their lengths li1 ; : : : ; li xm
. Once, the latter is done it remains

to identify the sequence .xƒi1 ; : : : ;
xƒi xm

/ (recall 6.16) an we can apply (6.15) to

conclude that the total number of ancestors is bounded above by

j. 3
L/
�1.�/j �

X

xm�m�cL1=2

X

li1
C���Cli xm

Dn

�

m

xm

� xm
Y

jD1

8lij (6.18)

and the right hand side in (6.18) is smaller than ec3L1=2 log L for some c3 > 0.

Step 4. In this step we conclude our transformation of the prudent path by

showing how we concatenate all stretches picked off by the large stretch removing

procedure (cf. Step 1) with the rest of the NE-prudent path provided by Steps 1-3.

The result will be a NE-prudent path of length L.

We pick � 2 W4;L, say � 2 �NEn and we denote by SL�n the west-east block

of length L�n that maximizes the energy, i.e, SL�n is made of .L�n/1=2 vertical

stretches of alternating signs of length .L� n/1=2 � 1 each. Then, the image of �

by  4
L is obtained by concatenating SL�n with �, i.e.,

 4
L.�/ D SL�n ˚ �:

The image set ofW4;L by 4
L,W5;L, is a subset of�NEL and the number of ancestors

of an element in �NEL by  4
L is clearly less than L, which completes the step.

Step 5. We recall that the composition of those maps  4
L; : : : ;  

1
L is denoted by

ML. In this last step we are going to control the energy lost when we applyML to a

given ! 2 �PSAWL . We aim at showing thatH .!/�H .ML.!// D o.L/ uniformly

on ! 2 �PSAWL .

Remark 6.9. We observe that the image of �PSAWL by  2
L ı  1

L, that is W3;L,

contains families of macro-blocks that are a priori not concatenable. For this

reason, we recall (6.14) and we define the energy of an element

yƒ D .yƒ1; : : : ; yƒm/ 2 �x1

l1
� � � � ��xm

lm
2W3;L
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as the sum of the energies of its macro-blocks, i.e.,

H .yƒ/ D
m

X

xD1

Hlx
.yƒx/: (6.19)

The sets W4;L and W5;L, in turn, only contain prudent paths whose energies are

well defined by (2.2).

In part (a) of the proof below we will show that the energy lost when applying

 2
L o 

1
L to a given ! 2 �PSAWL is not larger than zLC c1L

3=4 with c1 > 0 and zL the

total length of those stretches removed by the large stretch removing procedure.

In part (b) we will show that the mapping  3
L induces at most a loss of energy

bounded by c2L
3=4 with c2 > 0 and finally in part (c) we will observe that the gain

of energy associated with  4
L is zL � zL1=2, which will be sufficient to conclude.

(a) We pick ! 2 �PSAWL and we denote by ƒ D .ƒ1; : : : ; ƒm/ its macro-block

decomposition. We set yƒ D .yƒ1; : : : ; yƒm/ D  2
L ı  1

L.ƒ/. Because of

the definition ofH .yƒ/ in remark 6.9, the interactions between the different

macro-blocks ofƒ do not contribute anymore to the computation ofH .yƒ/.
The next remark allows us to control the sum of the interactions between

different macro-blocks of ƒ.

Remark 6.10. For j 2 ¹1; : : : ; mº, we let `
j
1 (resp. `

j
2/ be the first stretch of

the subsequence of odd (resp. even) blocks of ƒj . Because of the oriented

structure of any macro-block, for every j D 2; : : : ; m, it turns out that

ƒj interacts with ƒ1 ˚ � � � ˚ ƒj�1 only through `
j
1 ; `

j
2 and the number

of self-touching between ƒj and ƒ1 ˚ � � � ˚ ƒj�1 is bounded from above

by j`j
1 j C j`

j
2 j (see Figure 5).

As a consequence of Remark 6.10, the energy provided by the interactions

between the different macro-blocks ofƒ is bounded above by A1CA2 with

A1 D
m

X

jD1

.j`j
1 j1¹j`j

1
j�L1=4º C j`

j
2 j1¹j`j

2
j�L1=4º/; (6.20a)

A2 D
m

X

jD1

.j`j
1 j1¹j`j

1
j>L1=4º C j`

j
2 j1¹j`j

2
j>L1=4º/: (6.20b)
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Then, the energy lost during the transformation of ƒ into yƒ comes on the

one hand from the loss of those interactions between macro-blocks and on

the other hand from the energy lost inside every macro-blocks due to the

large stretch removing procedure. As a consequence, we can write

H .ƒ/ �H.yƒ/ � A1 C A2 C
m

X

sD1

.H.ƒs/ �H.yƒs//; (6.21)

where we recall that for every s 2 ¹1; : : : ; mº, we have

yƒs D Rts ;L ı Tts ;L.ƒs/

with ts the total length of ƒs .

At this stage, for s 2 ¹1; : : : ; mº, we need to bound the energy lost in ƒs

due to the large stretch removing procedure. We let zLs be the total length of

those stretches that have been removed and we claim that

H.ƒs/�H.yƒs/ � zLs �j`s
1j1¹j`s

1
j>L1=4º�j`s

2j1¹j`j
2
j>L1=4ºC2L

1=4: (6.22)

To understand (6.22) we must keep in mind that the number of self-touching

between two stretches is bounded above by the length of the smallest stretch

involved. This implies that, in the odd subsequence of blocks of ƒs , the

number of self-touching between the first and the second stretch is bounded

by the length of the second one. Therefore, in the odd subsequence of blocks

ofƒs , the number of self-touching that are lost when applying the last stretch

removing procedure is smaller than the sum of all stretches removed in the

odd subsequence of oriented blocks minus the length of the very first stretch

`s
1, plus the length of the first stretch that has not been removed which, by

definition is smaller than L1=4. Of course, the same is true for the even

subsequence and this explains (6.22).

At this stage, we combine (6.20 – 6.22) and we use the bound m � cL1=2

(which implies A1 � 2cL3=4) to conclude that

H .ƒ/ �H .yƒ/ �
m

X

sD1

zLs C 4cL3=4: (6.23)

(b) Note that some energy may also be lost in every macro-block during the

third transformation described in Section 6.2.3, that is, in the construction

of  3
L. Recall (6.16) and the fact that the image of yƒ by  3

L is denoted by
xƒ and has a macro-block decomposition denoted by .xƒi1; : : : ;

xƒi xm
/. Pick
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s 2 ¹1; : : : ; xmº and note that after the first two transformations described

in Section 6.2.3, the macro-block yƒis has a north-east orientation. In case

the very last macro-block of yƒis already satisfies the upper exit condition,

then the third transformation does nothing and yƒis D xƒis . In case the

very last macro-block of yƒis satisfies the lower exit condition, we observe

that it means necessarily that the large stretch removing procedure has not

removed completely the very last block of ƒis . Therefore, we apply the

third transformation that changes the sign of every stretches in the last block

and, if its first stretch is larger than L1=4, then the third transformation also

changes the sign of the stretches of yƒis�1
between its last stretch smaller than

L1=4 and its very last stretch. The existence of such stretch is ensured by the

large stretch removing procedure that we applied to the very last block of

ƒis , as we discussed in. Section 6.2.3. Therefore, by definition, in the third

transformation we have lost at most L1=4 contacts and consequently

H.yƒ/ �H.xƒ/ �
xm

X

sD1

.H.yƒis/ �H.xƒis// � xmL1=4 � cL3=4: (6.24)

(c) With the help of (6.21) and (6.24) above we have proven that for every

ƒ 2 �PSAWL , by letting xƒ be the image of ƒ by  3
L ı  2

L ı  1
L, it holds

that

H.ƒ/ �H.xƒ/ �
m

X

sD1

zLs C 5cL3=4: (6.25)

For notational convenience we set

zL WD
m

X

sD1

zLs :

In Step 4, we have built ML.ƒ/ by concatenating a square block of length
zL with xƒ. The interactions inside the large square block are zL� 2zL1=2 and

therefore

H.ML.ƒ// � zL � 2zL1=2 CH.xƒ/: (6.26)

Finally, (6.25 – 6.26) imply that for every L 2 N and every ƒ 2 �PSAWL ,

H.ƒ/ �H.ML.ƒ// � 2zL1=2 C 5cL3=4 � 2L1=2 C 5cL3=4; (6.27)

and this completes the proof.



430 N. Pétrélis and N. Torri

7. Proof of Theorem 2.3

We pick L 2 N and we consider SL the partially directed path that maximizes the

self-touching number. We have already seen in Step 4 of Section 6 that SL is made

of
p
L� 1 vertical stretches of length

p
L each and thatH.SL/ D L� 2

p
L. Our

proof goes as follows: for every � 2 .0; 1=60/we build the set of path G�;L � �ISAWL

such that for every L and �,

(1) H.�/ D H.SL/ � 13�L, for every � 2 G�;L,

(2) jG�;Lj D
�

L=60
�L

�

:

As a consequence

F ISAW.ˇ/ WD lim inf
L!1

1

L
logZISAWˇ;L

� sup
�>0

²

lim
L!1

1

L
log

�

L=60

�L

�

C ˇ

L
.H.SL/ � 13�L/

³

� ˇ C sup
�>0

²

lim
L!1

1

L
log

�

L=60

�L

�

� 13ˇ�
³

;

(7.1)

and this completes the proof since the supremum of the right hand side in (7.1) is

strictly positive because of our choice of �.

It remains to build the sets G�;L. First, we partition the collections of
p
L � 1

vertical stretches of SL into groups of 6 consecutive vertical stretches and then

each group is divided vertically into rectangles of heights 10. This gives us a total

of L=60 rectangular boxes. On the left hand side of Figure 10 two configurations

(denoted by A and B) are drawn and each of them is made of 60 steps. An

important feature of configurations A and B is that one can fill every rectangular

box with an A or with a B configuration (see the right hand side of Figure 10)

and still recover a self-avoiding path of size L. The SL path is obtained by

filling all boxes with configuration B . We also note that filling a box with an A

configuration provides exactly 13 self-touching less than filling the same box with

a B configuration.

The set G�;L contains all paths obtained by filling the L=60 boxes with �L

blocks of type A and L. 1
60
� �/ blocks of type B . Thus, the cardinality of G�;L is

�

L=60
�L

�

and the Hamiltonian of every path in G�;L is equal to H.SL/ � 13�L. This

completes the proof.
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B B B B B BA A

A B

A B B B B BB B

B B B A B BA A

B B B A B BB B

B A B B B BB B

A B B B B AB B

B B B B B BB B

B B B B B BB B

B B A B B BB A

Figure 10. On the left configuration A and B are drawn. The big squared block of sizep
L on the right is subdivided into L=60 rectangular boxes, each of them can be filled

with configuration A or B without changing the fact that the resulting path is self-avoiding.

The set G�;L contains all path obtained by filling �L boxes with configuration A and the

all the others with configuration B . Note, in the picture you have to run over the path by

starting on the left top, following the direction given by the arrow. This forces to cross any

configuration A and B in a unique way, marked by the arrow on the left side of the picture.

8. Free energy: convergence in the right hand side of (2.4)

The goal of this section is to prove the existence of the free energy for the NE-

prudent walk. For this purpose, we aim at using a super-additive argument, cf.

Proposition A.12 in [9]. It turns out that the sequence .ZNE
ˇ; L

/L2N is not log super-

additive, therefore we introduce a super-additive process, for which the free energy

exists, and we show that it rounds up/down ZNE
ˇ; L

.

The energy associated with a path is described by an Hamiltonian function

H .w/, cf. (2.2). We let �
NE;�
L � �NEL be the set of the whole NE-prudent paths

for which the upper exit condition is satisfied by all the blocks of the path and we

let z�NE;�L � �
NE;�
L be the set of the NE-prudent paths in �

NE;�
L for which the first

stretch of the path is equal to 0. We let Z
NE;�
ˇ; L

and zZNE;�
ˇ; L

be the partition functions
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associated with these sets respectively. In the next lemma we prove that zZNE;�
ˇ; L

is

log super-additive.

Lemma 8.1. The sequence .zZNE;�
ˇ; L

/L2N is log super-additive. As a consequence,

the free energy zFNE;�.ˇ/ exists ant it is finite, i.e.,

zFNE;�.ˇ/ WD lim
L!1

1

L
log zZNE;�

ˇ; L
D sup

L2N

1

L
log zZNE;�

ˇ; L
<1:

Proof. We start by showing the super-additivity. We pick 0 � L0 � L and we

consider two paths w1 2 z�NE;�L0 and w2 2 z�NE;�L�L0 . We note that we can safely

concatenate w1 with w2, and obtain the path w1 ˚ w2, which is an element of
z�NE;�L . Moreover, we note that H .w1˚w2/ � HL0.w1/CHL�L0.w2/. We conclude

that,

zZNE;�
ˇ; L
�

X

wDw1˚w2W
.w1;w2/2z�NE;�

L0 � z�NE;�L�L0

e ˇH .w/

�
X

.w1;w2/2z�NE;�
L0 � z�NE;�L�L0

e ˇHL0 .w1/e ˇHL�L0 .w2/

D zZNE;�
ˇ; L0
zZNE;�

ˇ; L�L0 :

(8.1)

To prove that the limit is finite, we observe that H .w/ � L and thus

zZNE;�
ˇ; L
� eˇL j z�NE;�L j � eˇL j�NEL j:

This concludes the proof because

lim sup
L!1

1

L
log j�NEL j <1: �

We are going to compare zZNE;�
ˇ; L

with Z
NE;�
ˇ; L

, in order to obtain the existence of

the free energy associated with Z
NE;�
ˇ; L

. By definition it holds that zZNE;�
ˇ; L
� Z

NE;�
ˇ; L

. On

the other hand, we observe that givenw 2 z�NEL , if we keep out the first stretch ofw

(which has 0 length), then we obtain a pathw0 2 �NEL�1. The map which associates

w with w0 is one to one, because there is only one way to add a stretch of 0 length

to a block. Since H .w/ D HL�1.w
0/, we conclude that zZNE;�

ˇ; L
� Z

NE;�
ˇ; L�1

. As a

consequence, we have that

FNE;�.ˇ/ WD lim
L!1

1

L
log Z

NE;�
ˇ; L

and FNE;�.ˇ/ D zFNE;�.ˇ/; for all ˇ � 0:
(8.2)
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We are ready to bound from below and from above the function ZNE
ˇ; L

by a

suitable function for which the free energy exists. We let

ˆL;ˇ WD
L

X

L0D1

Z
NE;�
ˇ; L0Z

IPDSAW

ˇ; L�L0 : (8.3)

It is a standard fact, cf.[9, Lemma 1.8] that the existence of the free energy of Z
NE;�
ˇ; L

and ZIDPSAW
ˇ; L

implies the existence of the free energy of ˆL;ˇ and

lim
L!1

1

L
logˆL;ˇ D max¹F IPDSAW.ˇ/; F NE;�.ˇ/º (8.4)

where FIPDSAW.ˇ/ is the free energy associated with ZIPDSAW
ˇ; L

(its existence was

proven in [5]).

Proposition 8.2. It holds that

ˆL;ˇ � ZNEˇ; L � eo.L/ˆL;ˇ : (8.5)

As a consequence we have that the free energy of ZNE
ˇ; L

exists and it is finite, i.e.,

FNE.ˇ/ WD lim
L!1

1

L
log ZNEˇ; L <1: (8.6)

Proof. To prove the lower bound in (8.5) we consider the family of disjoints sets

�
NE;�
L0 ��PDSAWL�L0 , withL0 2 ¹0; : : : ; Lº. For any .w0; w00/ 2

S

0�L0�L�
NE;�
L0 ��PDSAWL�L0 .

Let w D w0 ˚ w00 be the concatenation of w00 with w0. Since

HN .w/ � HL0.w0/CHL�L0.w00/

we have

ZNEL;ˇ WD
X

w2�NE
L

e ˇH .w/

�
L

X

L0D0

X

w2�NE
L
W

wDw 0˚w 00;

.w 0;w 00/2�
NE;�

L0 ��PDSAW
L�L0

e ˇH .w/

�
L

X

L0D0

X

w2�NE
L
W

wDw 0˚w 00;

.w 0;w 00/2�
NE;�

L0 ��PDSAW
L�L0

e ˇ.H .w 0/CH .w 0//

D
L

X

L0D1

Z
NE;�
ˇ; L0Z

IPSAW

ˇ; L�L0 :
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The strategy to prove the upper bound in (8.5) is similar to the strategy used

for the proof of Theorem 2.1 in Section 6. To be more precise, we associate with

each w 2 �NEL two paths u0 2 �NE;�L0 and w0 2 �PDSAWL�L0 , for some 0 < L0 < L,

with L0 D L0.w/, through a sub-exponential function (cf. Definition 6.1). We let

.�1; : : : ; �r/ be the block decomposition of w. We consider the last block �r , of

length L�L0, for some L0 < L. We apply the large stretch removing procedure to

�r , i.e., by starting from the first stretch, we pick off all the consecutive stretches

larger thanL1=4 in the block �r . Let � 0r be the result of this operation. Let zL be the

total length of the stretches that we picked off. We define an oriented block made

of
p

zL vertical stretches of alternating sings of length
p

zL� 1. This configuration

maximizes the energy of a block of length zL. The orientation of this block is

the same as that of �r . We concatenate this block with � 0r and we call w0 the

path obtained at the end of this operation. By construction w0 2 �PDSAWL�L0 . We let

u0 WD �1 ˚ � � � ˚ �r�1, so that .u0; w0/ 2 �NE;�L0 � �PDSAWL�L0 . The computations we

did in Steps 1 � 4 in Section 6 ensure that the function which associates w with

.u0; w0/ is sub-exponential and, by reasoning as in Step 5 of Section 6, it turns out

thatH .w/�
�

HL0.u0/CHL�L0.w0/
�

� o.L/, uniformly onw 2 �NEL . This suffices

to conclude the proof. �
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