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Calculation of the constant factor in the six-vertex model

Pavel Bleher1 and �omas Bothner

Abstract. We calculate explicitly the constant factor C in the large N asymptotics of the

partition functionZN of the six-vertex model with domain wall boundary conditions on the

critical line between the disordered and ferroelectric phases. On the critical line the weights

a; b; c of the model are parameterized by a parameter ˛ > 1, as a D ˛�1
2

, b D ˛C1
2

,

c D 1. �e asymptotics of ZN on the critical line was obtained earlier in the paper [8] of

Bleher and Liechty: ZN D CFN 2
G

p
NN 1=4.1CO.N�1=2//, where F and G are given

by explicit expressions, but the constant factor C > 0 was not known. To calculate the

constant C , we �nd, by using the Riemann–Hilbert approach, an asymptotic behavior of

ZN in the double scaling limit, as N and ˛ tend simultaneously to 1 in such a way that
N
˛

! t � 0. �en we apply the Toda equation for the tau-function to �nd a structural form

for C , as a function of ˛, and we combine the structural form of C and the double scaling

asymptotic behavior of ZN to calculate C .
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1. Introduction and summary of results

�e six-vertex model is a model in statistical mechanics stated on a square lattice

in Z
2 with N 2 vertices and arrows on edges. �e arrows obey the ice-rule: at

every vertex two arrows point in and two arrows point out. �is rule allows for six

possible con�gurations which are depicted in Figure 1.

(6)

(1) (2) (3)

(4) (5)

Figure 1. �e arrow con�gurations at a vertex allowed by the ice-rule.

We consider domain wall boundary conditions (DWBC) on the lattice bound-

ary, in which all arrows on the top and bottom side of the lattice point inside, and

all arrows on the left and right side point outside. We depict a possible 4 � 4

con�guration with DWBC in Figure 2 below.

For each vertex type (i) shown in Figure 1, we assign a Boltzmann weight

wi ; i D 1; : : : ; 6 and introduce the partition function ZN as

ZN D
X

con�gurations

6
Y

iD1

w
ni

i ;

where ni denotes the number of vertices of type (i). �e partition function ZN

depends, by de�nition, on six parameters: the weights wi . �rough the existence

of conservation laws (compare [1, 6] or [20]) we can reduce the general case to

the case when w1 D w2 D a, w3 D w4 D b, and w5 D w6 D c. By using the

homogeneity of the partition function with respect to a, b, and c, it can be further

reduced to two parameters, a
c

and b
c
.
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Figure 2. One example of a 4 � 4 con�guration with DWBC.

�e phase diagram of the model is depicted in Figure 3, it shows three phase

regions: the antiferroelectric (AF) phase region, the disordered (D) phase region,

and the ferroelectric (F) phase region.

0 1

1

a
c

b
c

(AF) (F)

(F)

(D)

Figure 3. �e phase diagram of the six-vertex model, with the phases (F), (AF) and (D).
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In these phase regions the weights a; b and c are parameterized as follows:

.F/ a D sinh.t � /;

b D sinh.t C /;

c D sinh.2/; 0 < j j < t;
(1.1)

.AF/ a D sinh. � t /;
b D sinh. C t /;

c D sinh.2/; 0 � jt j < ;
(1.2)

.D/ a D sin. � t /;
b D sin. C t /;

c D sin.2/; 0 � jt j <  < �

2
:

(1.3)

In the present work we calculate the asymptotics of the partition function ZN of

the six-vertex model on the critical line between the disordered and ferroelectric

phases which corresponds to

b

c
� a

c
D 1: (1.4)

On the critical line we use the following parameterization of the weights:

a D ˛ � 1
2

; b D ˛ C 1

2
; c D 1; ˛ 2 .1;1/: (1.5)

�e six-vertex model with DWBC was �rst studied by Korepin in [24], then

further analyzed in the works [23] and [13]. �is e�ort lead to a determinantal

formula for the partition function ZN , which is commonly called the Izergin–

Korepin formula. On the D-F critical line, with weights (1.5), the Izergin–Korepin

formula is

ZN .a; b; c/ D
�

˛2 � 1
2

�N 2

�N

.
QN �1

kD0 kŠ/
2
; (1.6)

where �N is the Hankel determinant,

�N D det

�

d iCj �2

d˛iCj �2
'

�N

i;j D1

; '.˛/ D 2

˛2 � 1
:
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Also, as a consequence of the determinantal formula, �N satis�es the Toda equa-

tion,

�N �
00
N �

�

� 0
N

�2 D �N C1�N �1; N � 1; .0/ D d

d˛
: (1.7)

It was observed by Zinn-Justin [28] that the Hankel determinant �N can be

connected to orthogonal polynomials: Since

'.˛/ D 1

˛ � 1 � 1

˛ C 1
D

1
Z

0

e�˛x .ex � e�x/ dx (1.8)

we deduce the Zinn-Justin formula,

�N D 1

N Š

1
Z

0

� � �
1
Z

0

N
Y

j D1

w.xj /
Y

i<j

.xi � xj /
2dx1 � � �dxN ; (1.9)

where

w.x/ D e�˛x .ex � e�x/ : (1.10)

Now introduce monic orthogonal polynomials ¹pn.x/ D xnC: : :ºn�0 with respect

to the measure d�.x/ D w.x/dx on the half-axis Œ0;1/,

1
Z

0

pn.x/pm.x/d�.x/ D hnınm (1.11)

and obtain from (1.9) via orthogonality, that

�N D
N �1
Y

kD0

hk : (1.12)

�e latter identity allows us to rewrite the Toda equation (1.7) on the critical line

in the convenient form

.ln �N /
00 D hN

hN �1

; .0/ D d

d˛
; (1.13)

and for the partition function, via (1.6),

ZN D
�

˛2 � 1
2

�N 2 N �1
Y

kD0

hk

.kŠ/2
: (1.14)

In [8], Bleher and Liechty derive the following largeN asymptotics of the partition

function ZN :
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�eorem 1.1 (see [8]). On the critical line between the disordered and ferroelec-

tric phase region with ˛ > 1, as N ! 1,

ZN D CFN 2

G
p

NN 1=4.1CO.N�1=2//; (1.15)

with

F D ˛ C 1

2
; G D exp

�

��
�

3

2

�

r

˛ � 1
2�

�

:

Here �.s/ denotes the Riemann zeta function, C > 0, and the error term in (1.15)

is uniform on any compact subset of the set

¹˛ 2 R W ˛ > 1º : (1.16)

�e main result in the present paper is an explicit evaluation of the constant

factor C > 0. We prove the following result.

�eorem 1.2. �e constant factor C in asymptotic formula (1.15) is equal to

C D ec.˛ � 1/1=4; (1.17)

where

c D 1

4
ln 2C 1

2
ln� C 1

4�

1
X

nD1

�

��
n

C
1
X

mD1

1

.mC n/
p
mn

�

: (1.18)

Remark 1. Using MAPLE for the numerical evaluation of the series, we obtain

that
1
X

nD1

�

��
n

C
1
X

mD1

1

.mC n/
p
mn

�

D �3:568781612 : : :

and

c D 0:4616571210 : : : :

�e calculation of the constant factor in the asymptotics of the partition func-

tion is a notoriously di�cult problem. �is problem appears not only in exactly

solvable models of statistical mechanics, such as the six-vertex model and the

Ising model, but also in random matrix theory, combinatorics, theory of inte-

grable PDEs, etc. In di�erent settings, the “constant factor problem” is studied in

the works of Tracy [26], Basor and Tracy [3], Budylin and Buslaev [5], Ehrhardt

[19], Deift, Its, Krasovsky, and Zhou [14], Deift, Its, and Krasovsky [15], Baik,

Buckingham, and DiFranco [2], Bothner and Its [11], Forrester [22], and others.
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To prove �eorem 1.2, we develop the Riemann–Hilbert approach to the double

scaling limit of the partition function ZN , as both N and ˛ tend to 1 in such a

way that N
˛

! t � 0, see �eorem 6.1 below. �e double scaling asymptotics of

the partition function can be of interest by itself. �en we use the Toda equation

to show that the constant C can be written as

C D .˛ � 1/1=4ed˛Cc: (1.19)

After that we apply the double scaling asymptotics of ZN to calculate the values

of d and c. In this way we �nd that d D 0 and that c is given by formula (1.18).

�e result of �eorem 1.2 adds to the work of the �rst author with Vladimir

Fokin [6], with Karl Liechty [7, 8, 9], and with the second author [5]. �is series of

papers proves conjectures of Paul Zinn-Justin [28] on the large N asymptotics of

ZN in the phase regions. For the convenience of the reader, we brie�y summarize

obtained results and outline what is known about the constant factor in di�erent

phase regions.

Ferroelectric phase region. With parameterization (1.1), for any " > 0,

(F) ZN D CFN 2

GN .1CO.e�N 1�"

//; N ! 1;

where

C D 1� e�4 ; G D e�t ; F D sinh. C t /;

see [7], so that the constant factor C is known explicitly in the ferroelectric phase.

Antiferroelectric phase region. Here, with parameterization (1.2),

(AF) ZN D CFN 2

#4.N!/.1CO.N�1//; N ! 1;

where

! D �

2
.1C t


/; F D �.sinh. � t / sinh. C t //# 0

1.0/

2#1.!/

and

#1.z/ D #1.z j q/; #4.z/ D #4.z j q/

are the Jacobi theta functions with the elliptic nome q D e� �2

2 , see [9]. It is known

that the constant factor C does not depend on t , so that

C D C./ > 0; (1.20)

but its exact value is not known.
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Disordered phase region. Compare [6], with parameterization (1.3) for some

" > 0,

(D) ZN D CFN 2

N �.1CO.N�"//; N ! 1;

with

� D 1

12
� 22

3�.� � 2/ ; F D �.sin. � t / sin. C t //

2 cos �t
2

:

It is known that the constant factor C > 0 has the following dependence on t :

C D C0./

�

cos
�t

2

��

; (1.21)

but the function C0./ > 0 is not known.

Critical line between the antiferroelectric and disordered phase regions. With

the parameterization a D 1� x; b D 1C x; c D 2; jxj < 1, see [5],

(AF-D) ZN D CFN 2

N
1

12 .1CO.N�1//; N ! 1

where

F D �.1� x2/

2 cos �x
2

:

�e constant factor C > 0 has the structure

C D C0

�

cos
�x

2

�
1

12

; (1.22)

where the universal constant C0 > 0 is not known.

In the last three cases, the structural information (1.20), (1.21), and (1.22) on

the constant factors is obtained by combining the results in [9, 6, 5] with the Toda

equation. �is can also be done in the present situation (see (1.18)), which then

leaves us with the determination of the constants c and d . In order to compute

them, we use the double scaling asymptotics of the partition function as described

above.

In [8], Bleher and Liechty rescaled the original weight (1.10) as

wo.x/ D w
� x

˛ � 1
�

D e�x � e�rx; r D ˛ C 1

˛ � 1
> 1

and studied the constants ho
n associated with the monic orthogonal polynomials

¹po
n.x/ºn�0, satisfying the orthogonality condition

1
Z

0

po
n.x/p

o
m.x/w

o.x/ dx D ho
nınm:
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�e main technical result in the work [8] is the following asymptotic formula for

ho
N : As N ! 1,

ln

�

ho
N

.N Š/2

�

D � �.3=2/

2
p

�.r � 1/N 1=2
C 1

4N
CO.N�3=2/; (1.23)

which holds uniformly on any compact subset of the set (1.16). Applying (1.14),

this result implies immediately (1.15), in particular it gives the listed explicit ex-

pressions for F and G. However we cannot take the limit ˛ ! 1 in (1.23). To

overcome this di�culty, in addition to weight (1.10), we will study the related

weight

wt .x/ D w.tx/

2t
D xe�N V.x/; (1.24a)

V.x/ D x � �

t
lnS.tx/; (1.24b)

t D N

˛
D N�; (1.24c)

S.x/ D sinhx

x
; (1.24d)

and its associated monic orthogonal polynomials ¹pn;t .x/ºn�0, satisfying the or-

thogonality condition

1
Z

0

pn;t .x/pm;t .x/wt .x/ dx D hn;tınm:

Noticing that ho
N D .˛ � 1/2N C1hN , we will prove the following generalization

of (1.23).

�eorem 1.3. As N ! 1,

hN

.N Š/2
D N

8
�2N C2b2 exp

h

N.l C 2/C v

N
� 1

6N
C "N .�/

i

; � D 1

˛
(1.25)

where "N is smooth in the parameter � with

j"N j � c

.N C 1/2
;

ˇ

ˇ

ˇ

ˇ

d"N

d�

ˇ

ˇ

ˇ

ˇ

� c

.N C 1/2
; c > 0

and the stated expansion (1.25) is uniform with respect to the parameter

0 � � � 1� " < 1:
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Here, the parameter b is determined implicitly via the equation

b D 4

1 � � C 2�

.1� �/t I.2bt/; I.z/ D �1C z

�

1
Z

0

r

u

1� u
du

ezu � 1
; z � 0;

(1.26)

the parameter l equals

l D 4.1�ln 2/� b
2
.1��/�bC2 lnb� 2�

t
.1�ln 2/C 2�

t
J.2bt/C �

t
lnS.tb/ (1.27)

with

J.z/ D z

�

1
Z

0

�
r

u

1 � u � arctan

r

u

1� u

�

du

ezu � 1; z � 0 (1.28)

and

v D 3

4bq.0/
� q0.b/

4q2.b/
C 47

12bq.b/
; q.z/ D 1

2�

I

�

r

w

w � b

V 0.w/

w � z dw; (1.29)

where � is a counter-clockwise oriented contour containing Œ0; b� [ ¹zº in its in-

terior such that V.z/ is analytic in the interior of �.

�e proof of �eorem 1.3 relies on the Riemann–Hilbert approach to the or-

thogonal polynomials associated with the weight wt ,

wt .x/ D xe�N V.x/; x � 0;

V .z/ D z.1 � �H.tz//;

H.z/ D 1

z
ln

�

sinh z

z

�

;

where the potential V is analytic in the strip

�t D
°

z 2 C W � �

t
< Im z <

�

t

±

:

�is potential is somewhat close to the class of Laguerre potentials which were

considered by Vanlessen in [27]. We use a combination of techniques from [27]

and [8] to derive (1.25). �e explicit form of C in (1.17) will then follow from an

interplay of the Toda equation (1.13) with (1.25) which we combine with (1.14).

In particular we use the fact, that, as ˛ ! 1 and N is �xed, wt has the nontrivial

limit

lim
˛!1

wt .x/ D xe�Nx; x � 0
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and therefore the limiting orthogonal polynomials are classical Laguerre polyno-

mials.

�e structure of the rest of the article is as follows. We derive �eorem 1.3

through the Riemann–Hilbert approach to orthogonal polynomials. �is requires

the construction of the equilibrium measure as stated in Section 2, i.e. in particu-

lar, evaluation of the right endpoint b of its support, its density, and the Lagrange

multiplier l . �en, following the Deift-Zhou nonlinear steepest descent roadmap,

we carry out in Section 3 a sequence of transformations. �ese will allow us to

approximate the solution of the initial Riemann–Hilbert problem by explicit para-

metrices and by an iterative solution of a singular integral equation. As an appli-

cation of this analysis, we prove in Section 4 �eorem 1.3. In Section 5, we use

the Toda equation to derive formula (1.19) for the constant C . �en, in Section

6, we prove the double scaling asymptotics of the partition function. Finally, in

Section 7, we prove �eorem 1.2.

2. Equilibrium measure

2.1. De�nition of the equilibrium measure and evaluation of the endpoint of

its support. We have rescaled the original weight function w.x/ from (1.10) as

wt .x/ D w.tx/

2t
D xe�N V.x/;

V .z/ D z.1� �H.tz//;

H.z/ D 1

z
ln

�

sinh z

z

�

;

t D N� D N

˛
;

hence the associated monic orthogonal polynomials ¹pn;t .x/ºn�0 are related to

the initial ones in (1.11) via the relations

hn D 2t2nC2hn;t ; pn.x/ D tnpn;t

�x

t

�

; n � 0:

�us, after computing the large N asymptotics of hN;t , we can evaluate �N from

equation (1.12) via hN D 2t2N C2hN;t .
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Note that we can write the Hankel determinant as

�N D 2N tN.N C1/

NŠ

1
Z

0

� � �
1
Z

0

� N
Y

j D1

yj

�

e�N
PN

j D1 V.yj /
Y

i<j

.yi � yj /
2dy1 � � �dyN

which allows us, with the help of the empirical measure � on Œ0;1/

�.s/ D 1

N

N
X

kD1

ı.s � yk/;

1
Z

0

d�.s/ D 1;

to express parts of the integrand as

e�N
PN

j D1 V.yj /
Y

i<j

.yi � yj /
2 D e�N 2H.�/;

with the energy functional

H.�/ D
“

ln jt � sj�1d�.t/d�.s/C
Z

V.s/d�.s/:

�is observation leads to the expectation that the value of �N , as N ! 1, will be

concentrated in a vicinity of the global minimum of the functional H.�/, with �

varying over

M
1Œ0;1/ D

²

� 2 Borel measures on Œ0;1/ W
Z

d� D 1

³

:

But it is well known (cf. [16, 17]) that the minimization problem

EV D inf
�2M1Œ0;1/

�“

ln jt � sj�1d�.t/d�.s/C
Z

V.s/d�.s/

�

has a unique solution � D �V 2 M1Œ0;1/, the equilibrium measure. We now

begin to gather various characteristica of the equilibrium measure:

As the potential V.z/ D z.1��H.tz// is convex, the support of the equilibrium

measure �V consists of a single interval

J D Œ0; b� � R:

Our �rst goal is to derive an expansion for the right endpoint b, as N ! 1 for

di�erent values of the double scaling parameter t . To this end use the g-function

g.z/ D
Z

J

ln.z � w/d�V .w/ D
b
Z

0

ln.z � w/ .w/dw; z 2 Cn.�1; b� (2.1)
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with the principal branch chosen in the logarithm. �e equilibrium measure de-

termines the g-function by de�nition, but on the other hand the g-function deter-

mines the equilibrium measure uniquely through a set of variational conditions:

z 2 Œ0;1/nJ W gC.z/C g�.z/ � V.z/ � l � 0; (2.2a)

z 2 J W gC.z/C g�.z/ � V.z/ � l D 0; (2.2b)

where l 2 R is the Lagrange multiplier. �e latter equality on the support J , leads

to an additive Riemann–Hilbert problem for the unknown g0.z/ which is solved

explicitly

g0.z/ D 1

2�

r

z

z � b

b
Z

0

r

w

b � w

V 0.w/

z �w dw; z 2 CnŒ0; b�:

Comparing the large z-asymptotics of the last equation with the one obtained

from (2.1), we derive the following de�ning equation on the right endpoint b

1

2�

b
Z

0

r

w

b �wV
0.w/ dw D 1: (2.3)

Since

V 0.z/ D 1� �
�

cosh.tz/

sinh.tz/
� 1

tz

�

D 1� �
�

1 � 1

tz
C 2

e2tz � 1

�

we obtain from (2.3), after the change of variables w D bu,

b D 4

1� �
C 2�

.1 � �/t I.2bt/;

I.z/ D �1C z

�

1
Z

0

r

u

1� u

du

ezu � 1; z � 0;

which is equation (1.26) in �eorem 1.3. We will solve the last equation for b

iteratively, before that, let us study the asymptotic behavior of I.z/ as z ! 0 and

z ! C1.
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Proposition 2.1. �e function I.z/ is analytic in the strip

� D ¹z 2 C W � � < Im z < �º

with

I.z/ D �z
4

C z2

32
CO.z3/; z ! 0; (2.4)

and as z ! C1,

I.z/ D �1C �.3=2/

2
p
� z1=2

C 3�.5=2/

8
p
� z3=2

CO.z�5=2/: (2.5)

Proof. Analyticity of I.z/ in � follows immediately from the analyticity of z
ez�1

in �, hence we are left with the two asymptotic expansions. When z ! 0, we use

the asymptotic formula,

1

ez � 1
D 1

z
� 1

2
C z

12
CO.z2/; z ! 0

combined with the integrals,

1
Z

0

du
p

u.1 � u/
D �;

1
Z

0

r

u

1 � u du D �

2
;

1
Z

0

u

r

u

1� u
du D 3�

8

to obtain

I.z/ D �1C z

�

1
Z

0

r

u

1� u

�

1

zu
� 1

2
C zu

12
CO.z2u2/

�

du

D �z
4

C z2

32
CO.z3/;

which is (2.4). When z ! C1, we use the asymptotic formula,

r

u

1 � u D u1=2 C u3=2

2
CO.u5=2/; u ! 0;

and the integrals,

1
Z

0

u1=2

eu � 1 du D
p
�

2
�

�

3

2

�

;

1
Z

0

u3=2

eu � 1 du D 3
p
�

4
�

�

5

2

�

;

which gives (2.5).
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Let us now return to equation (1.26). Since ˛ > 1, we have that � < 1 and we

will in fact assume from now on, that � is separated from 1, so that

0 � � � 1 � " < 1;

where " > 0 is �xed throughout the remainder of this paper. To solve (1.26) for b,

use iterations

bj D 4

1 � � C 2�

.1 � �/t I.2bj �1t /; j � 1 b0 D 4

1� �
: (2.6)

Consider the mapping

b
f7! 4

1 � � C 2�

.1 � �/t I.2bt/

which satis�es
df

db
D 4�

.1� �/
I 0.2bt/:

From (2.5), after di�erentiation, we obtain the estimate,
ˇ

ˇ

ˇ

ˇ

df

db

ˇ

ˇ

ˇ

ˇ

� C�

1C t3=2
; t > 0; b > 1;

whereC > 0 is a constant independent of � and t , i.e. the mapping f is contracting

for small � in a neighborhood of the point b0, and hencef has a �xed point bwhich

can be obtained as a limit of the iterations

bj D f .bj �1/; j � 1:

In addition, we obtain the estimate of the di�erence jbj � bj as

jbj � bj � yC
�

�

1C t3=2

�j C1

; yC > 0: (2.7)

Back to (2.6), we have in the �rst iteration

b1 D 4

1� �
C 2�

.1 � �/t I
�

8t

1� �

�

and in the second,

b2 D 4

1� �
C 2�

.1 � �/t I .2tb1/

D 4

1� �
C 2�

.1 � �/t I
�

8t

1� �
C 4t�

.1 � �/t I
�

8t

1� �

��

:

(2.8)

Combining now (2.8) with (2.7) we obtain
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Proposition 2.2. As N ! 1, the right endpoint b of the equilibrium measure

has the asymptotic behavior,

b D 4

1 � � C 2�

.1� �/t I
�

8t

1 � � C 4�

1� �
I

�

8t

1 � �

��

CO

��

�

1C t3=2

�3�

;

(2.9)

which is uniform with respect to the parameters 0 � � � 1 � " < 1 and t � 0.

At this point we would like to collect some facts on the density .x/; x 2 Œ0; b�
of the equilibrium measure as introduced in (2.1).

2.2. Evaluation of the density of the equilibrium measure. We use [17]

and [27], more precisely the identities

 .x/ D 1

2�

r

b � x
x

q.x/; x 2 Œ0; b�

with (compare (1.29))

q.z/ D 1

2�i

I

�

r

w

w � b
V 0.w/

w � z dw;

where � is a counter-clockwise oriented contour containing Œ0; b� [ ¹zº in its in-

terior such that V.z/ is analytic in the interior of �. Replacing V 0.w/ by

V 0.z/ D 1 � �k.tz/; k.z/ D cosh z

sinh z
� 1

z

we obtain after applying residue theorem

q.z/ D 1C �s.z; t /; s.z; t / D � 1

2�i

I

�

r

w

w � b
k.tw/

w � z dw: (2.10)

�e properties of the function s.z; t / will be important for us. �ey are described

as follows:

Proposition 2.3. �e function s.z; t / is real analytic on the set Œ0; b� � R. As

t ! 0,

s.z; t / D � t
3

�

z C b

2

�

C t3

45

�

z3 C b

2
z2 C 3b2

8
z C 5b3

16

�

CO.t5/; (2.11)

and as t ! 1,

s.z; t / D �1CO.t�1=2/;
@s.z; t /

@z
D O.t�1=2/; (2.12)

uniformly in z 2 Œ0; b�.
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Proof. �e integrand in (2.10) is analytic with respect to .z; t / 2 Œ0; b��R, hence

s.z; t / is analytic as well and s.z; t / is real-valued since the contour � can be

deformed to the interval Œ0; b� covered twice. Let us now derive the asymptotic

formulae for s.z; t /. When t ! 0, use

k.z/ D z

3
� z3

45
CO.z5/; z ! 0

and obtain, as t ! 0,

s.z; t / D � 1

2�i

I

�

r

w

w � b
tw

3

dw

w � z

C 1

2�i

I

�

r

w

w � b
.tw/3

45

dw

w � z CO.t5/;

hence equation (2.11) follows from residue theorem, noticing that

r

w

w � b
1

w � z
D 1C 1

w

�

z C b

2

�

C 1

w2

�

z2 C b

2
z C 3b2

8

�

C 1

w3

�

z3 C b

2
z2 C 3b2

8
z C 5b3

16

�

CO.w�4/; jwj ! 1:

For the expansions (2.12), we rewrite s.z; t / as

s.z; t / D � 1

2�i

I

�

r

w

w � b

�

1� 1

tw
C 2

e2tw � 1

�

dw

w � z

D �1� 1

2�i

I

�

r

w

w � b
2

e2tw � 1
dw

w � z ;
(2.13)

where the last equality follows once more from residue theorem. After the change

of variables u D 2tw,

s.z; t / D �1 � 1

2�i

I

2t�

r

u

u � 2tb
2

eu � 1
du

u � 2tz

and we now choose the contour 2t� to be a long “stadium”, so that it consists of

two parallel segments, ¹u D x˙ i; 0 � x � 2tbº and two semicircles of radius 1,

around the points u D 0 and u D 2tb. With this choice

ˇ

ˇ

ˇ

ˇ

r

u

u � 2tb
2

eu � 1
1

u � 2tz

ˇ

ˇ

ˇ

ˇ

� Cp
1C t

; u 2 2t�;
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and we obtain the �rst estimation in (2.12). For the second, we di�erentiate with

respect to z, i.e.

@s.z; t /

@z
D � 1

2�i

I

�

r

w

w � b
2

e2tw � 1
dw

.w � z/2 ;

and change again variables u D 2tw. Estimating the latter integral from above,

we obtain the remaining estimation in (2.12).

We can now combine (2.10) with Proposition 2.3 and deduce

sup
0�y�b

ˇ

ˇq.y/�1C�
ˇ

ˇ D O

�

�p
1C t

�

; sup
0�y�b

ˇ

ˇq0.y/
ˇ

ˇ D O

�

�p
1C t

�

; (2.14)

which is uniform with respect to the parameters 0 � � � 1� " < 1 and t � 0.

We are left with the computation of the Lagrange multiplier.

2.3. Evaluation of the Lagrange multiplier. We will compute the multiplier l

via (2.2),

l D 2g.b/ � V.b/;

in other words, we have to compute two quantities. For g.b/, use the formula

g.b/ D ln b �
1
Z

b

�

!.z/ � 1

z

�

dz (2.15)

which involves the resolvent !.z/ � g0.z/ and which can be derived immediately

from the expansion

g0.z/ D
b
Z

0

d�V .w/

z �w D 1

z
CO.z�2/; z ! 1:

As we have already seen,

!.z/ D 1

2�

r

z � b

z

b
Z

0

r

w

b �w
V 0.w/

z �w dw;

and the latter equality can be rewritten as (cf. [17])

!.z/ D V 0.z/

2
�
r

z � b
z

q.z/

2
; z 2 CnŒ0; b�:
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Back to (2.15), this implies

g.b/ D ln b � 1

2

1
Z

b

 

V 0.z/ �
r

z � b

z
q.z/ � 2

z

!

dz:

Deforming the contour of integration in (2.13) and evaluating the residue atw D z,

we have

s.z; t / D �1�
r

z

z � b
2

e2tz � 1 � 1

�

b
Z

0

r

w

b �w
2

e2tw � 1
dw

w � z

and with

V 0.z/ D 1� �
�

1 � 1

tz
C 2

e2tz � 1

�

therefore

g.b/ D ln b � 1

2

1
Z

b

�

1 � � C �

tz
� 2�

e2tz � 1

�
r

z � b
z

�

1� � �
r

z

z � b
2�

e2tz � 1

� �

�

Z b

0

r

w

b � w

2

e2tw � 1
dw

w � z

�

� 2

z

�

dz;

or after simpli�cations,

g.b/ D ln b � 1

2

1
Z

b

�

.1� �/
�

1 �
r

z � b
z

�

C �

tz
� 2

z

C
r

z � b

z

�

�

Z b

0

r

w

b �w
2

e2tw � 1
dw

w � z

�

dz:

(2.16)

At this point we use (1.26) and write

� �

z�

b
Z

0

r

w

b � w

2

e2tw � 1dw D 1

z

�

2 � b

2
.1 � �/ � �

t

�

;

hence (2.16) reads as

g.b/ D ln b C I1 C I2; (2.17)
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where

I1 D �1
2

1
Z

b

�

.1� �/

�

1�
r

z � b
z

�

C �

tz
� 2

z

C 1

z

r

z � b
z

�

2� b

2
.1� �/ � �

t

��

dz;

and

I2 D �

�

1
Z

b

r

z � b
z

1

z

�

b
Z

0

r

w

b �w
w dw

.e2tw � 1/.z � w/

�

dz:

�e term I1 is calculated explicitly,

I1 D 2.1� ln 2/ � b

4
.1� �/ � �

t
.1� ln 2/

D 2 � 2 ln 2� b

4
.1� �/ � 1

N
C ln 2

N
;

and in I2 we change the order of integration: Since

1
Z

b

r

z � b
z

dz

z.z �w/ D 2

w

�

1 �
r

b �w
w

arctan

r

w

b �w

�

; 0 < w < b;

we obtain

I2 D 2�

�

b
Z

0

�
r

w

b � w
� arctan

r

w

b �w

�

dw

e2tw � 1 D �

t
J.2bt/ (2.18)

with (compare (1.28))

J.z/ D z

�

1
Z

0

�
r

u

1 � u � arctan

r

u

1 � u

�

du

ezu � 1:

Some important properties of the function J.z/ are summarized below.

Proposition 2.4. �e function J.z/ is analytic in the horizontal strip�. As z ! 0,

J.z/ D 1 � ln 2 � z

8
C 7z2

384
CO.z3/; (2.19)

and as z ! C1,

J.z/ D �.5=2/

4
p
�z3=2

C 9�.7=2/

16
p
�z5=2

CO.z�7=2/: (2.20)
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Proof. Our reasoning is almost identical to the one given in the proof of Proposi-

tion 2.1, in particular analyticity follows from the analyticity of z
ez�1

in �. When

z ! 0, we use the integrals

1
Z

0

�
r

u

1 � u � arctan

r

u

1� u

�

du

u
D �.1� ln 2/;

1
Z

0

�
r

u

1 � u � arctan

r

u

1 � u

�

du D �

4
;

1
Z

0

�
r

u

1 � u � arctan

r

u

1� u

�

udu D 7�

32
;

and obtain

J.z/ D z

�

1
Z

0

�
r

u

1� u
� arctan

r

u

1 � u

��

1

zu
� 1

2
C zu

12
CO.z2u2/

�

du

D 1� ln 2� z

8
C 7z2

384
CO.z3/;

which is (2.19). When z ! C1, we use the expansion

r

u

1� u
� arctan

r

u

1� u D u3=2

3
C 3

10
u5=2 CO.u7=2/; u ! 0;

and the integrals,

1
Z

0

u3=2

eu � 1 du D 3
p
�

4
�

�

5

2

�

;

1
Z

0

u5=2

eu � 1 du D 15
p
�

8
�

�

7

2

�

;

which gives (2.20).

In the end we go back to (2.17) and summarize

g.b/ D ln b C 2.1� ln 2/ � b

4
.1� �/ � �

t
.1� ln 2/C �

t
J.2bt/;

which, combined with V.b/ D b � �
t

lnS.bt/, gives equation (1.27), i.e.

l D 4.1�ln 2/�b
2
.1��/�bC2 ln b�2�

t
.1�ln 2/C2�

t
J.2bt/C�

t
lnS.bt/: (2.21)

At this point we can begin the asymptotical analysis.
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3. Riemann–Hilbert approach

3.1. Riemann–Hilbert characterization for orthogonal polynomials. We will

solve the Fokas–Its–Kitaev [21] Riemann–Hilbert problem (RHP) for orthogonal

polynomials asymptotically: this problem requires the construction of a 2 � 2

piecewise analytic matrix-valued function Y.z/ D Y .n/.z/ such that

� Y .n/.z/ is analytic for z 2 CnŒ0;1/;

� if we orient the half ray Œ0;1/ from left to right, the limiting values of Y .n/.z/

from either side are related via the equation

Y
.n/
C .z/ D Y .n/

� .z/

 

1 wt .z/

0 1

!

; z 2 Œ0;1/I

� at the endpoint z D 0, Y.z/ remains bounded, i.e.

Y.z/ D O.1/; z ! 0; z 2 CnŒ0;1/I

� as z ! 1,

Y .n/.z/ D .I CO.z�1//zn�3 ; �3 D
 

1 0

0 �1

!

:

�e unique solution Y .n/.z/ to the latter problem equals

Y .n/.z/ D

0

B

B

@

pn;t .z/
1

2�i

Z 1

0

pn;t .s/.s/wt .s/
ds

s � z

n�1pn�1;t .z/
n�1

2�i

Z 1

0

pn�1;t .s/wt .s/
ds

s � z

1

C

C

A

where pn;t .z/ D zn C : : : is precisely the nth monic orthogonal polynomial subject

to the measure d�.s/ D wt .s/ds supported on the half-ray Œ0;1/. Moreover,

n D �2�i
hn;t

; hn;t D
1
Z

0

p2
n;t .s/d�.s/;

and in addition, Y .n/.z/z�n�3 has a full asymptotic expansion near in�nity:

Y .n/.z/z�n�3 D I C Y
.n/
1

z
CO.z�2/; z ! 1;

Y
.n/

k
D .Y

.n/

k
/ij :
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�is expansion connects to the normalizing constants via

hn;t D �2�i.Y .n/
1 /12: (3.1)

Since we want to compute the large N asymptotics of hN;t , we will need to solve

the latter RHP for Y.z/ D Y .N /.z/. Such an asymptotic solution can be derived

by applying the Deift-Zhou nonlinear steepest descent method [18] paired with

techniques which have been developed in [17, 27] and [8]. In short, we will ap-

proximate the solution Y.z/with the help of solutions of certain Riemann–Hilbert

model problems. �e necessary steps are worked out in the subsections below.

3.2. First transformation of the RHP - normalization. Recall (2.1) and intro-

duce

Y.z/ D exp
�Nl

2
�3

�

T .z/ exp
�

N
�

g.z/ � l

2

�

�3

�

; z 2 CnR: (3.2)

�e analytical properties of T .z/ are summarized in the following:

� T .z/ is analytic for z 2 CnŒ0;1/;

� from the jump properties of g.z/, compare (2.2), we get that

TC.z/ D T�.z/

 

e�N.gC�g�/ z

0 eN.gC�g�/

!

; z 2 Œ0; b� (3.3)

and

TC.z/ D T�.z/

 

1 zeN.gCCg��V �l/

0 1

!

; z 2 Œ0;1/nŒ0; b�I (3.4)

� as z ! 0 and z 2 CnŒ0;1/, the function T .z/ is bounded,

T .z/ D O.1/; z ! 0; z 2 CnŒ0;1/I

� at in�nity, the transformed function T .z/ is now normalized as

T .z/ D I CO.z�1/; z ! 1:

Consider the jumps (3.3) and (3.4): First, by the Euler Lagrange variational con-

dition (2.2),

gC.z/C g�.z/ � V.z/ � l < 0; z 2 Œ0;1/nŒ0; b�;
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hence for z 2 .b C �;1/; � > 0 �xed,
 

1 zeN.gCCg��V �l/

0 1

!

�! I; N ! 1;

where the stated convergence is exponentially fast. Secondly for Œ0; b�: Since

g�.z/ D V.z/ � gC.z/C l; z 2 Œ0; b� the function

G.z/ D gC.z/ � g�.z/ D 2gC.z/ � V.z/ � l

can be analytically continued in a (in general t -dependent) neighborhood of the

line segment Œ0; b� into the upper halfplane. Here we use in particular that V.z/ is

analytic in the strip �t . But since

G.z/ D 2�i

b
Z

z

 .w/dw; z 2 Œ0; b�

and therefore

d

dy
G.z C iy/

ˇ

ˇ

ˇ

yD0
D 2� .z/ > 0; z 2 .0; b/;

we see that the stated (local) continuation of G.z/ into the upper half-plane satis-

�es

ReG.z/ > 0 for Im z > 0: (3.5)

In the lower halfplane the argument is similar:

G.z/ D �2g�.z/C V.z/C l

admits analytical (in general into a t -dependent neighborhood) continuation into

the lower half-plane so that

Re G.z/ < 0 for Im z < 0: (3.6)

�e continuations motivate the use of the matrix factorization
 

e�N.gC.z/�g�.z// z

0 eN.gC.z/�g�.z//

!

D
 

1 0
1
z
eNG.z/ 1

! 

0 z

�1
z

0

! 

1 0
1
z
e�NG.z/ 1

!

D SL1
SPSL2

; z 2 .0; b/;

and thus the second transformation of the RHP.
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3.3. Second transformation of the RHP - opening of lenses. We let L˙ denote

the upper (lower) lens, shown in Figure 4.

0 b

LC

L�

C

�

Figure 4. �e second transformation – opening of lenses.

De�ne

S.z/ D

8

ˆ

<

ˆ

:

T .z/S�1
L2
; z 2 LC,

T .z/SL1
; z 2 L�,

T .z/; else,

(3.7)

so that S.z/ solves the following RHP.

� S.z/ is analytic for z 2 Cn.Œ0;1/[ �/, with � D C [ �.

� �e jumps, with orientation �xed as in Figure 4, are as follows:

SC.z/ D S�.z/

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

 

1 0

1
z
e�NG.z/ 1

!

; z 2 C,

 

0 z

�1
z

0

!

; z 2 .0; b/,

 

1 zeN.gCCg��V �l/

0 1

!

; z 2 Œ0;1/nŒ0; b�,

 

1 0

1
z
eNG.z/ 1

!

; z 2 �.

� For the behavior at the origin, we see from the behavior of T .z/ and (3.7),

that

S.z/ D O.1/; z ! 0; z 2 Cn.LC [ L
�/ (3.8)

and

S.z/ D O.z�1/; z ! 0; z 2 L
C [ L

�: (3.9)

� As z ! 1, we have S.z/ D I CO.z�1/.
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Recalling (3.5) and (3.6) as well as the behavior of the jump matrix on the in�nite

ray .b;1/ we expect (and justify rigorously below) that as N ! 1, S.z/ con-

verges to a solution of a RHP, in which the only jump is on the line segment .0; b/.

In more detail, this model RHP reads as follows.

3.4. �e model RHP. Find a piecewise analytic 2 � 2 matrix valued function

M.z/ such that

� M.z/ is analytic for z 2 CnŒ0; b�;
� along .0; b/, we have the boundary relation

MC.z/ D M�.z/

 

0 z

�1
z

0

!

; z 2 .0; b/I

� the function M.z/ is square integrable on Œ0; b�;

� as z ! 1, the function is normalized as

M.z/ D I CO.z�1/

We compute a solution to this problem by introducing

N.z/ D M.z/D.z/�3 ; z 2 CnŒ0; b�

where the scalar Szegö function D.z/ satis�es

DC.z/D�.z/ D z; z 2 Œ0; b�: (3.10)

Such a function indeed exists, namely

D.z/ D exp

"

p

z.z � b/

2�i

b
Z

0

lnw
p

w.w � b/C

dw

w � z

#

D
r

bz

2

�

z � b

2
C
p

z.z � b/
��1=2

where we choose principal branches for all fractional power functions. �e latter

choice of D.z/ transforms the original model problem to a RHP for N.z/ with

jump

NC.z/ D N�.z/

 

0 1

�1 0

!

; z 2 Œ0; b�
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which is solved via diagonalization. Noticing further that

D.z/ D
p
b

2

�

1C b

4z
C b2

8z2
CO.z�3/

�

; z ! 1

we obtain

M.z/ D
�

p
b

2

��3 1

2

 

ı C ı�1 i.ı � ı�1/

�i.ı � ı�1/ ı C ı�1

!

D
��3.z/ (3.11)

with

ı.z/ D
�

z

z � b

�1=4

de�ned onCnŒ0; b�with its branch such that . z
z�b

/1=4 ! 1 as z ! C1; arg z D 0.

Before moving on, we note for future purposes that

M.z/ D I C b

4z

 

�1 ib
4

4
ib

1

!

CO.z�2/; z ! 1: (3.12)

3.5. Construction of a parametrix at z D b. For a small neighborhood U of

the point b, observe that

G.z/ D 2g.z/ � V.z/ � l

D
b
Z

z

r

w � b

w
q.w/dw

D �2
3
h1.z/.z � b/3=2; z 2 U \ C;

(3.13)

where h1.z/ is an analytic function in U such that

h1.z/ D q.b/p
b

�

1C 3

5

�

q0.b/

q.b/
� 1

2b

�

.z � b/CO..z � b//2
�

; z ! b;

and the function .z � b/3=2 is de�ned for z 2 Cn.�1; b� with

.z � b/3=2 > 0; if z > b:
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Similarly, with the same choice of branches,

G.z/ D �2g.z/C V.z/C l

D 2

3
a.z/.z � b/3=2; z 2 U \ �;

and

gC.z/C g�.z/ � V.z/ � l D �
z
Z

b

r

w � b
w

q.w/dw

D �2
3
a.z/.z � b/3=2; z 2 U \ .b;1/:

�e expansions motivate the construction of the parametrix in terms of the Airy

function Ai.�/. �is construction has appeared frequently in the nonlinear-steepest

descent literature and we will follow here the notation of [5]: de�ne, for � 2 C,

A0.�/ D

0

B

@

d

d�
Ai.�/ ei �

3
d

d�
Ai.e�i 2�

3 �/

Ai.�/ ei �
3 Ai.e�i 2�

3 �/

1

C

A
: (3.14)

With this, introduce the “bare parametrix”

ARH .�/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

A0.�/; arg � 2 .0; 2�
3
/,

A0.�/

 

1 0

�1 1

!

; arg � 2 .2�
3
; �/,

A0.�/

 

1 �1
0 1

!

; arg � 2 .�2�
3
; 0/,

A0.�/

 

0 �1
1 1

!

; arg � 2 .��;�2�
3
/.

(3.15)

which solves the RHP depicted in Figure 5.
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1 1

0 1

!

 

1 0

�1 1

!

 

1 0

�1 1

!

 

0 �1

1 0

!

Figure 5. �e model RHP near z D b which can be solved explicitly using Airy functions.

� ARH .�/ is analytic for � 2 Cn¹arg � D �2�
3
; 0; 2�

3
; �º

� We have jumps as sketched in Figure 5:

ARH
C .�/ D ARH

� .�/

 

1 0

�1 1

!

; arg � D �2�

3

ARH
C .�/ D ARH

� .�/

 

1 1

0 1

!

; arg � D 0

ARH
C .�/ D ARH

� .�/

 

0 �1
1 0

!

; arg � D �:

� From the asymptotics of the Airy function (cf. [4]),

ARH .�/ D ��3=4

2
p
�

 

�1 i

1 i

!

�

I C 1

48�3=2

 

1 6i

6i �1

!

C 35

4608�6=2

 

�1 12i

�12i �1

!

CO.��9=2/

�

e� 2
3

�3=2�3 :

(3.16)

In order to construct the local parametrix to the solution of the S -RHP near z D b,

we �rst de�ne

�.z/ D
�

3N

4

�2=3

.�2g.z/C V.z/C l/2=3; jz � bj < r: (3.17)

�is change of variables is locally conformal, since

�.z/ D
�

Nq.b/

2
p
b

�2=3

.z � b/
�

1C 2

5

�

q0.b/

q.b/
� 1

2b

�

.z � b/CO..z � b/2/
�

;

jz � bj < r:
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Secondly, it allows us to de�ne the right parametrix U.z/ near z D b by

U.z/ D Br.z/.�i
p
�/ARH .�.z//e

2
3

�3=2.z/�3z��3=2; jz � bj < r (3.18)

which involves the multiplier

Br.z/ D M.z/z�3=2

 

�i i

1 1

!

���3=4.z/

D
�

p
b

2

��3

 

�i i

1 1

!

�

�.z/
z

z � b

���3=4

� ��3=4.z/
i

2

 

1 �i
�1 �i

!

D
��3.z/z�3=2

 

�i i

1 1

!

���3=4.z/:

(3.19)

Note that Br.z/ is analytic in a neighborhood of z D b, since for z 2 .b � r; b/,

.Br.z//C D MC.z/z
�3=2

 

�i i

1 1

!

�
��3=4
C .z/

D M�.z/

 

0 z

�1
z

0

!

z�3=2

 

�i i

1 1

!

���3=4
� .z/e�i �

2
�3

D .Br.z//�;

and by a direct computation

Br .b/ D
�

p
b

2

��3

 

�i i

1 1

!

�

Nq.b/

2
b

���3=6

:

�us, after employing a local contour deformation, we derive that the parametrix

U.z/ has jumps along the curves depicted in Figure 6. Moreover, these jumps are

described by the same matrices as in the S -RHP, indeed with orientation as in

Figure 6.
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1 0

� 1
z

e�NG.z/ 1

!

 

1 0

� 1
z

eNG.z/ 1

!

 

1 zeN.gCCg��V �l/

0 1

!

 

0 �z
1
z

0

!

Figure 6. Transformation of parametrix jumps to original jumps.

z�3=2e� 2
3 �3=2.z/�3

 

1 0

�1 1

!

e
2
3 �3=2.z/�3z��3=2

D
 

1 0

�1
z
e�NG.z/ 1

!

; z 2 U \ C

z�3=2e� 2
3

�3=2.z/�3

 

0 �1
1 0

!

e
2
3

�3=2.z/�3z��3=2

D
 

0 �z
1
z

0

!

; z 2 U \ .0; b/

z�3=2e� 2
3

�3=2.z/�3

 

1 1

0 1

!

e
2
3

�3=2.z/�3z��3=2

D
 

1 zeN.gCCg��V �l/

0 1

!

; z 2 U \ .b;1/

z�3=2e� 2
3

�3=2.z/�3

 

1 0

�1 1

!

e
2
3

�3=2.z/�3z��3=2

D
 

1 0

�1
z
eNG.z/ 1

!

; z 2 U \ �:



394 P. Bleher and �. Bothner

But this means that the ratio of S.z/ with U.z/ is locally analytic (here we use the

boundedness of the Airy function at the origin), i.e.

S.z/ D Nr .z/U.z/; jz � bj < r < b

2
: (3.20)

�e use of the multiplier Br .z/ in the de�nition (3.18) follows from the need of a

“matching” between the local model functions U.z/ and M.z/: observe that

Br .z/
�

� i

2

�

��3=4.z/

 

�1 i

1 i

!

D M.z/z�3=2;

so that with the asymptotics (3.16),

U.z/ D M.z/z�3=2

"

I C 1

48�3=2

 

1 6i

6i �1

!

C 35

4608�6=2

 

�1 12i

�12i �1

!

CO.��9=2/

#

z��3=2

D
"

I C U1.z/

96�3=2
C 35U2.z/

4608�6=2
CO.��9=2/

#

M.z/

(3.21)

as N ! 1 for any ˛ > 1 and 0 < r1 � jz � bj � r2 <
b
2

(so j�j ! 1). Here

Uk D .U
ij

k
/ are given by

U 11
1 .z/ D ı2.z/

�

1 � 3

z
D

2.z/ � 3zD�2.z/

�

C ı�2.z/

�

1C 3

z
D

2.z/C 3zD�2.z/

�

D �U 22
1 ;

U 12
1 .z/ D � ib

4

�

ı2.z/ � ı�2.z/ � 3

z
D

2.z/
�

ı.z/ � ı�1.z/
�2

� 3zD�2.z/.ı.z/C ı�1.z//2
�

;

U 21
1 .z/ D �4i

b

�

ı2.z/ � ı�2.z/ � 3

z
D

2.z/.ı.z/C ı�1.z//2

� 3zD�2.z/.ı.z/� ı�1.z//2
�

;
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and

U 11
2 .z/ D �1C ı2.z/

�

3

z
D

2.z/ � 3zD�2.z/

�

� ı�2.z/

�

3

z
D

2.z/ � 3zD�2.z/

�

;

U 22
2 .z/ D �1� ı2.z/

�

3

z
D

2.z/ � 3zD�2.z/

�

C ı�2.z/

�

3

z
D

2.z/ � 3zD�2.z/

�

;

U 12
2 .z/ D � ib

4

�

3

z
D

2.z/
�

ı.z/ � ı�1.z/
�2 � 3zD�2.z/

�

ı.z/C ı�1.z/
�2
�

;

U 21
2 .z/ D �4i

b

�

3

z
D

2.z/
�

ı.z/C ı�1.z/
�2 � 3zD�2.z/

�

ı.z/ � ı�1.z/
�2
�

:

But as the function �.z/ is of order N 2=3 on the latter annulus and ı.z/;D.z/ are

bounded, we obtain an asymptotical matching between the model functions from

equation (3.20),

U.z/ D .I C o.1//M.z/; N ! 1; 0 � � � 1 � " < 1;

0 < r1 � jz � bj � r2 <
b

2
;

�e latter relation will be important later on and we also emphasize that the last

estimation is uniform with respect to the parameter 0 � � � 1 � " < 1.

3.6. Construction of a parametrix at z D 0. Fix a small neighborhood V of

the origin and observe that

G.z/ D 2g.z/ � V.z/ � l D
b
Z

z

r

w � b

w
q.w/dw

D 2�i �
z
Z

0

r

w � b
w

q.w/dw

D 2�i � 2h2.z/
p
z; z 2 V \ C; 0 < arg z � 2�;

where h2.z/ is analytic in V such that

h2.z/ D ei �
2 q.0/

p
b

�

1C 1

3

�

q0.0/

q.0/
� 1

2b

�

z CO.z2/

�

; z ! 0:
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Similarly

G.z/ D �2g.z/C V.z/C l

D 2�i C 2h2.z/
p
z; z 2 V \ �; 0 < arg z � 2�;

and both stated local behaviors suggest to use the Bessel functions I1.�/ andK1.�/

in the construction of an edge point parametrix. Again, we proceed in several

steps. First we recall (cf. [4]) that the modi�ed Bessel functions are unique inde-

pendent solutions to Bessel’s equation

z2w00 C zw0 � .z2 C 1/w D 0

satisfying the following asymptotic conditions as � ! 1 and ��
2
< arg � < 3�

2
:

I1.�/ � e�

p

2��

�

1 � 3

8�
� 15

64�2
CO.��3/

�

C e��ei 3�
2

p

2��

�

1C 3

8�
� 15

64�2
CO.��3/

�

as well as, for �3�
2
< arg � < �

2
,

I1.�/ � e�

p

2��

�

1� 3

8�
� 15

64�2
CO.��3/

�

C e��e�i 3�
2

p

2��

�

1C 3

8�
� 15

64�2
CO.��3/

�

:

On the other hand

K1.�/ D
r

�

2�
e��

�

1C 3

8�
� 15

64�2
CO.��3/

�

; � ! 1

which holds in a full neighborhood of in�nity. Secondly I1.�/; K1.�/ satisfy mon-

odromy relations, valid on the entire universal covering of the punctured plane

I1

�

e�i��
�

D e�i�I1.�/; K1.e
�i��/ D ei�K1.�/C i�I1.�/; (3.22)

and �nally the following expansions at the origin are valid

I1.�/ D �

2

�

1C �2

8
CO.�4/

�

; K1.�/ D 1

�
.1CO.�2 ln �//; � ! 0:
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Remembering the latter properties we introduce on the punctured plane � 2 Cn¹0º,

PBE.�/

D e�i �
4

 

I1.2e
�i �

2

p

�/ � i
�
K1.2e

�i �
2

p

�/

�2�i
p

�
�

I1

�0
.2e�i �

2

p

�/ �2
p

�
�

K1

�0
.2e�i �

2

p

�/

!

;

0 < arg � � 2�:

(3.23)

From the behavior of I1.�/ and K1.�/ at in�nity, we deduce

PBE .�/ D ���3=4.2�/��3=2 1p
2

 

1 �i
�i 1

!"

I C 1

16
p

�

 

�5i �2
�2 5i

!

C 3

64�

 

�1 �6i
6i �1

!

CO.��3=2/

#

e�2i
p

��3

 

1 0

1 1

!

;

� ! 1;
�

3
< arg � <

7�

3
;

(3.24)

and

PBE.�/ D ���3=4.2�/��3=2 1p
2

 

1 �i
�i 1

!"

I C 1

16
p

�

 

�5i �2
�2 5i

!

C 3

64�

 

�1 �6i
6i �1

!

CO.��3=2/

#

e�2i
p

��3

 

1 0

�1 1

!

;

� ! 1; ��
3
< arg � <

5�

3
:

(3.25)

�e “bare parametrix” is given by

PRH
BE .�/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

PBE .�/

 

1 0

1 1

!

; arg � 2 .0; �
3
/,

PBE .�/; arg � 2 .�
3
; 5�

3
/,

PBE .�/

 

1 0

�1 1

!

; arg � 2 .5�
3
; 2�/.

(3.26)

and its analytical properties summarized below.
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� PRH
BE .�/ is analytic for � 2 Cn

®

arg � D 0; �
3
; 5�

3

¯

.

 

0 1

�1 0

!

 

1 0

�1 1

!

 

1 0

�1 1

!

Figure 7. �e model RHP near z D 0which can be solved explicitly using Bessel functions.

� �e following jumps hold, see Figure 7,

.PRH
BE .�//C D .PRH

BE .�//�

 

1 0

�1 1

!

; arg � D �

3
;

.PRH
BE .�//C D .PRH

BE .�//�

 

1 0

�1 1

!

; arg � D 5�

3
:

For the jump on the line arg � D 0 we notice that the monodromy relations

imply

I1.2e
�i �

2

p

�C/ D I1.2e
�i �

2 e�i�
p

��/

D e�i�I1.2e
�i �

2

p

��/;

.I1/
0.2e�i �

2

p

�C/ D .I1/
0.2e�i �

2

p

��/

and

K1.2e
�i �

2

p

�C/ D K1.2e
�i �

2 e�i�
p

��/

D ei�K1.2e
�i �

2

p

��/C i�I1.2e
�i �

2

p

��/;

�

K1

�0
.2e�i �

2

p

�C/ D .K1/
0.2e�i �

2

p

��/ � i�.I1/
0.2e�i �

2

p

��/:
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�erefore

.PBE .�//C D .PBE.�//�

 

�1 1

0 �1

!

;

and hence

.PRH
BE .�//C D

�

PRH
BE .�/

�

�

 

0 1

�1 0

!

; arg � D 0:

� At the origin

PRH
BE .�/ D e�i �

4

2
p

�

" 

0 1
�

0 1

!

CO.� ln �/

#

; � ! 0;
�

3
< arg � <

5�

3

(3.27)

and for the other sector we have to multiply the latter expansion with the

correct multipliers from (3.26)

� In order to determine the behavior of PRH
BE .�/ at in�nity, we recall equations

(3.24) and (3.25) as well as

e�2i
p

��3

 

1 0

˙1 1

!

e2i
p

��3 D
 

1 0

˙e4i
p

� 1

!

;
�

3
< arg � <

5�

3
:

However for those �, we have Re
�

4i
p

�
�

< 0, hence the given product ap-

proaches the identity exponentially fast as � ! 1. Together we have

PRH
BE .�/ D ���3=4.2�/��3=2 1p

2

 

1 �i
�i 1

!"

I C 1

16
p

�

 

�5i �2
�2 5i

!

C 3

64�

 

�1 �6i
6i �1

!

CO.��3=2/

#

e�2i
p

��3 ; � ! 1;

(3.28)

valid in a whole neighborhood of in�nity.

With the help of the model function PRH
BE .�/, the local parametrix near z D 0 is

now de�ned as follows: �rst de�ne

�.z/ D e�i�

�

N

4

�2

.�2g.z/C V.z/C l � 2�i/2; jzj < r; 0 < arg � � 2�:

(3.29)

which is also a locally conformal change of variables, as

�.z/ D
�

Nq.0/
p
b

2

�2

z

�

1C 2

3

�

q0.0/

q.0/
� 1

2b

�

z CO.z2/

�

; jzj < r:
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Using the change � D �.z/, the left parametrix V.z/ near z D 0 is given by the

formula

W.z/ D Bl .z/P
RH
BE

�

�.z/
�

e2i�1=2.z/�3.�z/��3=2; jzj < r; (3.30)

with the matrix multiplier

Bl .z/ D M.z/.�z/�3=2 1p
2

 

1 i

i 1

!

��3=4.z/.2�/�3=2:

Again Bl .z/ is analytic in a neighborhood of z D 0, for z 2 .0; r/

.Bl .z//C

D MC.z/.�z/�3=2
C

1p
2

 

1 i

i 1

!

�
�3=4
C .z/.2�/�3=2

D M�.z/

 

0 z

�1
z

0

!

.�z/�3=2
� ei��3

1p
2

 

1 i

i 1

!

��3=4
� .z/e�i �

2
�3.2�/�3=2

D .Bl .z//�;

and with

ı.z/.�.z//�1=4 D
�

z

�.z/.z � b/

�1=4

D
�

4ei�

N 2b2q.0/

�1=4

.1CO.z//; z ! 0;

we obtain from a direct computation

Bl .0/ D 1p
2

�

p
b

2

��3

 

1 i

i 1

!

�

N 2b2q.0/

4
e�i�

��3=4

:

Moreover the latter identity combined with (3.27), allows us to show that

W.z/ D O.1/; z ! 0;
�

3
< arg z <

5�

3
;

as well as

W.z/ D O.z�1/; z ! 0; 0 < arg z <
�

3
;
5�

3
< arg z < 2�;

which precisely matches the endpoint behavior of S.z/ in (3.8) and (3.9). On the

other hand, the parametrixW.z/ has jumps along the curves depicted in Figure 8,

and we can locally match the latter curves with the jump contour in the S-RHP.
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0 z

� 1
z

1

!

 

1 0
1
z

e�NG.z/ 1

!

 

1 0
1
z

eNG.z/ 1

!

Figure 8. Transformation of parametrix jumps to original jumps.

Moreover, the jumps are identical to the ones in the S -RHP since

.�z/�3=2e�2i�1=2.z/�3

 

1 0

�1 1

!

e2i�1=2.z/�3.�z/��3=2

D
 

1 0
1
z
e�NG.z/ 1

!

; z 2 V \ C;

.�z/�3=2e�2i�1=2.z/�3

 

0 1

�1 0

!

e2i�1=2.z/�3.�z/��3=2

D
 

0 z

�1
z

0

!

; z 2 V \ .0; b/;

.�z/�3=2e�2i�1=2.z/�3

 

1 0

�1 1

!

e2i�1=2.z/�3.�z/��3=2

D
 

1 0
1
z
eNG.z/ 1

!

; z 2 V \ �:

Hence the ratio of S.z/ with W.z/ is locally analytic, i.e.

S.z/ D Nl .z/W.z/; 0 < jzj < r < b

2
: (3.31)
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�e role of the left multiplier Bl .z/ in (3.30) is the same as in the construction of

the parametrix U.z/, it provides us with an asymptotic matching relation between

the model functions: with

Bl.z/�
��3=4.z/.2�/��3=2 1p

2

 

1 �i
�i 1

!

D M.z/.�z/�3=2

we deduce from (3.28)

W.z/ D M.z/.�z/�3=2

"

I C 1

16
p

�

 

�5i �2
�2 5i

!

C 3

64�

 

�1 �6i
6i �1

!

CO.��3=2/

#

.�z/��3=2

D
"

I C W1.z/

32
p

�
C 3W2.z/

64�
CO.��3=2/

#

M.z/;

(3.32)

as N ! 1 (hence j�j ! 1), for any ˛ > 1 and 0 < r1 � jzj � r2 <
b
2
. �e

coe�cients Wk D .W
ij

k
/ are given by

W 11
1 .z/ D �iı2.z/

�

5 � 1

z
D

2.z/ � zD�2.z/

�

� iı�2.z/

�

5C 1

z
D

2.z/C zD�2.z/

�

D �W 22
1 .z/;

W 12
1 .z/ D b

4

�

� 5
�

ı2.z/ � ı�2.z/
�

C 1

z
D

2.z/.ı.z/� ı�1.z//2

C zD�2.z/
�

ı.z/C ı�1.z/
�2
�

;

W 21
1 .z/ D 4

b

�

� 5
�

ı2.z/ � ı�2.z/
�

C 1

z
D

2.z/.ı.z/C ı�1.z//2

C zD�2.z/
�

ı.z/ � ı�1.z/
�2
�

;
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and

W 11
2 .z/ D �1C 3

2
ı2.z/

�

1

z
D

2.z/ � zD�2.z/

�

� 3

2
ı�2.z/

�

1

z
D

2.z/ � zD�2.z/

�

;

W 22
2 .z/ D �1� 3

2
ı2.z/

�

1

z
D

2.z/ � zD�2.z/

�

C 3

2
ı�2.z/

�

1

z
D

2.z/ � zD�2.z/

�

;

W 12
2 .z/ D � ib

4

�

3

2z
D

2.z/
�

ı.z/ � ı�1.z/
�2 � 3

2
zD�2.z/.ı.z/C ı�1.z//2

�

;

W 21
2 .z/ D �4i

b

�

3

2z
D

2.z/
�

ı.z/C ı�1.z/
�2 � 3

2
zD�2.z/.ı.z/ � ı�1.z//2

�

:

Since �.z/ is of order N 2 on the latter annulus and ı.z/;D.z/ are bounded, equa-

tion (3.31) implies the following matching relation between W.z/ and M.z/,

W.z/ D .I Co.1//M.z/; N ! 1; 0 � � � 1�" < 1; 0 < r1 � jzj � r2 <
b

2
:

(3.33)

We now use the model functionsM.z/; U.z/ andW.z/ and employ another trans-

formation.

3.7. �ird transformation of the RHP - ratio problem. In this step we put

R.z/ D S.z/

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

�

W.z/
��1

; jzj < r1,
�

U.z/
��1

; jz � bj < r2,
�

M.z/
��1

; jzj > r1; jz � bj > r2,

(3.34)

with 0 < r2 <
b
2

and 0 � r1 < min
®

�
2t
; b

2

¯

. �e reason for choosing the latter

radius in this explicit t -dependent form arises from the analyticity of the potential

V.z/, which is holomorphic in the strip �t . Moreover the set of its branch points

�t is given by

�t D
°

i
n�

t
W n 2 Zn¹0º

±

:

Hence we need to choose a neighborhood of the origin in (3.34) which does not

include any of the branch points. WithCt;b denoting the clockwise oriented circles

shown in Figure 9, the ratio-function R.z/ solves the following RHP.
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Ct

Cb

OC

O�

Figure 9. �e jump graph for the ratio function R.z/.

� R.z/ is analytic for z 2 Cn
®

Ct;b [ y� [ .b C r2;1/
¯

with y� D OC [ O�.

� �e jumps are as follows: on the in�nite branch .b C r2;1/,

RC.z/ D R�.z/M.z/

 

1 zeN.gCCg��V �l/

0 1

!

�

M.z/
��1

;

on the upper lens boundary OC, resp. lower lens boundary O�,

RC.z/ D R�.z/M.z/

 

1 0
1
z
e�NG.z/ 1

!

.M.z//�1; z 2 OC;

RC.z/ D R�.z/M.z/

 

1 0
1
z
eNG.z/ 1

!

.M.z//�1; z 2 O�;

and on the clockwise oriented circles Ct;b ,

RC.z/ D R�.z/

8

<

:

W.z/
�

M.z/
��1

; jzj D r1,

U.z/
�

M.z/
��1

; jz � bj D r2.

� As z ! 1, the function is normalized as R.z/ ! I .

We note that R.z/ has no jumps inside of Ct and Cb and across the line segment

in between. Also, R.z/ is bounded at z D 0 and z D b, which follows from (3.20)

and (3.31). To move ahead, we recall the previously stated behavior of the jump

matrices as N ! 1 and note that these estimations are valid for any ˛ > 1 such

that 0 � � � 1 � " < 1. In fact, on the half ray .b C r2;1/, the jumps approach

the identity matrix. �rough (3.21), the same is also true on the circle Cb , more

precisely with GR denoting the jump matrix in the latter ratio-RHP

kGR � IkL2\L1.Cb/ � Oc
N
; N ! 1; 0 � � � 1 � " < 1 (3.35)
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with a constant Oc > 0 whose value is not important. For the lens boundaries we

use the local identities

G.z/ D 2�i � 2h2.z/
p
z; z 2 V \ ˙:

�ey imply

sup
z2 OC[ O�

jGR.z/ � I j D sup
z2. OC[ O�/\Ct

jGR.z/ � I j

D O.te�cNt�1=2

/; N ! 1; 0 � � � 1� " < 1;
(3.36)

and since

Np
t

D
p
N˛ ! 1; as N ! 1; for any ˛ > 1 W 0 � � � 1� " < 1;

we see that the contributions arising from the lenses decay exponentially fast. In

order to estimate GR on the circle Ct , we use (3.32)

sup
z2Ct

ˇ

ˇ

ˇ

ˇ

GR.z/ � I � W1.z/

32
p

�.z/

ˇ

ˇ

ˇ

ˇ

D O

�

t

N 2

�

D O.�N�1/; N ! 1; 0 � � � 1� " < 1:
(3.37)

�is estimation holds since (3.32) extends to a full asymptotic series of the form

GR.z/ � I D
1
X

kD1

zWk.z/N
�k ; (3.38)

valid as long as N 2jzj ! 1. However for z 2 Ct

1

N 2jzj D O.�N�1/; as N ! 1; for any ˛ > 1 W 0 � � � 1� " < 1;

so (3.38) holds in particular for z 2 Ct and since zWk.z/ has a pole of order at most
j

kC1
2

k

at the origin, we obtain (3.37). From the local expansions

D
2.z/ D �z.1CO.

p
z//; ı2.z/ D �i

p
b
p
z.1CO.z//; z ! 0; z 2 CnŒ0; b�;

we now evaluate the residue of zW1.z/ at the origin

B D reszD0
zW1.z/

D reszD0

�

NW1.z/

32
p

�.z/

�

D 3

16q.0/

�

b

4

��3=2
 

1 ei �
2

ei �
2 �1

!

�

b

4

���3=2

:
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Hence we can rewrite (3.37) as

sup
z2Ct

ˇ

ˇ

ˇ

ˇ

GR.z/ � I � B

Nz

ˇ

ˇ

ˇ

ˇ

D O.N�1/; N ! 1; 0 � � � 1� " < 1; (3.39)

however

sup
z2Ct

ˇ

ˇ

ˇ

ˇ

B

Nz

ˇ

ˇ

ˇ

ˇ

D O.�/; N ! 1; 0 � � � 1 � " < 1;

so GR.z/ � I is not uniformly close to zero on Ct as N ! 1 for all

0 � � � 1� " < 1:

To overcome this di�culty we employ our �nal transformation.

3.8. Fourth and �nal transformation of the RHP. Since detB D traceB D 0,

we see that the matrix function I C B
Nz

is unimodular for any z 2 Cn¹0º, in fact

�

I C B

Nz

��1

D I � B

Nz
; z 2 Cn¹0º:

We introduce

Q.z/ D

8

<

:

R.z/; jzj � r1,

R.z/
�

I C B

Nz

��1

; jzj > r1.
(3.40)

and are lead to the following RHP.

� Q.z/ is analytic for z 2 Cn¹Ct;b [ y� [ .b C r2;1/º

� With GQ denoting the jump matrix in the Q-RHP, we have

GQ.z/ D GR.z/

�

I C B

Nz

��1

; z 2 Ct ;

GQ.z/ D
�

I C B

Nz

�

GR.z/

�

I C B

Nz

��1

; z 2 Cb [ y� [ .b C r2;1/:

� As z ! 1, we have Q.z/ ! I .

In the stated problem all jump matrices approach the identity matrix as N ! 1
for any ˛ > 1 such that 0 � � � 1� " < 1. More precisely with †Q denoting the

underlying contour

kGQ � IkL2\L1.†Q/ � c

N
; N ! 1; 0 � � � 1� " < 1; (3.41)

with a constant c > 0 whose value is not important. �is estimation allows us to

solve the Q-RHP iteratively.
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3.9. Solution of the RHP for Q.z/ via iteration. �e �nal RHP for the function

Q.z/ reads as

� Q.z/ is analytic for z 2 Cn†Q,

� the boundary values on the contour shown in Figure 9 are related via the

identity

QC.z/ D Q�.z/GQ.z/; z 2 †Q;

� the normalization Q.z/ D I CO.z�1/ is valid as z ! 1,

and it is equivalent to the singular integral equation

Q�.z/ D I C 1

2�i

Z

†Q

Q�.w/.GQ.w/� I / dw

w � z�
: (3.42)

�rough (3.41), we obtain [18, 10] that equation (3.42) can be solved iteratively in

L2.†Q/ for su�ciently large N and ˛ > 1 W 0 � � � 1 � " < 1. Also, the unique

solution satis�es

kQ� � IkL2.†Q/ � c

N
; N ! 1; for any ˛ > 1 W 0 � � � 1 � " < 1: (3.43)

We are now ready to determine the large N asymptotics of the normalizing con-

stants hN;t . To this end notice that for z 2 Cn†Q

Q.z/ D I C i

2�z

Z

†Q

Q�.w/.GQ.w/ � I /dw CO.z�2/; z ! 1 (3.44)

and also as N ! 1 for any ˛ > 1 W 0 � � � 1� " < 1 (from (3.41) and (3.43) as

well as the previous discussion about exponentially small contributions)

Z

†Q

Q�.w/.GQ.w/� I /dw

D
Z

Ct

.GQ.w/ � I /dw C
Z

Cb

.GQ.w/� I /dw CO.N�2/:

(3.45)



408 P. Bleher and �. Bothner

4. Asymptotics of hN;t – proof of �eorem 1.3

We go back to (3.1)

hN;t D �2�i
�

Y
.N /
1

�

12

and recall that

Y
.N /
1 D lim

z!1
.z.Y .N /.z/z�N�3 � I //: (4.1)

Now recall the sequence of transformations

Y.z/ � Y .N /.z/ 7�! T .z/ 7�! S.z/ 7�! R.z/ 7�! Q.z/;

and combine it with the expansion

eN.g.z/� l
2

/�3z�N�3

D e� Nl
2

�3

�

I � N�3

z

b
Z

0

w .w/dw CO.z�2/

�

; z ! 1:

�is gives us for (4.1),

Y
.N /
1 D lim

z!1

�

z

�

e
Nl
2

�3Q.z/

�

I C B

Nz

�

M.z/eN.g.z/� l
2

/�3z�N�3 � I
��

;

and hence (compare (3.44))

e� Nl
2

�3Y
.N /
1 e

Nl
2

�3 D �N�3

b
Z

0

w .w/dw C b

4

 

�1 ib
4

4
ib

1

!

C B

N

C i

2�

Z

†Q

Q�.w/.GQ.w/ � I / dw:

In view of (3.45), we will now compute the contribution from the circle Cb. First

from (3.21) as N ! 1 for any ˛ > 1 W 0 � � � 1� " < 1,

Z

Cb

Q�.w/
�

GQ.w/� I
�

dw D 1

96

Z

Cb

 

U11.w/ U12.w/

U21.w/ U22.w/

!

dw

�3=2.w/
CO.N�2/:
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Now use the local expansions

U 11
1 .z/ D � 5

p
bp

z � b

�

1C 3

2b
.z � b/CO..z � b/2/

�

;

U 12
1 .z/ D 5ib

p
b

4
p
z � b

�

1C 91

10b
.z � b/CO..z � b/2/

�

;

U 21
1 .z/ D 20ip

b
p
z � b

�

1 � 1

2b
.z � b/CO..z � b/2/

�

;

valid as z ! b, and with (3.17) compute the relevant line integral via residue

theorem. We obtain, as N ! 1,

Z

Cb

Q�.w/
�

GQ.w/ � I
�

dw

D �2�i
96

b

Nq.b/

0

@

6.q0.b/
q.b/

� 3
b
/ ib

2

�

� 3q0.b/
q.b/

C 47
b

�

8i
b

�

� 3q0.b/
q.b/

� 1
b

�

�6.q0.b/
q.b/

� 3
b
/

1

ACO.N�2/;

which is uniform with respect to the parameter 0 � � � 1 � " < 1. For the

remaining line integral along the circle boundary Ct recall (3.32) and (3.39) and

deduce, as N ! 1,

Z

Ct

Q�.w/
�

GQ.w/ � I
�

dw

D
Z

Ct

�

GR.w/� I � B

Nw

��

I � B

Nw

�

dw CO.N�2/;

(4.2)

which is again uniform with respect to the parameter 0 � � � 1 � " < 1. Now

from (3.32), as z ! 0,

W 11
1 .z/ D 3

p
bp
z

�

1� 3z

2b
CO.z2/

�

;

W 12
1 .z/ D b

4

3i
p
bp
z

�

1C 35z

6b
CO.z2/

�

W 21
1 .z/ D 4

b

3i
p
bp
z

�

1C z

2b
CO.z2/

�

;
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hence

W1.z/

32
p

�.z/
� B

Nz
D � 1

3N

�

q0.0/

q.0/
� 1

2b

�

B

C 1

2Nb

3

16q.0/

�

b

4

��3=2
 

�3 35i
3

i 3

!

�

b

4

���3=2

CO.zN�1/; z ! 0:

Back to (4.2), as N ! 1 therefore
Z

Ct

Q�.w/
�

GQ.w/ � I
�

dw D O.N�2/;

which is uniform with respect to the parameter 0 � � � 1 � " < 1. At this point

we summarize our computations

e� Nl
2 �3Y

.N /
1 e

Nl
2 �3

D �N�3

b
Z

0

w .w/dw C b

4

 

�1 ib
4

4
ib

1

!

C B

N

C 1

96

b

Nq.b/

 

6.q0.b/
q.b/

� 3
b
/ ib

2

�

� 3q0.b/
q.b/

C 47
b

�

8i
b

�

� 3q0.b/
q.b/

� 1
b

�

�6.q0.b/
q.b/

� 3
b
/

!

CO.N�2/;

which implies, as N ! 1,

�

Y
.N /
1

�

12
D ieN l

�

b

4

�2
h

1C v

N
CO.N�2/

i

; 0 � � � 1 � " < 1;

with (compare (1.29))

v D 3

4bq.0/
� q0.b/

4q2.b/
C 47

12bq.b/
:

All we need to do now is recall (3.1), the connection formula hN D 2t2N C2hN;t

and combine it with Stirling’s approximation

NŠ D
�

N

e

�N p
2�N

�

1C 1

12N
CO.N�2/

�

; N ! 1:

�is gives, as N ! 1,

hN

.N Š/2
D N

8
�2N C2b2 exp

�

N.l C 2/C v

N
� 1

6N
C "N .�/

�

; (4.3)

which is uniform with respect to the parameter 0 � � � 1 � " < 1, thus proving

�eorem 1.3.
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Remark 2. At this point it is useful to compare the latter expansion to the estima-

tion (1.23) derived in [8]. We obtain from the connection ho
N D .˛ � 1/2N C1hN

and (4.3), that, as N ! 1,

ln

�

ho
N

.N Š/2

�

D .2N C 1/ ln.1� �/CN.l C 2/C ln

�

t

8

�

C 2 ln b C v

N
� 1

6N
C "N .�/;

(4.4)

uniformly with respect to 0 � � � 1 � " < 1. Also, as a consequence of the

Riemann–Hilbert analysis presented in the last subsections, the estimation

j"N j � c

.N C 1/2
; c > 0;

on the error term "N .�/, can in fact be extended to a full asymptotic series in

reciprocal integer powers ofN which is also uniform with respect to the parameter

0 � � � 1 � " < 1. Now choose ˛ from any compact subset of the set (1.16) and

let N ! 1, i.e. t ! 1. In this limit, Proposition 2.2 implies with (2.5),

b D 4

1 � �

 

1 � 1

2N
C �.3=2/

8
p

�.r � 1/N 3=2
CO.N�5=2/

!

;

N ! 1; r D ˛ C 1

˛ � 1 ;

which extends to a full asymptotic series in reciprocal half-integer powers of N ,

the error terms being uniform on any compact subset of the set (1.16). Also via

equations (2.21) and (2.20), as N ! 1,

l D 4.1� ln 2/ � 3b

2
.1� �/C 2 ln b

� 2

N
.1� ln 2/ � ln.2bN�/

N
CO.N�5=2/;

and which can also be extended to a full asymptotic series in reciprocal half-

integer powers of N . Combining the last two expansions,

l D �2 � 4 ln 2C 2 ln

�

4

1 � �

�

� ln.2N/

N

C ln.˛ � 1/
N

� �.3=2/

2
p

�.r � 1/N 3=2
C 1

4N 2
CO.N�5=2/:

and since from (2.14), as N ! 1,

v D 7

6
CO.N�1=2/;
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we can go back to (4.4) and derive

ln

�

ho
N

.N Š/2

�

D � �.3=2/

2
p

�.r � 1/N 1=2
C 1

4N
CO.N�3=2/; N ! 1; (4.5)

which is uniform on any compact subset of the set (1.16). �e last estimation

agrees with (1.23) and as we have seen, extends to a full asymptotic series in

reciprocal half-integer powers of N .

As a �rst step in the computation of the N independent leading term C in the

large N expansion (1.15) of ZN , we use the Toda equation.

5. Toda equation and the structure of the constant factor

We use the Toda equation as written in (1.13),

.ln �N /
00 D hN

hN �1

D ho
N

.˛ � 1/2ho
N �1

; .0/ D d

d˛
:

From (4.5) and our discussion thereafter, as N ! 1,

ln

�

ho
N

.N Š/2

�

D � �.3=2/

2
p

�.r � 1/N 1=2
C 1

4N
C c1.˛/

N 3=2
C c2.˛/

N 2
CO.N�5=2/;

with some constants ci .˛/ whose precise form is not important for us. Hence

ln

�

ho
N

N 2ho
N �1

�

D �.3=2/

4
p

�.r � 1/N 3=2
� 1

4N 2
CO.N�5=2/;

and after exponentiating the latter expansion, as N ! 1,

.ln �N /
00 D N 2

.˛ � 1/2

 

1C �.3=2/

4
p

�.r � 1/N 3=2
� 1

4N 2
CO.N�5=2/

!

D �N 2 .ln.˛ � 1//00 �
p
N
�.3=2/p
2�

.
p
˛ � 1 /00

C 1

4
.ln.˛ � 1//00 CO.N�1=2/;

where the error term is uniform on any compact subset of the set (1.16). Back to

equation (1.14), we have therefore shown that

.lnZN /
00 D N 2

�

ln

�

˛ C 1

2

��00
�

p
N
�.3=2/p
2�

.
p
˛ � 1 /00

C 1

4
.ln.˛ � 1//00 CO.N�1=2/:

(5.1)
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On the other hand from (1.14) combined with (4.5),

lnZN D lnC CN 2 ln

�

˛ C 1

2

�

�
p
N
�.3=2/p
2�

p
˛ � 1C 1

4
lnN CO.N�1=2/;

where C > 0 depends in general on ˛, but not on N . �us, comparing the latter

with (5.1), we conclude

lnC D 1

4
.ln.˛ � 1//00 CO.N�1=2/:

Integrating this expansion, we get

lnC D 1

4
ln.˛ � 1/C d.N/˛ C c.N/CO.N�1=2/ (5.2)

with some numbers d.N/ and c.N/ which are independent of ˛. Now choose any

distinct ˛1; ˛2 from (1.16) and derive

lnC.˛1/ � lnC.˛2/

D 1

4
ln.˛1 � 1/ � 1

4
ln.˛2 � 1/C d1.N /.˛1 � ˛2/CO.N�1=2/;

which shows that the limit

lim
N !1

d.N/ D d

exists and therefore also the limit

lim
N !1

c.N/ D c:

Taking the limit N ! 1 in (5.2), we obtain

lnC D 1

4
ln.˛ � 1/C d˛ C c;

and summarize (see (1.17))

Proposition 5.1. �e constant factor C in asymptotic formula (1.15) has the form

C D .˛ � 1/1=4ed˛Cc: (5.3)

In light of the last proposition we now have to compute the remaining two

universal constants c and d . �is will be done by studying two regimes of the

double scaling parameter t D N
˛

. First, we are interested in the behavior of the

partition function ZN as N ! 1 and t remains bounded.
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6. �e double scaling limit of the partition function

We start with the observation that

lim
˛!1
N �N0

wt .x/ D xe�Nx ;

which in particular implies

wt .x/ � xe�Nx � w0.x/; t ! 0:

�e limiting orthogonal polynomials are the normalized (and rescaled) Laguerre

polynomials (cf. [4])

pn;0.x/ D lim
t!0

pn;t .x/ D .�1/nnŠ
N n

L.1/
n .Nx/

for which

hn;t �
1
Z

0

.pn;0.x//
2w0.x/ dx

D .nŠ/2

N 2nC2

1
Z

0

.L.1/
n .x//2xe�x dx

D .nŠ/2.nC 1/

N 2nC2

� hn;0; t ! 0:

Let us introduce the abbreviation

�N;t D NN.N C1/

N �1
Y

kD0

hk;t

.kŠ/2
; (6.1)

which satis�es

lim
˛!1
N �N0

�N;t D NN.N C1/

N �1
Y

kD0

hk;0

.kŠ/2
D NŠ (6.2)

and which relates to the partition function ZN via the identity

ZN D
�

˛2 � 1

2˛

�N 2
�

2

˛

�N

�N;t : (6.3)



Calculation of the constant factor in the six-vertex model 415

We will now evaluate (6.1) by using (4.3), in other words,

�N;t D NN.N C1/h0;t

N �1
Y

kD1

hk;t

.kŠ/2

D N 2h0;t

�˛

2

�N �1

˛N 2�1

N �1
Y

kD1

hk

.kŠ/2

D N 2h0;t .N � 1/Š exp

"

N �1
X

kD1

�

2 ln

�

b

4

�

C k.l C 2/

C
v � 7

6

k
C 1

k
C "k.�/

�

#

D yC0N
2h0;t NŠ exp

"

N �1
X

kD1

�

2 ln

�

b

4

�

C k.l C 2/

C
v � 7

6

k

�

#

.1CO.N�1//;

valid as N ! 1, where the error term is uniform with respect to the parameter

0 � � � 1�" < 1 and with a universal, i.e. N and � independent constant yC0 > 0.

Now use (1.8) and derive

h0;t D
1
Z

0

�

p0;t .x/
�2
wt .x/ dx D Oc0

1
Z

0

wt .x/ dx D Oc0

N 2.1 � �2/

with another universal constant Oc0 > 0. Back to the previous expansion for �N;t ,

as N ! 1

�N;t D C0NŠ

1 � �2
exp

"

N �1
X

kD1

 

2 ln

�

b

4

�

C k.l C 2/C
v � 7

6

k

!#

.1CO.N�1//

(6.4)

which is uniform with respect to the parameter 0 � � � 1 � " < 1. In order to

determine the constant C0, we will now evaluate the sums in (6.4) in the double

scaling limit N; ˛ ! 1 with 0 � t � t0 and then compare the result with (6.2).

For the sums, use Euler’s summation formula

N �1
X

kD1

g.k/ D
N �1
Z

1

g.x/ dx C
N �1
Z

1

P1.x/g
0.x/ dx C 1

2
.g.N � 1/C g.1// ; (6.5)
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which holds for a di�erentiable function g W R ! R with the Bernoulli polynomial

P1.x/ D x � bxc � 1
2
. First via (2.4), as N; ˛ ! 1,

N �1
X

kD1

2 ln

�

b

4

�

D 2t C
t
Z

0

I.8x/
dx

x
CO.N�1/;

where the error term is uniform on any �nite interval 0 � t � t0. Secondly via

equation (2.21)

N �1
X

kD1

k.l C 2/

D N

"

�t C 2

t

t
Z

0

.J.8x/ � .1� ln 2// dx

� 2

t

t
Z

0

I.8x/ dx C 1

t

t
Z

0

lnS.4x/ dx

#

C t � 3

2
t2 � 2tI.8t/� 1

2
I.8t/ � 1

2
I 2.8t/� 3

2
I.8t/ � 1

4

t
Z

0

I 2.8x/
dx

x

C 2

t
Z

0

J 0.8x/

�

4C 2

x
I.8x/

�

dx C J.8t/

� .1� ln 2/C 1

2
lnS.4t/CO.N�1/;

and from (2.14),
N �1
X

kD1

v � 7
6

k
D O.N�1/;

as N; ˛ ! 1, where the error terms are uniform on any �nite interval 0 � t � t0.

We go back to (6.4), as N; ˛ ! 1,

�N;t D C0NŠ e
Nˆ.t/C‰.t/.1CO.N�1//; 0 � t � t0; (6.6)

with

ˆ.t/ D �tC2

t

t
Z

0

�

J.8x/�.1�ln 2/
�

dx�2
t

t
Z

0

I.8x/ dxC1

t

t
Z

0

lnS.4x/ dx (6.7)
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and

‰.t/ D 3t � 3

2
t2 � 2tI.8t/� 1

2
I 2.8t/� 3

2
I.8t/

� 1

2
lnS.4t/� .J.8t/� .1� ln 2//

� 1

4

t
Z

0

I 2.8x/
dx

x
C

t
Z

0

I.8x/
dx

x

C 2

t
Z

0

�

J 0.8x/C S 0.4x/

2S.4x/

��

1C I.8x/

2x

�

4x dx:

(6.8)

�e small t -behavior of ˆ.t/ and ‰.t/ can be determined from (2.4) and (2.19),

we have, as t ! 0,

ˆ.t/ D t2

3
CO.t3/; ‰.t/ D 5t � 9

2
t2 CO.t3/:

Back to (6.2), we have on one hand

�N;t � NŠ as t ! 0: (6.9)

On the other hand, if we let N; ˛ ! 1 such that Nt2 ! 0 (i.e. in particular

t ! 0), then (6.6) and the behavior of ˆ.t/ and ‰.t/ at the origin imply, that

�N;t � C0NŠ as N; ˛ ! 1W Nt2 ! 0: (6.10)

Comparing (6.9) with (6.10), this implies

C0 D 1;

and we have therefore shown

�eorem 6.1. In the double scaling limit N; ˛ ! 1

ZN D NŠ

�

˛2 � 1
2˛

�N 2
�

2

˛

�N

eNˆ.t/C‰.t/.1CO.N�1//; (6.11)

where ˆ.t/ and ‰.t/ are given explicitly in (6.7), (6.8) and the error term is uni-

form on any �nite interval 0 � t � t0.

�e explicit evaluation of the numerical constant C0 is crucial for our further

strategy. In order to compute the constants c and d , we will go back to (6.4),

evaluate now the sums in the limit t ! 1 and then compare the result with (1.15)

and (5.3).
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7. Proof of �eorem 1.2

�e computations in the last section lead to the following expansion for �N;t , as

N ! 1

�N;t D NŠ

1 � �2
exp

"

N �1
X

kD1

 

2 ln

�

b

4

�

C k.l C 2/C
v � 7

6

k

!#

.1CO.N�1//;

where the error term is uniform with respect to the parameter 0 � � � 1 � " < 1.
In order to derive (1.15) including the constant term, we now evaluate the sums

in the last estimation in the limit N ! 1 as ˛ > 1 and t > t0 (i.e. t ! 1). �is

time we use the Euler–Maclaurin type summation formula

N �1
X

kD1

g.k�/ D 1

�

t
Z

0

g.x/ dx � 1

2�

�
Z

0

g.x/ dx � 1

2�

t
Z

t��

g.x/ dx CR (7.1)

with

R D � 1

4�

N �1
X

kD1

�
Z

��

x
Z

0

g00.k� C u/.x � u/ dudx D O

�

�

t
Z

0

jg00.x/j dx
�

;

which holds for a twice di�erentiable function g W R ! R. To derive (7.1), we

write the Taylor formula with an integral form for the remainder

g.s C x/ D g.s/C g0.s/x C 1

2

x
Z

0

g00.s C u/.x � u/ du;

then integrate from �� to � ,

�
Z

��

g.s C x/ dx D 2g.s/� C 1

2

�
Z

��

x
Z

0

g00.s C u/.x � u/ dudx;

and now sum over ¹s D k�; k D 1; : : : ; N � 1º,
N �1
X

kD1

�
Z

��

g.k� C x/ dx D 2

N �1
X

kD1

g.k�/� C 1

2

N �1
X

kD1

�
Z

��

x
Z

0

g00.k� C u/.x � u/ dudx;

which implies (7.1).

From (2.9) and (2.5), as N ! 1,

N �1
X

kD1

2 ln

�

b

4

�

D �2.N � 1/ ln.1� �/ � ln t C c1 CO.�/CO.t�1=2/; (7.2)
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where we introduced as abbreviation

c1 D
1
Z

0

I.8x/
dx

x
C

1
Z

1

.I.8x/C 1/
dx

x

D �3 ln 2C
1
Z

0

I.x/
dx

x
C

1
Z

1

.I.x/C 1/
dx

x

D � ln 2;

and the error terms are uniform with respect to the parameters 0 � � � 1� " < 1
and t > t0. Next, combining (2.9) with (2.14),

v D 7

6
CO

�

�p
1C t

�

;

and hence,
N �1
X

kD1

v � 7
6

k
D O.�/CO.� t�1=2/: (7.3)

�e evaluation of the remaining term involving the Lagrange multiplier will be

split into several parts. First

N �1
X

kD1

k.l C 2/ D N.N � 1/C 2.1� ln 2/.N � 1/2

C
N �1
X

kD1

lnS.tb/C
N �1
X

kD1

2J.2bt/

C
N �1
X

kD1

k

�

2 ln b � b

2
.1� �/ � b

�

� N.N � 1/C 2.1� ln 2/.N � 1/2 C†1 C†2 C†3;

: (7.4)

For †1, use the asymptotic formula

lnS.x/ D x � ln.2x/CO.e�2x/; x ! C1;

and derive

†1 D 2�

1 � � .N � 1/2 �N ln

�

8t

1 � �

�

CN C
p
N

�.3=2/
p

2�.˛ � 1/
C ln t

C ˛c2 C c3 CO.�/CO.t�1=2/CO.˛ e�8t /;
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valid in the limit N ! 1; ˛ > 1 with t ! 1. Here we have

c2 D
1
Z

0

.lnS.4x/ � 4x C ln.8x// dx D 1

8

1
Z

0

ln .1� e�x/ dx D ��
2

48

and

c3 D 3

2
ln 2C

1
Z

0

4x

�

S 0.4x/

S.4x/
� 1C 1

4x

��

1C I.8x/

2x

�

dx

C 2

1
Z

0

�

I.8x/C 1 � �.3=2/

4
p
2�x

�

dx

� 1

2

1
Z

0

I.8x/
dx

x
� 1

2

1
Z

1

.I.8x/C 1/
dx

x

D 2 ln 2C �2

48
C 1

2

1
Z

0

I.x/

ex � 1 dx;

and we simpli�ed the expressions for ci , by recalling the de�nitions of S.x/ and

I.x/ as well as the integrals

1
Z

0

ln .1 � e�x/ dx D ��
2

6
;

1
Z

0

x dx

ex � 1 D �2

6
:

Next we go back to Proposition 2.4 and derive

†2 D ˛c4 C c5 CO.�/CO.˛ t�1=2/;

where

c4 D 2

1
Z

0

J.8x/ dx D 1

4

1
Z

0

J.x/ dx D �2

48

and

c5 D �.1� ln 2/C 16

1
Z

0

xJ 0.8x/

�

1C I.8x/

2x

�

dx

D �.1� ln 2/ � �2

48
C

1
Z

0

J 0.x/I.x/ dx;
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in the limit N ! 1; ˛ > 1, with error terms which are uniform with respect to

the parameters 0 � � � 1 � " < 1 and t > t0. Here we have used the de�nite

integrals

1
Z

0

�
r

x

1 � x � arctan

r

x

1 � x

�

dx

x2
D �

2
;

1
Z

0

�
r

x

1 � x �
p
x

�

dx

x2
D 2

in order to simplify the expressions for ci . Finally with (2.9) and Proposition 2.1,

†3 D N.N � 1/ ln

�

4

1� �

�

�N.N � 1/

� 2

1� �
.N � 1/2 � �

�

3

2

�

˛

s

N

2�.˛ � 1/

� 1

4
ln t C ˛c6 C c7 CO.�/CO.˛ t�1=2/;

where

c6 D �2
1
Z

0

�

I.8x/C 1 � �.3=2/

4
p
2�x

�

dx D 0

and

c7 D 1 �
1
Z

0

I 2.8x/
dx

4x
� 2

1
Z

0

�

I 0.8x/C �.3=2/

4
p
�.8x/3=2

�

8x

�

1C I.8x/

2x

�

dx

C
1
Z

1

�

1 � I 2.8x/
� dx

4x
� 2

1
Z

0

�

I.8x/C 1� �.3=2/

4
p
2�x

�

dx

� �.3=2/

2
p
2�

1
Z

0

�

4I 0.8x/ � I.8x/

2x

�

dxp
x

D 1

2
� 3

4
ln 2 � 1

4

1
Z

0

I 2.x/
dx

x
C 1

4

1
Z

1

.1 � I 2.x//
dx

x
:
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Now back to (7.4), as N ! 1,

N �1
X

kD1

k.l C 2/

D �N 2 ln.1� �/C 2N ln.1� �/ �N ln.2t/CN �
p
N�

�

3

2

�

r

˛ � 1

2�

C 3

4
ln t C ˛.c2 C c4 C c6/C c3 C c5 C c7 � 2 ln 2

CO.�/CO.˛ t�1=2/;

(7.5)

which is uniform with respect to the parameters 0 � � � 1 � " < 1 and t > t0. In

order to obtain the desired expansion for �N;t we combine estimations (7.2),(7.3)

and (7.5), as N ! 1,

�N;t D
� ˛

˛ � 1
�N 2 �˛

2

�N yCN;t G
p

NN 1=4.1CO.N�1//;

with

G D exp

�

��
�

3

2

�

r

˛ � 1

2�

�

;

and

yCN;t D .˛ � 1/1=4 expŒd0˛ C c0 CO.�/CO.˛ t�1=2/�

where all error terms are uniform with respect to the parameters 0 � � � 1�" < 1
and t > t0. �e factors d0 and c0 are given as

d0 D c2 C c4 C c6 D 0 (7.6)

and

c0 D �1
2

� 1

4
ln 2C 1

2
ln� C 1

2

1
Z

0

I.x/

ex � 1
dx

C
1
Z

0

J 0.x/I.x/ dx � 1

4

1
Z

0

I 2.x/
dx

x
C 1

4

1
Z

1

�

1� I 2.x/
� dx

x
:

(7.7)

We have therefore shown
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Proposition 7.1. In the limit N ! 1,

ZN D yCN;tF
N 2

G
p

NN 1=4.1CO.N�1//; (7.8)

where

F D ˛ C 1

2
;

G D exp

�

��
�

3

2

�

r

˛ � 1
2�

�

and

yCN;t D .˛ � 1/1=4 expŒc0 CO.�/CO.˛ t�1=2/�;

where c0 is given explicitly in (7.7) and the error terms are uniform with respect

to the parameters 0 � � � 1 � " < 1 and t > t0.

�e last proposition allows us to prove �eorem 1.2. To this end let us choose

˛ from a compact subset of the set

¹˛ 2 R W ˛ > 1º :

�en, as N ! 1,

ZN D .˛ � 1/1=4ec0CO.�/FN 2

G
p

NN 1=4.1CO.N�1=2//;

where the error term is uniform on any compact subset of the set (1.16). Compar-

ing the last line with (5.3), we obtain

d D 0; c D c0:

In order to derive the stated expression for c in �eorem 1.2, we will simplify the

integrals appearing in (7.7) as follows. For the last two integrals in (7.7), we re-

place one of the factors in the products I 2.x/with its de�nition (1.26). Evaluating

the integrals and recalling our computations for c1, we obtain

� 1

4

1
Z

0

I 2.x/
dx

x
C 1

4

1
Z

1

.1 � I 2.x//
dx

x

D 1

2
ln 2 � 1

4�2

1
Z

0

r

u

1� u

1
Z

0

r

v

1 � v

" 1
Z

0

�

1

exv � 1 � 1

xv

�

x dx

exu � 1

#

dudv:
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Next, we use geometric progression for 1
ez�1

and integrate term by term

1
Z

0

�

1

exv � 1
� 1

xv

�

x dx

exu � 1

D
1
X

nD1

"

� 1

nuv
C

1
X

mD1

1

.nuCmv/2

#

; 0 < u; v < 1:

With the help of the integrals

1
Z

0

r

u

1 � u
du

.1C au/2
D �

2.1C a/3=2
;

1
Z

0

dup
1 � u .a C u/3=2

D 2

.1C a/
p
a
; a � 0

this implies

� 1

4

1
Z

0

I 2.x/
dx

x
C 1

4

1
Z

1

�

1 � I 2.x/
� dx

x

D 1

2
ln 2� 1

4�

1
X

nD1

�

��
n

C
1
X

mD1

1

.mC n/
p
mn

�

:

(7.9)

For the second integral in (7.7) we use the identities

J 0.x/ D I 0.x/ � 1

�

1
Z

0

arctan

r

u

1 � u
d

dx

� x

exu � 1

�

du;

@

@x

� x

exu � 1

�

D @

@u

� u

exu � 1
�

;

and integrate by parts

1
Z

0

J 0.x/I.x/ dx D 1

2
� 1

2

1
Z

0

I.x/

ex � 1 dx C 1

2�

1
Z

0

1
Z

0

r

u

1 � u
I.x/

exu � 1 dudx:

Since

I.x/ D x

�

1
Z

0

r

v

1 � v

�

1

exv � 1 � 1

xv

�

dv;
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we obtain

1

2�

1
Z

0

1
Z

0

r

u

1 � u
I.x/

exu � 1
dudx

D 1

2�2

1
Z

0

r

u

1 � u

1
Z

0

r

v

1� v

�

1
Z

0

�

1

exv � 1 � 1

xv

�

x dx

exu � 1

�

dudv;

i.e. the triple integral we just evaluated in the computation of (7.9). We summarize

1
Z

0

J 0.x/I.x/ dx

D 1

2
� 1

2

1
Z

0

I.x/

ex � 1 dx C 1

2�

1
X

nD1

�

� �

n
C

1
X

mD1

1

.mC n/
p
mn

�

;

(7.10)

and back to (7.7),

c D 1

4
ln 2C 1

2
ln� C 1

4�

1
X

nD1

�

� �

n
C

1
X

mD1

1

.mC n/
p
mn

�

;

thus proving �eorem 1.2.
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