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Right-handed Hopf algebras and the preLie forest formula
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Abstract. Three equivalent methods allow to compute the antipode of the Hopf algebras of

Feynman diagrams in perturbative quantum �eld theory (QFT): the Dyson–Salam formula,

the Bogoliubov formula, and the Zimmermann forest formula. Whereas the �rst two

hold generally for arbitrary connected graded Hopf algebras, the third one requires extra

structure properties of the underlying Hopf algebra but has the nice property to reduce

drastically the number of terms in the expression of the antipode (it is optimal in that sense).

The present article is concerned with the forest formula: we show that it generalizes

to arbitrary right-handed polynomial Hopf algebras. These Hopf algebras are dual to the

enveloping algebras of preLie algebras – a structure common to many combinatorial Hopf

algebras which is carried in particular by the Hopf algebras of Feynman diagrams.

Mathematics Subject Classi�cation (2010). 16T05, 16T30, 16S30, 16W10.

Keywords. Forest formula, Zimmermann forest formula, preLie algebra, enveloping alge-

bra, Hopf algebra, right-sided bialgebra.

Introduction

Three equivalent methods allow to compute the antipode of the Hopf algebras

of Feynman diagrams in perturbative quantum �eld theory (QFT). The �rst two

hold generally for arbitrary graded connected Hopf algebras and are direct conse-

quences of the very de�nition of the antipode S as the unique solution to " D S �I ,

that is the de�nition of S as the convolution inverse to the identity map I of a

Hopf algebra H (here " stands for the unit of the convolution algebra of the endo-

morphisms of H ). The Dyson–Salam formula is the closed formula obtained by

expanding as a formal power series in I � " the identity I �1 D ." C .I � "//�1.

The Bogoliubov formula is a recursive formula, obtained by rewriting the identity

" D S � I as

0 D S.T / C T C m ı .S ˝ I / ˝ x�.T /;

where T is an arbitrary element in a graded component Hn; n > 0 of H and
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m; x� stand respectively for the product and the reduced coproduct on H (x�.T / D

�.T / � 1 ˝ T � T ˝ 1). The formula is solved by induction on the degree of the

graded components of H and underlies the so-called Bogoliubov recursion that

computes the counterterm and the renormalized values associated to the Feynman

rules of a given QFT [5, 7].

The third one, the Zimmermann forest formula, is di�erent in nature. When

expanding the previous two formulas on a general Feynman diagram, terms are

repeated and many cancellations occur. The forest formula relies on combinatorial

properties that do not hold in an arbitrary graded commutative Hopf algebra, but

has the nice property to reduce drastically the number of terms in the expression

of the antipode; it is actually optimal in that sense.

These antipode formulas have been investigated in the 2000s by J. C. Figueroa

and J. M. Gracia-Bondia [9, 10]. They obtained a simple direct proof of Zimmer-

mann’s formula in QFT and showed more generally that one can employ the dis-

tributive lattice of order ideals associated with a general partially ordered set and

incidence algebra techniques (on incidence Hopf algebras, see also [8]) in order to

resolve the combinatorics of overlapping divergences that motivated the develop-

ment of the renormalization techniques of Bogoliubov, Dyson, Salam, Zimmer-

mann et al.

The present article is also concerned with the forest formula, but with a dif-

ferent approach: we show that the formula generalizes to arbitrary right-handed

polynomial Hopf algebras, that is the Hopf algebras dual to the enveloping alge-

bras of preLie algebras. That structure is carried by the Hopf algebras of Feynman

diagrams and various incidence Hopf algebras, but also by many other fundamen-

tal Hopf algebras since preLie algebras show up not only in QFT or related areas,

but also in di�erential geometry (an idea originating in Cayley’s tree expansions),

abstract algebra (Rota-Baxter algebras and operads give rise to preLie algebra

structures), numerics (for the same reason as in di�erential geometry: di�erential

operators give rise to preLie products), and so on. We refer e.g. to the foundational

article [1] and the surveys [2, 17].

The article is organized as follows. The �rst section surveys brie�y enveloping

algebras of preLie algebras. The second gives a direct and self-contained account

of the structure of right-handed polynomial Hopf algebras. The third introduces

the tree encoding of iterated coproducts and various related statistics on trees. The

fourth states and exempli�es the main theorem. The last two sections are devoted

to its proof.



Forest formula 105

From now on, k denotes a ground �eld of characteristic zero. All the algebraic

structures to be considered are de�ned over k. Since the article considers only

conilpotent coalgebras, “coalgebra” (resp. “Hopf algebra”) will stand for conilpo-

tent coalgebra (resp. conilpotent Hopf algebra).

Recall that a coaugmented coalgebra C with counit � is conilpotent if and only

if for all c 2 C C WD Ker.�/ there exists n 2 N� such that x�Œn�.c/ D 0, where x�Œn�

stands for the n � 1 iterated reduced coproduct: x�.c/ WD �.c/ � c ˝ 1 � 1 ˝ c,
x�Œ1� WD idC , x�Œ2� WD x�, and for n � 3, x�Œn� WD .� ˝ id˝n�2

C / ı x�Œn�1�. In

particular, cofree cocommutative coalgebra will mean cofree cocommutative in

the category of conilpotent coalgebras. The cofree cocommutative coalgebra over

a vector space V identi�es then with S.V / WD
L

n2N.V ˝n/Sn , the coalgebra of

symmetric tensors over V . Here Sn stands for the symmetric group of order n.

It is convenient to identify elements of S.V / with polynomials over V : we will

write its elements as linear combinations of polynomials l1 : : : ln and call S.V / the

polynomial coalgebra over V . The symmetric tensor in .V ˝n/Sn corresponding

to l1 : : : ln is
P

�2Sn
l�.1/ ˝ � � � ˝ l�.n/. Through this identi�cation, the coproduct

on S.V / is the usual unshu�ing coproduct: for arbitrary l1; : : : ; ln 2 V ,

�.l1 : : : ln/ D
X

I

lI ˝ lJ (1)

where, for a subset I of Œn�, lI WD
Q

i2I li , and where I runs over the (possibly

empty) subsets of Œn� and J WD Œn� � I .

Notice also, for further use, that, dually, S.V / is equipped with a commutative

algebra structure by the shu�e product of symmetric tensors. Through the above

identi�cation, it corresponds to the usual product of the polynomials, and we call

S.V / equipped with this product the polynomial algebra over V .

Notice �nally that since conilpotent bialgebras always have an antipode (this

follows e.g. from the use of the Dyson–Salam formula), the two notions of

bialgebras and Hopf algebras will identify in the present article.

Acknowledgements. The authors acknowledge support from the grant ANR-12-

BS01-0017, Combinatoire Algébrique, Résurgence, Moules et Applications.
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1. PreLie algebras and their enveloping algebras

De�nition 1. A preLie algebra is a vector space L equipped with a bilinear map

Ô such that, for all x; y; z in L:

.x Ô y/ Ô z � x Ô .y Ô z/ D .x Ô z/ Ô y � x Ô .z Ô y/:

The vector space L is equipped with a Lie bracket

Œx; y� WD x Ô y � y Ô x;

see e.g. [1, 4] for further details. We write U.L/ for the enveloping algebra of L

viewed as a Lie algebra.

We will also denote by Ô the right action of the universal enveloping algebra

of L on L that extends the pre-Lie product: for all a; b 2 L, .b/a WD b Ô a. This

action is well de�ned since the product Ô makes L a module over L viewed as a

Lie algebra: for all a; b; c 2 L,

..c/b/a � ..c/a/b D .c Ô b/ Ô a � .c Ô a/ Ô b

D c Ô .b Ô a � a Ô b/

D .c/Œb; a�:

One can equip S.L/, the polynomial coalgebra over L with a product � induced

by Ô that makes (S.L/; �; �/ a Hopf algebra and the enveloping algebra of L,

see [14] (recall that an enveloping algebra carries the structure of a cocommutative

Hopf algebra in which the primitive elements identify with the elements of the

Lie algebra). The product � is associative but not commutative and is de�ned as

follows:

.a1 : : : al / � .b1 : : : bm/ D
X

f

B0.a1 Ô B1/ : : : .al Ô Bl /; (2)

where the sum is over all maps f from ¹1; : : : ; mº to ¹0; : : : ; lº and Bi WD
Q

j 2f �1.i/ bj . For example, in low degrees:

a � b D ba C a Ô b D ab C a Ô b; (3)

a1a2 � b D a1a2b C .a1 Ô b/a2 C a1.a2 Ô b/;

a � b1b2 D ab1b2 C b1.a Ô b2/ C b2.a Ô b1/ C a Ô .b1b2/

D ab1b2 C b1.a Ô b2/ C b2.a Ô b1/ C a Ô .b1 � b2 � b1 Ô b2/

D ab1b2 C b1.a Ô b2/ C b2.a Ô b1/

C .a Ô b1/ Ô b2 � a Ô .b1 Ô b2/;
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where the identity a Ô .b1 � b2/ D .a Ô b1/ Ô b2 follows from the fact the

Ô is the right action of the enveloping algebra extending the pre-Lie product (see

also [14] and the computation of .a Ô .b1 : : : bn// Ô .c1 : : : cm/ below).

2. Right-handed polynomial Hopf algebras

Notice that the increasing �ltration of S.L/ by the degree in the previous section

is respected by the product �, but the direct sum decomposition into graded

components is not:

Sn.L/ � Sm.L/ �
M

n�i�nCm

S i.L/: (4)

Restricting this inclusion on the image when n D 1, one gets a map from L˝S.L/

to L which is simply the Ô map. Iterating this map and using the associativity of

� results in the identity

.a Ô .b1 : : : bn// Ô .c1 : : : cm/

D
X

I1

`

���
`

InC1DŒm�

a Ô ..b1 Ô cI1
/ : : : .bn Ô cIn

/cInC1
/;

where the Ii are possibly empty. This identity de�nes precisely on L the structure

of a symmetric brace algebra, and the two notions of symmetric brace algebras

and preLie algebras happen to be equivalent (the two categories are isomorphic)

[14, Corollary 5.4].

Conversely, the categorical properties of the notion of brace algebra (see

[12, 13, 15]) together with these results of D. Guin and M. Oudom on the symmetric

brace algebra structure of the primitive part of enveloping algebras of preLie

algebras [14] allow to characterize enveloping algebras of preLie algebras [16].

See also Turaev’s [21], where the notion of right-handed Hopf algebras used below

and its links to preLie algebras and coalgebras seem to originate.

De�nition 2. A right-handed cofree cocommutative Hopf algebra is a polynomial

coalgebra S.V / over a vector space V , equipped with a product � with unit

1 2 S0.V / D k that makes S.V / a Hopf algebra and such that furthermore:

Sn.V / � Sm.V / �
M

i�2

S i .V / for all n � 2:
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Theorem 3. In a right-handed cofree cocommutative Hopf algebra S.V /, the

set of primitive elements V is equipped with a preLie algebra structure by the

restriction of � to a map from V ˝ V to V . Furthermore, S.V / is the enveloping

algebra of V and � identi�es with the product constructed in (2). In particular,

the category of right-handed cofree cocommutative bialgebras and the category

of preLie algebras are equivalent.

Let us give an elementary and self-contained proof of these results, disentan-

gled of the notational complexities of brace calculus that were devised originally

for algebras up to homotopy and that are not required in this simple situation (com-

pare with [16]). We mention that the calculations in the proof are interesting on

their own.

Recall �rst that the polynomial algebra over V , S.V / D k ˚S.V /C, is the free

augmented commutative algebra over V . That is, equivalently, for an arbitrary

augmented commutative algebra A, Lin.V; AC/ Š Alg.S.V /; A/. Here, C is used

to denote the augmentation ideal and Alg the category of augmented commutative

algebras.

By duality, for an arbitrary coaugmented cocommutative coalgebra C D

k ˚ C C with coaugmentation coideal C C, there is a canonical bijection (or, in

categorical langage, adjunction)

Lin.C C; V / Š Coalg.C; S.V //;

where Coalg denotes the category of coaugmented cocommutative coalgebras. In

particular, a coaugmented cocommutative coalgebra morphism to S.V / is entirely

characterized by its restriction to V on the image. The inverse bijection is obtained

by dualizing the isomorphism Lin.V; AC/ Š Alg.S.V /; A/: for f 2 Lin.C C; V /,

the corresponding element in Coalg.C; S.V // is given by

M

n2N�

f ˝n ı x�Œn�; (5)

where x�Œn� is the iterated reduced coproduct from C to ..C C/˝n/Sn � .C C/˝n.

Let us apply this property to the Hopf algebra S.V / of the Theorem. Since

S.V / is a Hopf algebra, the product map � from C D S.V / ˝ S.V / to S.V / is

a coaugmented cocommutative coalgebra morphism, where the coproduct � of

S.V / ˝ S.V / is induced by the unshu�e coproduct (written here for notational

clarity �S.V /) of S.V /:

� D .I ˝ � ˝ I / ı .�S.V / ˝ �S.V //
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with �.x ˝ y/ D y ˝ x. Let us write � for the restriction of �, on the image, to a

map from S.V /˝S.V / to V . By assumption, � is null on the V ˝n˝S.V /; n � 2;

it is the identity map on the components k ˝V Š V and V ˝k Š V . For a; b 2 V

we have
x�.a ˝ b/ D .a ˝ 1/ ˝ .1 ˝ b/ C .1 ˝ b/ ˝ .a ˝ 1/

and, since x�.a˝1/ D x�.1˝a/ D x�.b˝1/ D x�.1˝b/ D 0 we get by adjunction:

a � b D
X

n�1

�˝n ı x�Œn�.a ˝ b/

D
X

nD1;2

�˝n ı x�Œn�.a ˝ b/

D �.a ˝ b/ C a ˝ b C b ˝ a;

(6)

where we recognize the equation (3) expressing the associative product of two

elements of a preLie algebra in the enveloping algebra in terms of the preLie

product. The same computation at higher orders would express the product

a1 � � � � � an as the sum of a1 : : : an and lower order terms (polynomials in
L

k<n Sk.V /).

Applying this computation to the restriction to V on the image of the associa-

tivity relation � ı .� ˝ Id/ D � ı .Id ˝�/, we get

�.�.a ˝ b/ ˝ c/ D �.a ˝ .�.b ˝ c/ C b ˝ c C c ˝ b/; for all a; b; c 2 V;

or

�.�.a ˝ b/ ˝ c/ � �.a ˝ .�.b ˝ c// D �.a ˝ .b ˝ c C c ˝ b//: (7)

Since the last expression is symmetric in b and c, we get �nally

�.�.a ˝ b/ ˝ c/ � �.a ˝ .�.b ˝ c// D �.�.a ˝ c/ ˝ b/ � �.a ˝ .�.c ˝ b//;

where we recognize the preLie identity.

The same calculation can be repeated with higher tensor products: the restric-

tion to V on the image of the product map from S.V /˝n to S.V / can be computed

on a tensor product of elements of V as

�.: : : �.�.a1 ˝ a2/ ˝ a3/ � � � ˝ an/;

or as

�.a1 ˝ .a2 � � � � � an// D �.a1 ˝ ..a2 : : : an/ C R/;

where the remainder term R is a polynomial in
L

k<n�1 Sk.V /. This shows that

the restrictions of � to V ˝ Sn.V / can be computed inductively and depend only

on the value of � on V ˝ V .
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The Theorem follows: V , the Lie algebra of primitive elements of S.V / is

a preLie algebra. By the Cartier–Milnor–Moore theorem [3, 18, 20], S.V / is its

enveloping algebra (the proof given in [19, 20] requires only cocommutativity and

conilpotency, not the graduation hypothesis of [18]). Since the preLie algebra

structure of V determines uniquely the algebra structure of S.V /, the product �

identi�es with the product computed using (2).

The previous results dualize ([16, 21]).

De�nition 4. A right-handed polynomial Hopf algebra is a polynomial algebra

S.V / over a vector space V , equipped with a coproduct � (with counit the

projection from S.V / to S0.V / D k) that makes S.V / a Hopf algebra and such

that furthermore the coproduct � is right-handed, that is

x�.V / � V ˝ S.V /:

Proposition 5. Let S.V / be a right-handed polynomial Hopf algebra. Then, V is

equipped with a preLie coalgebra structure by the restriction of � to a map from

V to V ˝ V .

The structure theorems for right-handed cofree cocommutative Hopf algebras

dualize perfectly in the framework of Milnor–Moore [18], that is when the S.V /

are furthermore connected graded Hopf algebra (in general, dualizing structure

theorems for Hopf algebras requires some care since the dual of a coalgebra is

an algebra, but the converse is not true in general – the notion of restricted duals

has to be used. In the category of graded vector spaces, these di�culties disap-

pear). By graded duality, graded connected right-handed polynomial bialgebras

are coenveloping coalgebras of graded connected preLie coalgebras and the cor-

responding categories are equivalent.

Most combinatorial Hopf algebras are graded (see [3]), and such are the ones

of Feynman diagrams in QFT, where the diagrams are graded by their number of

loops [5].

3. Toward chains and forests

Chains and forests are naturally associated to the action of the iterated reduced

coproduct on the Feynman graphs of a given QFT: chains are successions of

strict inclusions of subgraphs, whereas forests are families of subgraphs satisfying

certain technical conditions, essentially such that the connected components of the

subgraphs in a chain form a forest. We refer to [10] for a detailed analysis of these

notions, that have also appeared recently in relation to Hopf algebra structures in

control theory [6].
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This section aims at de�ning the analogous notion of a forest (indeed trees) in

the more general context of right-handed polynomial bialgebras. As we shall see,

some tree indexations naturally appear in the computation of iterated coproducts.

Let from now on in this article H D S.V / be a conilpotent right-handed

polynomial Hopf algebra. We assume that V has a basis B D ¹biºi2X , where

X D ¹1; : : : ; nº or X D N�, �xed once for all. Notice that in most application

domains of the theory of preLie algebras and coalgebras (see [2, 17]), there is a

natural choice for the basis B and therefore a natural notion of chain and forest

will result.

In the sequel, we consider multisets over X and, for any such multisets I; J ,

write I [ J for their union. For example, ¹1; 2; 2º [ ¹2; 3; 3º D ¹1; 2; 2; 2; 3; 3º.

With these notations, one can consider monomials bI D
Q

i2I bi , so that bI :bJ D

bI[J and one can note b; the unit of H . Let us �x bi 2 B. We aim at computing

the value of the antipode on bi , S.bi /, that can already be expressed using the

Dyson–Salam formula with the help of iterated coproducts:

S.bi / D
X

k�1

.�1/kmŒk� ı x�Œk�.bi /;

where mŒk� is the k–fold product.

We can �rst expand the reduced coproduct of bi as follows:

x�.bi / D
X

i0;I 6D;

�
i Ii0
I bi0 ˝ bI :

The coe�cients �
i Ii0
I completely determine the coproduct and its action on prod-

ucts, as well as the action of the iterated coproducts. At this stage, one can opt

for a graphical representation and consider that, in x�.bi /, the di�erent terms are

indexed by non planar decorated corollas whose root is decorated by .i I i0/ and

leaves decorated by the positive integers:

x�.bi / D
X

�
�

.i I i0/

i1 ik

�

bi0 ˝ bi1 : : : bik :

Here, non planar means as usual for trees that the ordering of the branches does

not matter, re�ecting the commutativity of the product.



112 F. Menous and F. Patras

Let us now consider a single term in this reduced coproduct, for instance

�
�

.i I i0/

i1 i2

�

bi0 ˝ bi1bi2 :

One can observe that

x�.bi1bi2/ D .1 ˝ bi1 C bi1 ˝ 1 C x�.bi1//.1 ˝ bi2 C bi2 ˝ 1

C x�.bi2// � 1 ˝ bi1bi2 � bi1bi2 ˝ 1

so that the contribution of

�
�

.i I i0/

i1 i2

�

bi0 ˝ bi1bi2

to x�Œ3�.bi / D .Id ˝ x�/.x�.bi // will split in four terms, whose complexity is

encoded by the appearance of products of coe�cients ��I�
��� .

There is a �rst term with no more “complexity” than in x�.bi /:

�
�

.i I i0/

i1 i2

�

bi0 ˝ .bi1 ˝ bi2 C bi2 ˝ bi1/:

There is a second term, where only the reduced coproduct of bi1 occurs:

�
�

.i I i0/

i1 i2

��

X

�
i1Ii1;0

i1;1:::i1;k
bi0 ˝ .bi1;0

˝ bi2bi1;1:::i1;k
C bi2bi1;0

˝ bi1;1:::i1;k
/
�

;

and this contribution is naturally indexed by the trees:

.i I i0/

.i1I i1;0/

i1;1 i1;k

i2

:

In the same way, there is a contribution, corresponding to .1˝bi1 Cbi1 ˝1/x�.bi2/

indexed by the trees:

.i I i0/

i1 .i2I i2;0/

i2;1 i2;l

;
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and �nally the terms in relation with x�.bi1/x�.bi2/ that will be indexed by trees

.i I i0/

.i1I i1;0/

i1;1 i1;k

.i2I i2;0/

i2;1 i2;l

:

When iterating the reduced coproduct, such groups of terms naturally appear,

labelled by trees that encode the presence of the coe�cients ��I�
��� .

De�nition 6. Let us consider �nite rooted trees (connected and simply connected

�nite posets with a unique minimal element) whose internal vertices are decorated

by pairs p D .p1I p2/ of positive integers and leaves are decorated by positive

integers (note that in the tree with only one vertex, the vertex is considered as a

leaf).

A forest is simply a commutative product of such trees. For any internal

vertex x (x 2 Int.T /) in such tree or forest, we note d.x/ D .d1.x/I d2.x//

its decoration, and, if x is a leaf (x 2 Leaf .T /), we note for convenience its

decoration d.x/ D d1.x/ D d2.x/. For any internal vertex x, we also note, succ.x/

the set of its immediate successors.

If the root of a tree is decorated by i or .i I i0/, we say that the tree is associated

to bi (T 2 Ti ). For a given pair p, we note BC
p .T1 : : : Ts/ the tree obtained by

adding a common root decorated by p to the trees T1 : : : Ts.

The reader will notice that in the QFT terminology such trees are called forests

(because to each tree is associated a forest by cutting the root).

De�nition 7. The length of a tree, l.T /, is the number of elements in T viewed as

a poset. The height h.T / of a tree is the maximum number of elements in a chain

from the root to a leaf.

The coe�cient �.T / is de�ned as follows:

�.�i / D 1

and if T D BC
.i Ii0/

.T1 : : : Ts/, then

�.T / D �
i;i0
i1;:::;is

�.T1/ : : : �.Ts/

when T1; : : : ; Ts are respectively associated to bi1 ; : : : ; bis . In other words

�.T / D
Y

x2Int.T /

�
d.x/

d1.succ.x//
:
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The b-value of a tree is the element v.T / of S.V / de�ned as

v.T / D
Y

x2T

bd2.x/:

We extend naturally these notions to forests:

l.T1 : : : Ts/ D l.T1/ C � � � C l.Ts/;

h.T1 : : : Ts/ D max.h.T1/; : : : h.Ts//;

�.T1 : : : Ts/ D �.T1/ : : : �.Ts/;

v.T1 : : : Ts/ D v.T1/ : : : v.Ts/:

In the sequel, once a forest F is given, we will note abusively, for any vertex

x of F , bx D bd2.x/.

For example, for the tree

T D
.i I i0/

.i1I i1;0/

i1;1 i1;2

.i2I i2;0/

i2;1 i2;2 i2;3

;

l.T / D 8, h.T / D 3, �.T / D �
i Ii0
i1;i2

�
i1Ii1;0

i1;1;i1;2
�

i2Ii2;0

i2;1;i2;2;i2;3
and

v.T / D bi0bi1;0
bi1;1

bi1;2
bi2;0

bi2;1
bi2;2

bi2;3
:

We can also rephrase the de�nition of x�:

x�.bi / D
X

T DB
C

.iIi0/
.�i1

����ik
/2Ti I

h.T /D2

�.T /v.�i0/ ˝ v.�i1 � � � �ik /: (8)

We can now state the Zimmermann forest formula in the framework of right-

handed polynomial algebras.

4. The PreLie forest formula

Theorem 8. The value of the antipode S of the right-handed polynomial bialgebra

S.V / on an element bi 2 B is given by the cancellation free formula:

S.bi / D
X

T 2Ti

.�1/l.T /�.T /v.T /: (9)
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By cancellation free, we refer to the fact that each tree appears only once, as in

the classical QFT Zimmermann’s forest formula. Several terms corresponding

to the same tree would instead appear in the Dyson–Salam (and Bogoliubov)

formula, as illustrated below.

We postpone the proof to the next section. Let us �rst show on an elementary

example how the notion of forest and the forest formula behave concretely. We

consider the emblematic case (see e.g. [10]) of the Faà di Bruno Hopf algebra

encoding the substitution product in the algebra of formal power series

f .t/ D t C

1
X

nD2

fn

tn

nŠ
:

On the polynomial algebra generated by the coordinate functions an.f / WD fn,

n � 2, the substitution product translates into the coproduct

�.an/ D

n
X

kD1

ak ˝ Bn;k.a1; : : : ; anC1�k/;

where a1 WD 1 and the Bn;k are the (partial, exponential), Bell polynomials de�ned

by the series expansion

exp
�

u
X

m�1

xm

tm

mŠ

�

D 1 C
X

n�1

tn

nŠ

h

n
X

kD1

ukBn;k.x1; : : : ; xnC1�k/
i

:

Setting bn WD anC1, we get

x�.b1/ D 0; x�.b2/ D 3b1 ˝ b1; x�.b3/ D 6b2 ˝ b1 C b1 ˝ .3b2
1 C 4b2/:

To compute S.b3/, let us apply the classical Dyson–Salam formula obtained

by expanding as a formal power series in I � " the identity

S D I �1 D ." C .I � "//�1 D
X

n

.�1/n.I � "/�n:

We get, grouping the terms according to the powers .I �"/�n and (since our goal is

here to understand the structure of the calculation of the antipode on an example)

avoiding to identify immediately the terms inside these groups:

S.b3/ D �b3 C .6b2 � b1 C 3 b1 � b2
1 C 4 b1 � b2/ � .3 � 2 b1 � b2

1 C 4 � 3 b1 � b2
1/

D �b3 C 10b1b2 � 15b3
1 :

Overall, 6 terms appear that can be resummed into three terms.
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On the other hand x�.b3/ D 6b2 ˝ b1 C b1 ˝ .3b2
1 C 4b2/ can be rewritten

x�.b3/ D �
�

.3I 2/

1

�

b2 ˝ b1 C �
�

.3I 1/

1 1

�

b1 ˝ b1b1 C �
�

.3I 1/

2

�

b1 ˝ b2:

When iterating the coproduct, as in the previous section, we get

x�Œ3�.b3/ D 2�
�

.3I 1/

1 1

�

b1 ˝ b1 ˝ b1 C �
�

.3I 1/

2

�

�
�

.2I 1/

1

�

b1 ˝ b1 ˝ b1

where

�
�

.3I 1/

2

�

�
�

.2I 1/

1

�

D 4:3 D 12 D �
�

.3I 1/

.2I 1/

1

�

:

Overall, we have now 5 forests:

�3;
.3I 2/

1

;
.3I 1/

1 1

;
.3I 1/

2

;
.3I 1/

.2I 1/

1

;

and instead of the six terms in the formula

S.b3/ D �b3 C mŒ2� ı x�Œ2�.b3/ � mŒ3� ı x�Œ3�.b3/;

the indexation by trees, that corresponds to the forest formula gives

S.b3/ D �b3 C �
�

.3I 2/

1

�

b2 � b1 � �
�

.3I 1/

1 1

�

b1 � b1 � b1

C �
�

.3I 1/

2

�

b1 � b2 � �
�

.3I 1/

.2I 1/

1

�

b1 � b1 � b1:

That contains only 5 terms and takes into account cancellations between the terms

associated to
.3I 1/

1 1

:

Although extremely elementary, this example gives the �avour of the general

pattern followed by the forest formula and of the cancellations occurring. The

reader can also compare with other examples as in [10] or [6].
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5. Chains and linearization of forests

This section aims at proving the main theorem, Theorem 8 and, in the process,

introduces various useful tools in order to understand the behaviour of right-

handed polynomial bialgebras S.V /.

The �rst computations we did in Section 3 suggest that, when iterating the

reduced coproduct, the tensor products we get can be associated to trees, so that,

in the end, some cancellations occur in the computation of the antipode and yields

the preLie forest formula.

The following notions, inspired by analogous constructions on �nite topologies

(a generalization of posets) [11], aim at encoding these formulas.

De�nition 9. Let P be a �nite poset of cardinality n. A k-linearization of P

is a surjective, order preserving map f from P to Œk�, where k � n. We write

f 2 k � Lin.P/.

Here, order preserving means that strict inequalities are preserved: x < y

implies f .x/ < f .y/. Note that k cannot be lesser than the “height” of the poset,

that is the length of its maximal interval.

De�nition 10. Let P be a forest (as in De�nition 6) with a given decoration

d D .d1; d2/. If f is a k-linearization of P , we call the tensor product

C.f / WD
�

Y

x12f �1.1/

bx1

�

˝ � � � ˝
�

Y

xk2f �1.k/

bxk

�

a k-chain of P . As before, bxi
stands for bd2.xi /.

Since, by their very de�nition, the decorations of trees associated to bi run

over all the indices of basis elements appearing in the various iterated reduced

coproducts of bi (ordered according to their relative positions in the iterations of

the reduced coproducts), a fundamental key to the proof is that k-linearizations

describe all the tensors of length k that can be obtained in the k-fold iterated

reduced coproduct.

The proof of theorem will follow from the two following fundamental lemmas,

whose proof is postponed to the next section:

Lemma 11. Let I D ¹i1; : : : ; isº be a multiset and FI D ¹T1 : : : Ts ; Tj 2 Tij º,

then
x�.bI / D

X

F 2FI

X

f 22�Lin.F /

�.F /C.f /:
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Lemma 12. For the action of the k-fold iterated coproduct

x�Œk� WD .Id˝k�2 ˝ x�/ ı � � � ı .Id ˝ x�/ ı x�

we have

x�Œk�.bi / D
X

T 2Ti

X

f 2k�Lin.T /

�.T /C.f /:

As a corollary,

Corollary 13. For bi 2 B, we have

.Id �"/�k.bi / D
X

T 2Ti

X

f 2k�Lin.F/

�.T /v.T /;

and

S.bi / D
X

k�1

X

T 2Ti

X

f 2k�Lin.T /

.�1/k�.T /v.T /:

The proof of Theorem 8 boils down in the end therefore to proving that, for a

given tree T,
X

k�1

X

f 2k�Lin.T /

.�1/k D .�1/l.T /:

The identity follows from the general proposition:

Proposition 14. For an arbitrary rooted tree P of cardinality m we have

X

f 2k�Lin.P /

.�1/k D .�1/m:

Let us prove the proposition by induction on m: it is obvious when m D 1. Let

us assume that the proposition is true for trees of cardinality less or equal m. A

tree T 0 of cardinality m C 1 can always be written T 0 D T [ ¹xº, where x is a

maximal element in T 0. Let us also introduce the predecessor y of x for the tree

structure (the maximal z with z < x).

A linearization of T 0 can be obtained from a k-linearization f of P as follows

(all linearizations of T 0 are obtained in that way).
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Consider the sequence .F1; : : : ; Fk/ D .f �1.1/; : : : ; f �1.k// with p D f .y/

(y 2 Fp). The linearizations that can be obtained by inserting x > y correspond

to the sequences

.F1; : : : ; Fp; ¹xº; FpC1; : : : ; Fk/; .F1; : : : ; Fp; FpC1 [ ¹xº;FpC2; : : : ; Fk/;

.F1; : : : ; Fp; FpC1; ¹xº; FpC2; : : : ; Fk/; .F1; : : : ; Fp; FpC1;FpC2 [ ¹xº; : : : ; Fk/;
:::

:::

.F1; : : : ; ¹xº; Fk/; .F1; : : : ;Fk [ ¹xº/;

.F1; : : : ; Fk; ¹xº/:

We get that f gives rise to .k � p/ k-linearizations of T 0 and .k � p C 1/ .k C 1/-

linearizations of T 0. Finally,

X

f 2k�Lin.T 0/

.�1/k D
X

f 2k�Lin.T /

.�1/k..k � p/ � .k � p C 1//

D �
X

f 2k�Lin.T /

.�1/k

D .�1/mC1:

6. Iterated coproducts and trees

We postponed to this section the proof of lemmas 11 and 12, the former serving in

the proof of the latter.

6.1. Proof of Lemma 11. We want to prove that for a given multiset I D

¹i1; : : : ; isº and FI D ¹T1 : : : Ts; Tj 2 Tij º, we have

x�.bI / D
X

F 2FI

X

f 22�Lin.F /

�.F /C.f /:

First observe that, as linearizations are strictly increasing, 2�Lin.F / is empty

if h.F / > 2.

The proof is recursive on the cardinal of I .

If I D ¹iº, we recover the formula (8). Let T 2 Ti , if h.T / D 1; then T D �i

and 2 � Lin.�i/ is empty, otherwise, h.T / D 2 and T D BC
.i0Ii/

.�i1 � � � �ik /. In this

latter case, the only possible 2-linearization sends the root on 1 and all the other

vertices on 2.
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Suppose now that the result holds for any monomial bI D b¹i1;:::;isº of a given

length s. For the monomial bI :bj , the right-hand term S of the above formula can

be written

S D
X

F 2FI

X

T 2Tj

X

f 22�Lin.F:T /

�.F:T /C.f /:

and �.F:T / D �.F /�.T /. For the poset F:T , no vertex of F is comparable to a

vertex of T and any 2-linearization f of F:T can be deduced from the restrictions

of f to F and T . For k D 1; 2 let F k D f �1.k/ \ F and T k D f �1.k/ \ T , so

that f �1.k/ is the disjoint union of F k and T k:

(1) If f is such that none of the F k or T k is empty, then the restrictions of

f to F and T are 2-linearizations. The set of such f is in bijection with

2 � Lin.F / � 2 � Lin.T / and the corresponding subsum of S is

S1 D
X

F 2FI

T 2Tj

X

f122�Lin.F /

f222�Lin.T /

�.F /�.T /C.f1/C.f2/ D x�.bI /x�.bj /:

(2) If f is such that F 1 and F 2 are nonempty but .T 1; T 2/ D .T 1; ;/, neces-

sarily, no two elements of T 1 are comparable: otherwise two such elements

could not be in the same subset f �1.1/. We thus have T 1 D �j and, �nally,

the corresponding subsum is

S2 D
X

F 2FI

X

f122�Lin.F /

�.F /C.f1/:.bj ˝ 1/ D x�.bI /:.bj ˝ 1/:

(3) For the same reason, if f is such that F 1 and F 2 are nonempty but

.T 1; T 2/ D .;; T 2/, necessarily, T 2 D �j and the corresponding subsum

is

S3 D
X

F 2FI

X

f122�Lin.F /

�.F /C.f1/:.1 ˝ bj / D x�.bI /:.1 ˝ bj /:

(4) If f is such that T 1 and T 2 are nonempty but .F 1; F 2/ D .F 1; ;/, necessar-

ily, F 1 D �i1 � � � �is and the corresponding subsum is

S4 D
X

T 2Tj

X

f222�Lin.T /

�.T /C.f2/:.bJ ˝ 1/ D x�.bj /:.bI ˝ 1/:

(5) If f is such that T 1 and T 2 are nonempty but .F 1; F 2/ D .;; F 2/, necessar-

ily, F 2 D �i1 � � � �is and the corresponding subsum is

S5 D
X

T 2Tj

X

f222�Lin.T /

�.T /C.f2/:.1 ˝ bI / D x�.bj /:.1 ˝ bI /:
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(6) If .T 1; T 2/ D .T 1; ;/ and .F 1; F 2/ D .;; F 2/, this corresponds to a unique

2-linearization that gives

S6 D bj ˝ bI :

(7) If .T 1; T 2/ D .;; T 2/ and .F 1; F 2/ D .F 1; ;/, this corresponds to a unique

2-linearization that gives

S7 D bI ˝ bj :

Putting together these seven sums, this gives

S C 1 ˝ bI[j C bI[j ˝ 1

D .x�.bI / C 1 ˝ bI C bI ˝ 1/.x�.bj / C 1 ˝ bj C bj ˝ 1/:

Thus

S D �.bI[j / � 1 ˝ bI[j � bI[j ˝ 1 D x�.bI[j /:

This ends the proof.

6.2. Proof of Lemma 12. It remains to prove that

x�Œk�.bi / D
X

T 2Ti

X

f 2k�Lin.T /

�.T /C.f /:

We already proved the above formula for k D 2 (see formula 8). Suppose the

result holds for a given k � 2 and consider the right-hand side of the formula at

order k C 1:

R D
X

T 2Ti

X

f 2.kC1/�Lin.T /

�.T /C.f /:

Note that we can restrict the sum to trees of height greater than k.

De�nition 15. A nonempty corolla cut C of a tree T (C 2 Ccut.T /) is a subset

of T such that (1) its elements are maximal or predecessors of maximal elements,

(2) if y 2 C then ¹x I x > yº � C .

Such a cut inherits the decorations of T and the order induced by T . It is clear

that this is a forest of height 1 or 2. The reader can easily check that for any corolla

cut C of a tree T , �.T / D �.T=C /�.C /.
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For instance, if

T D
.i I i0/

.i1I j0/

j1

.i2I k0/

k1k2

:

We obtain 7 corolla cuts of height 1 by choosing 1, 2 or 3 leaves. As for the corolla

cuts of heights 2, we get

C1 D
.i1I j0/

j1

; C2 D
.i1I j0/

j1

�k1
; C3 D

.i1I j0/

j1

�k2
; C4 D

.i1I j0/

j1

�k1
�k2

;

C5 D
.i2I k0/

k1 k2

; C6 D
.i2I k0/

k1 k2

�j1
;

and, �nally,

C7 D
.i1I j0/

j1

.i2I k0/

k1 k2

:

Once such a corolla cut C D T1::Ts is given, we note T=C the tree obtained as

follows. For 1 � i � k, if h.Ti/ D 2 (a “true terminal” corolla) remove all the

maximal elements of Ti in T and replace the decoration .kI l/ of the root of Ti by

k in the new tree. In the previous example T=C D T if h.C / D 1,

T=C1 D T=C2 D T=C3 D T=C4 D
.i I i0/

i1 .i2I k0/

k1k2

;

T=C5 D T=C6 D
.i I i0/

.i1I j0/

j1

i2

;

and, �nally

T=C7 D
.i I i0/

i1 i2

:
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We write T ^C for the set of leaves of T=C that coincides with minimal elements

of C and for a given T and g 2 mlin.T /, write

.T 1
g ; : : : ; T m

g / D .g�1.1/; : : : ; g�1.m//;

and

C.g/ D C1.g/ ˝ � � � ˝ Cm.g/:

Let us observe that, for any k C1-linearization f of a tree T , since f is strictly

increasing,

� The set C D T k
f

[ T kC1
f

is a nonempty corolla cut of T .

� The restriction of f to this cut determines a unique 2-linearization fC of C .

� The map f C de�ned on T=C by f C .x/ D f .x/ if f .x/ < k and f C .x/ D k

otherwise is a k linearization of T=C and .f C /�1.k/ D T ^ C .

Conversely, on can associate to a sequence .C; g; h/ 2 Ccut.T / � k �

Lin.T=C / � 2 � Lin.C / such that g�1.k/ D T ^ C a unique .k C 1/-linearization

on T given by the ordered partition

.g�1.1/; : : : ; g�1.k � 1/; h�1.1/; h�1.2//:

Thanks to this bijection, R is equal to
X

T 2Ti

C2Ccut.T /

g2k�Lin.T=C/Ig�1.k/DT ^C

h22�Lin.C/

�.T=C /�.C /C1.g/ ˝ � � � ˝ Ck�1.g/ ˝ C1.h/ ˝ C2.h/:

We can reindex this sum by T 0 D T=C that run over Ti , g 2 k � Lin.T 0/,

C is a forest of height lower or equal to 2 whose set of roots ¹r1; : : : ; rsº has the

same cardinal than g�1.k/ (namely the previous cardinality of T ^ C ) and their

decoration d1 coincide. If we note I D d1.g�1.k//,

R D
X

T 02Ti

g2k�Lin.T /

C2FI

h22�Lin.C/

�.T 0/�.C /C1.g/ ˝ � � � ˝ Ck�1.g/ ˝ C1.h/ ˝ C2.h/

and, since Ck.g/ D bI , we get, thanks to the previous lemma,

R D
X

T 02Ti

g2k�Lin.T /

�.T 0/C1.g/ ˝ � � � ˝ Ck�1.g/ ˝ x�.Ck.g// D .Id˝k�1

˝ x�/ ı x�Œk�.bi /:

This ends the proof of the lemma.
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