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On the two-point function
of general planar maps and hypermaps
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Abstract. We consider the problem of computing the distance-dependent two-point function of
general planar maps and hypermaps, i.e., the problem of counting such maps with two marked
points at a prescribed distance. The maps considered here may have faces of arbitrarily large
degree, which requires new bijections to be tackled. We obtain exact expressions for the
following cases: general and bipartite maps counted by their number of edges, 3-hypermaps
and 3-constellations counted by their number of dark faces, and finally general and bipartite
maps counted by both their number of edges and their number of faces.
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1. Introduction

Much attention has been devoted to the study of metric properties of random planar
maps, starting from the physical predictions of Ambjørn and Watabiki [2] and the
seminal probabilistic work of Chassaing and Schaeffer [10]. Of particular interest

1The work of Jérémie Bouttier and Éric Fusy was partly supported by the ANR projects “Cartaplus”
12-JS02-001-01.
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is the so-called two-point function which, colloquially speaking, encodes the distri-
bution of the distance between two random points in a random map. This two-point
function has been computed exactly [5], [12] for several families of maps: quadrangu-
lations, triangulations, Eulerian triangulations... A general formalism was developed
in [8] to address the case of maps with controlled face degrees but, in practice, a fully
explicit expression was only obtained in the case of bounded face degrees. In this
paper, we consider instead families of maps with unbounded face degrees: general
(arbitrary) planar maps, bipartite planar maps and, more generally, hypermaps and
constellations. The control is then on their natural size parameter, namely their num-
ber of edges. We will compute exactly the two-point function of these maps, using as
a new ingredient some bijections which relate them to maps with bounded degrees,
and keep track of distances (in the case of hypermaps, we actually consider a “quasi-
distance” based on oriented edges). The two-point function of general maps was
obtained recently by Ambjørn and Budd [1], using a distance-preserving bijection
with planar quadrangulations. Here we shall extend their bijection and get a cor-
respondence between, on the one hand, bipartite maps with controlled face degrees
and, on the other hand, hypermaps with controlled hyperedge degrees but arbitrary
(uncontrolled) face degrees. Briefly said, the Ambjørn-Budd bijection consists in
applying on quadrangulations the rules opposite to those used for the Schaeffer bi-
jection [10], [16] and here we shall apply the same trick to the more general rules
used for the BDG bijection [7].

The paper is organized as follows. All the necessary bijections are established in
Section 2 (Figure 1 provides an overview intended to help the reader). We start by in-
troducing so-called suitably labeled maps and well-labeled hypermaps (Section 2.1)
and a very general bijection ˆ between them, using the BDG rules (Section 2.2).
Reversing these rules gives rise to another “mirror” bijection ˆ� (Section 2.3). We
will then specialize ˆ and ˆ� to vertex-pointed bipartite maps endowed with their
geodesic labeling (Section 2.4): ˆ yields the BDG bijection, ˆ� is the new in-
gredient mentioned above, and their composition yields a direct distance-preserving
correspondence between hypermaps and mobiles. We then discuss the further spe-
cialization to constellations (Section 2.5), before completing some technical proofs
(Section 2.6) and discussing the extension to maps of higher genus (Section 2.7).
In Section 3, we apply these bijections to compute explicitly the two-point func-
tion of several families of maps controlled by their number of edges: general maps
(Section 3.1), bipartite maps and general hypermaps (Section 3.2), 3-hypermaps (Sec-
tion 3.3) and 3-constellations (Section 3.4). Connections to previous works [5], [12],
and [8] are discussed where applicable. In Section 4, we provide a refinement of the
two-point function of general maps (Section 4.1) and bipartite maps (Section 4.2),
where we control both their number of edges and their number of faces. We conclude
in Section 5 by some remarks and open questions.
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Figure 1. An overview of the bijections presented in Section 2. Bijections are represented by
lines with double arrows and wiggled lines represent specializations. Where applicable, we
refer to the text (i.e., to the statements in Section 2 and to the applications in Section 3) or to
previous works: S stands for the Schaeffer bijection [16], BDG for the bijection of [7], M for
the Miermont bijection [14] and AB for bijections introduced in [1]. (Note that the (M,AB)
bijections on the first line specialize to the those on the fourth line for p D 2, the corresponding
wiggling lines are not displayed to avoid overloading the figure.)
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2. Bijections

2.1. Suitably labeled maps and well-labeled hypermaps: definitions. A suitably
labeled map is a map B (on the sphere) where each vertex v carries a label `.v/ 2 Z,
such that, for any edge e of B with endpoints u and v, we have j`.v/�`.u/j D 1. Note
that B is necessarily bipartite (each edge connects a vertex of odd label to a vertex
of even label). A local max (resp. local min) is a vertex such that all neighbors have
smaller (resp. greater) label. The cw-type (resp. ccw-type) of a face f is the cyclic
list of integers given by the labels of vertices in clockwise (resp. counterclockwise)
order around f . Denote by B the set of suitably labeled maps.

An Eulerian map is a map (on the sphere) with all vertices of even degree; such
maps can be properly bicolored at their faces (with dark faces and light faces), i.e., such
that any edge has a dark face on one side and a light face on the other side. A hypermap
H is a properly face-bicolored Eulerian map (viewing dark faces as hyperedges). The
star-representation of H is the bipartite map S obtained by replacing the contour of
each dark face f (of a given degree d ) by a star (of degree d ) centered at a new black
vertex vf placed inside f , see Figure 2.

Figure 2. Left: a hypermap; right: its star-representation.

A well-labeled hypermap is a hypermap H (on the sphere) where each vertex
v carries a label `.v/ 2 Z such that, for any edge e incident to v, with the dark
face incident to e on the right of e traversed from v to its other endpoint u, we have
`.u/ � `.v/� 1. For a vertex u of H , a right neighbor of u is a vertex v adjacent to
u, and such that there exists an edge from v to u with a dark face on its right. A right
local min (resp. right local max) of H is a vertex u such that any right neighbor v of u

satisfies `.v/ � `.u/ (resp. `.v/ � `.u/). The cw-type � of a dark face f is the cyclic
list of integers given by the labels of vertices in clockwise order around f . Denote by
H the family of well-labeled hypermaps. Note that by definition, the cw-type � of
a dark face is a so-called Łukasiewicz cyclic sequence, i.e., a cyclic integer list such
that the difference between an element of the list and the preceding one is at least
�1. Define the upper completion c".�/ (resp. lower completion c#.�/) of � as the
cyclic sequence obtained from � by inserting the rising sequence i C 1; : : : ; j C 1

(resp. the rising sequence i � 1; : : : ; j � 1) between any two consecutive elements
i; j such that j � i . The upper complement �" (resp. lower complement �#) of � is
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the cyclic sequence c".�/n� (resp. c#.�/n� ) taken in reverse order, see Figure 3 for
an example. Note that the upper or lower complement is also a Łukasiewicz cyclic
sequence, and that the mappings from a Łukasiewicz cyclic sequence to its upper and
lower complements are inverse of one another.

Figure 3. Left: a Łukasiewicz cyclic sequence � ; right: the lower complement �#; middle:
the lower completion of � (read clockwise) which is also the upper completion of �# (read
counterclockwise).

2.2. Suitably labeled maps and well-labeled hypermaps: the bijection. First we
explain how to construct (the star representation of) a well-labeled hypermap from
a suitably labeled map. Let B 2 B. Place a black vertex vf inside each face f

of B . Then apply the so-called BDG rules (shown in Figure 4 left-part) in f , i.e.,
when turning around f clockwise, for each descending edge e (i.e., at which the label
sequence is decreasing), insert a new edge from vf to the origin of e (note that the
vertices of B not incident to any of these new edges are exactly the local min of B).
Then erase all the local min of B and all edges of B . Call S the resulting figure.

Figure 4. Middle: a face f of a suitably labeled map; left: application of the BDG rules;
right: application of the complementary rules. The list of neighbor-labels of the black vertex
in counterclockwise order using the complementary rules is the lower complement of the list
of neighbor-labels of the black vertex in clockwise order using the BDG rules.
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Claim 1. The resulting figure S is the star-representation of a well-labeled hyper-
map H .

The proof is delayed to Section 2.6 (the local condition of being well-labeled is
trivially satisfied, the non-trivial part is to show that S is a map, i.e., is connected).
Let ˆ be the mapping that associates H to B . Figure 5 displays an example of this
mapping.

Figure 5. The mapping ˆ from a suitably labeled map (local min are surrounded) to a well-
labeled hypermap.

We now describe the inverse mapping ‰ (see Figure 6 for an example). Let
H 2 H . For each light face f of H , denote by min.f / (resp. max.f /) the minimal
(resp. maximal) label of vertices incident to f . Let S be the star representation of H .
Consider any face f of S (which identifies to a light face of H ). Insert inside f a
vertex vf of label min.f / � 1. Then, for each corner c of f at a labeled (white)
vertex v, insert a leg in c. If `.v/ > min.f /, connect the free extremity of the leg
to the next corner of label `.v/� 1 after c in counterclockwise order around f (note
that, when the map is drawn in the plane, going counterclockwise around the outer
face amounts to going clockwise around the map). If `.v/ D min.f /, connect the
free extremity of the leg to vf . Finally delete all black vertices and all edges of S .
Denote by B the resulting figure.

Figure 6. The mapping ‰ from a well-labeled hypermap to a suitably labeled map.
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Claim 2. The resulting figure B is a suitably labeled map.

The proof is delayed to Section 2.6 (the fact that the labeling is suitable is clear
by construction, the nontrivial point is to show that B is a map).

Theorem 1. The mapping ˆ is a bijection between B and H ; the inverse mapping
is ‰. For B 2 B and H D ˆ.B/, each vertex v of H corresponds to a non local
min vertex v0 of B of the same label, and v is a right local max in H if and only if v0
is a local max in B , each light face f of H corresponds to a local min vertex of B of
label min.f / � 1, and each dark face of H of cw-type � corresponds to a face of B

of cw-type c#.�/; in particular, the degree of the dark face of H is half the degree of
its corresponding face of B .

The proof that ˆ and ‰ are inverse of each other is delayed to Section 2.6. The
parameter-correspondence follows rather directly from the way the constructions ˆ

and ‰ are defined. More precisely, the fact that each face f of H corresponds to a
local min of B of label min.f /� 1 follows from the definition of ‰, and the fact that
each dark face of H corresponds to a face of B of cw-type c#.�/ follows from the
description of ˆ (see Figures 3 and 4). Finally, if v0 2 B is neither a local min nor a
local max, then the corresponding v 2 H is not a right local max (see Figure 7(a)),
whereas if v is a local max of B , then any right neighbor u of v satisfies `.u/ � `.v/

(see Figure 7(b)), so that v is a right local max in H .

Figure 7. (a) A vertex v of B that is neither a local min nor local max is incident to at least one
face of B of the type displayed here, hence has a right neighbor in H of larger label, so that v

is not a right local max in H . (b) If a vertex v of B is a local max, then any right neighbor of
v in H has smaller (or equal) label, hence v is a right local max in H .

Remark 1. By restricting to the elements of B whose all faces have degree 4, we
recover the bijection of Theorem 1 in [1] between suitably labeled quadrangulations
and well-labeled maps (identified to hypermaps by blowing each of their edges into
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a dark face of degree 2). Actually, this bijection may also be viewed as equivalent
to the Miermont bijection in the planar case: indeed, for a fixed quadrangulation Q,
the data of a suitable labeling is equivalent to the data of a set of “sources” and of a
“delay vector” in the terminology of [14]. More precisely, taking the local min of
the suitable labeling as sources, and their labels as delays, it is not difficult to check
that the label of any other vertex is given by the Miermont prescription, namely

`.v/ D min
u local min

.dist.u; v/C `.u//

where dist denotes the graph distance in Q.

2.3. Mirror bijection. We describe here a “mirror” formulation of the bijection ˆ.
Define a mirror-well-labeled hypermap as a vertex-labeled hypermap H such that
the “mirror” of H is well-labeled. More precisely, for any edge e with endpoints
u; v —with the dark face incident to e on the left of e traversed from v to u— we
have `.u/ � `.v/� 1. Denote by MH the family of mirror-well-labeled hypermaps.
The notions of right-neighbor, right local min and right local max are defined in the
same way as for the family H (we do not take a mirror definition). For a dark face
f of H 2MH , define the ccw-type of f as the cyclic list of labels of the vertices in
counterclockwise order around f . Let B 2 B. Place a vertex vf inside each face f

of B . Then apply the so-called complementary rules (shown in Figure 4 right-part) in
f , i.e., when turning around f clockwise, for each ascending edge e (i.e., at which
the label sequence is increasing), insert a new edge from vf to the origin of e (note
that the vertices of B not incident to any of these new edges are exactly the local max
of B). Then erase all the local max of B and all edges of B . Call S the resulting
figure, which is a bipartite map, and H the mirror-well-labeled hypermap having S

as star-representation. Let ˆ� be the mapping that associates H to B . Let opp be
the mapping (operating on any B 2 B or H 2 H ) that replaces the label of each
vertex by its opposite (note that opp maps B to B and H to MH ). In fact, given
the fact that the complementary rules are the opposite of the BDG rules, we have
ˆ� D opp BˆBopp. Hence, as a consequence of Theorem 1 we obtain the following
result.

Corollary 1. The mapping ˆ� is a bijection between B and MH . For B 2 B and
H D ˆ�.B/, each vertex v of H corresponds to a non local max vertex v0 of B of
the same label, and v is a right local min in H if and only if v0 is a local min in B ,
each face f of H corresponds to a local max vertex of B of label max.f /C 1, and
each dark face of H of ccw-type � corresponds to a face of B of ccw-type c".�/.

Remark 2. Upon composing ‰ and ˆ�, we obtain a bijection between H and MH .
Its parameter correspondence, which is left to the reader, is not needed here in all its
generality. A relevant specialization will be discussed in Theorem 2.
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2.4. Mobiles, vertex-pointed bipartite maps, and vertex-pointed hypermaps.
Define a mobile as the star-representation of a well-labeled hypermap with a unique
light face and with minimal label 1. In other words a mobile is a bipartite plane tree
with black unlabeled vertices and white labeled vertices, such that the minimal label
is 1 and for any two consecutive neighbors v; u in clockwise order around a black
vertex, `.u/ � `.v/� 1. The following definitions are inherited from the concepts in
the associated hypermap with a unique light face. For any black vertex b in a mobile,
define the cw-type of b as the cyclic sequence given by the labels of the neighbors
in clockwise order around b. A white vertex v is called a right neighbor of a white
vertex u, if u and v are consecutive in counterclockwise order around a black vertex
(which is their unique common neighbor). And a white vertex u is called a right
local min (resp. right local max) in the mobile if any right neighbor v of u satisfies
`.v/ � `.u/ (resp. `.v/ � `.u/).

Claim 3. Let B be a bipartite map with a pointed vertex v. Then there is a unique
suitable labeling of the vertices of B such that v is the unique local min, and `.v/ D 0.
This labeling is the geodesic labeling with respect to v, i.e., such that `.u/ is the graph
distance dist.v; u/ from v to u.

Proof. It is clear that the geodesic labeling satisfies these properties. Conversely, for
any labeling satisfying these properties, each vertex u has a path to v that decreases
in label, hence of length `.u/. So `.u/ � dist.v; u/. Moreover, for any suitable
labeling one has trivially `.u/ � dist.v; u/ (the sequence of labels along a geodesic
path from v to u increases by at most 1 at each edge). Hence `.u/ D dist.v; u/ for
any vertex u.

Š

Figure 8. A vertex-pointed map endowed with its geodesic labeling, on its left the associ-
ated mobile, on its right the associated vertex-pointed hypermap (endowed with its geodesic
labeling).

Applying Theorem 1 to the subfamily of B with a unique local min vertex v and
with `.v/ D 0, we recover the following result from [7] (see the left part of Figure 8
for an illustration).



274 J. Bouttier, É. Fusy, and E. Guitter

Proposition 1. The mapping ˆ specializes to a bijection between vertex-pointed
bipartite maps and mobiles with the following properties. For B a vertex-pointed
bipartite map, endowed with its geodesic labeling, and M the corresponding mobile,
each white vertex v of M corresponds to a non-pointed vertex v0 of B of the same
label, and v is a right local max of M if and only if v0 is a local max of B . And each
black vertex of M of cw-type � corresponds to a face of B of cw-type c#.�/.

Given a hypermap H , define the canonical orientation of H as the orientation
where each edge is directed so as to have its incident dark face on its right. If H

has a pointed vertex v, the geodesic labeling of H with respect to v is the labeling
of vertices where `.u/ gives the length of a shortest directed path (in the canonical
orientation) from v to u. Similarly as in Claim 3 (and with the same proof arguments)
we have the following claim.

Claim 4. Let H be a hypermap with a pointed vertex v. Then there is a unique
mirror-well-labeling of the vertices of H such that v is the unique right local min,
and `.v/ D 0. This labeling is the geodesic labeling with respect to v.

Applying Corollary 1 to the subfamily of MH with a unique local min vertex v

and with `.v/ D 0, we obtain the following result (see the right part of Figure 8 for
an illustration) see the following proposition.

Proposition 2. The mapping ˆ� specializes to a bijection between vertex-pointed
bipartite maps and vertex-pointed hypermaps with the following properties. For
B a vertex-pointed bipartite map endowed with its geodesic labeling, and H the
corresponding vertex-pointed hypermap endowed with its geodesic labeling, each
light face f of H corresponds to a local max vertex of B of label max.f /� 1, each
vertex of H corresponds to a non local max vertex of B of the same label (so the
pointed vertices correspond to each other), and each dark face of H of ccw-type �

corresponds to a face of B of ccw-type c".�/.

As shown in Figure 9 (right part), in the case where all dark faces of the hypermap
have degree 2, we recover the bijection of Ambjørn and Budd between vertex-pointed
maps and vertex-pointed quadrangulations.

Remark 3. There is already a classical bijection between (vertex-bicolored) bipartite
maps and hypermaps such that each face of degree 2s in the bipartite map corresponds
to a dark face of degree s in the corresponding hypermap, see Figure 10 (note that
the bijection of Figure 10 is the application of ˆ with the special suitable labeling
where every vertex at even distance from the pointed vertex has label 1 and every
vertex at odd distance has label 0). However, this bijection does not have the distance
conservation property of Proposition 2.

Composing the bijections of Propositions 1 and 2 we obtain Theorem 2 (see
Figure 8).
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Prop. 1 Prop. 2

(S)(S) (AB)

(BDG)

Figure 9. In the case where the intermediate suitably labeled map is a vertex-pointed quadran-
gulation, the mobile obtained by the BDG rules (bijection in [7], recovered in Proposition 1)
simplifies to a well-labeled tree (with minimal label 1), which corresponds to Schaeffer’s bijec-
tion [10], [16] (symbol S in the diagram). Moreover, the vertex-pointed hypermap obtained by
the complementary rules (Proposition 2) simplifies to a vertex-pointed map, which corresponds
to the bijection of Ambjørn and Budd [1] (symbol AB in the diagram) between vertex-pointed
quadrangulations and vertex-pointed maps.

Figure 10. The usual bijection between vertex-pointed bipartite maps and vertex-pointed
hypermaps. From left to right: color white (resp. gray) the vertices that are at even (resp. odd)
distance from the pointed vertex, then inside each face f of the bipartite map insert a dark face
that connects the white corners of f . From right to left: insert a gray vertex vf inside each
light face f of the hypermap, and connect vf to all corners around f .
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Theorem 2. The mapping ˆ B .ˆ�/�1 specializes to a bijection between vertex-
pointed hypermaps and mobiles with the following properties. For H a vertex-pointed
hypermap endowed with its geodesic labeling, and M the corresponding mobile, each
light face f of H corresponds to a right local max of M of label max.f /C 1, each
unpointed vertex of H corresponds to a non right local max vertex of M of the same
label and each dark face of H of ccw-type � corresponds to a black vertex of M of
cw-type �".

In particular, for p � 2, ˆB.ˆ�/�1 restricts to a bijection between vertex-pointed
p-hypermaps (hypermaps with all dark faces of degree p) and p-mobiles (mobile
with all black vertices of degree p).

Note that there is already a bijection in [7] between vertex-pointed hypermaps and
certain labeled decorated (multitype) plane trees. The bijection of [7] (which also
relies on the geodesic labeling of the vertex-pointed hypermap) has the advantage
that it keeps track of the degrees of light faces, an information that is lost with the
bijection of Theorem 2. However the price to pay is that the decorated trees in [7]
are far more complicated than the mobiles of Theorem 2.

2.5. Specialization to constellations. For p � 2, a (planar) p-constellation is a
p-hypermap (as defined in Theorem 2) with all light faces of degree a multiple of p.
Constellations are also characterized as p-hypermaps that can be vertex-colored, with
colors 0; 1; : : : ; p � 1, such that in clockwise order around any dark face the colors
are 0; 1; : : : ; p � 1 (seen this way they correspond to certain factorizations, into p

factors, in the symmetric group). Equivalently, given a vertex-pointed p-hypermap
H endowed with its geodesic labeling, H is a p-constellation if and only if the labels
modulo p of the vertices in clockwise order around each dark face are 0; 1 : : : ; p� 1.
A Łukasiewicz cyclic sequence of length r is said to be descending if it has a unique
rise and r � 1 descents (by 1). Define a p-descending mobile as a p-mobile with all
black vertices of descending cw-type. From the discussion above, a p-hypermap H ,
endowed with its geodesic labeling, is a p-constellation if and only if all its dark faces
are of descending ccw-type. Hence, as a specialization of Theorem 2 we obtain:

Proposition 3. The mapping ˆ B .ˆ�/�1 specializes to a bijection between vertex-
pointed p-constellations and p-descending mobiles, with the same correspondence
of parameters as in Theorem 2.

Remark 4. Using the trivial identification of 2-constellations with bipartite maps,
we may combine Proposition 3 and Proposition 2, to obtain a bijection between 2-
descending mobiles and vertex-pointed hypermaps. In this bijection, black vertices
and right local max of a mobile correspond respectively to edges and dark faces of
the associated hypermap.

The bijection between vertex-pointed p-constellations and p-descending mobiles
is shown in Figure 11 for p D 3 (forgetting the bottom-left drawing for the moment)
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and in Figure 12 for p D 2 (constellations identify to bipartite maps by shrinking
each dark face of degree 2 into an edge and 2-descending mobiles identify to suitably
labeled plane trees – with minimum label 1 – by erasing the black vertices).

Figure 11. Middle: a vertex-pointed stretched 6-angulation. Right: the associated (by the
complementary rules) vertex-pointed 3-constellation. Top-left: the associated (by the BDG
rules) mobile. Bottom-left: the 4-regular constellation obtained by drawing a diagonal in each
(stretched) face from the largest to the smallest vertex. Upon composing these elementary
bijections, we obtain Proposition 3 (connecting top-left to right) and Proposition 4 (connecting
bottom-left to right).

Figure 12. In the case p D 2, a p-constellation identifies to a bipartite map G (on the right
side), and a p-descending mobile identifies to a suitably labeled plane tree T with minimal
label 1 (left side). Each face of G corresponds to a local max of T , each unpointed vertex of G

corresponds to a non local max vertex of T of the same label, and each edge of G of type .i; i�1/

corresponds to an edge of T of type .iC1; i/. The bijection is a specialization of the bijection
of Ambjørn and Budd using stretched vertex-pointed quadrangulations as intermediate objects
(middle).
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Let B be a vertex-pointed bipartite map endowed with its geodesic labeling. A
face f of B , of even degree 2s, is said to be stretched if its type (cw or ccw) is of the
form i; iC 1; : : : ; i C s� 1; iC s; i C s� 1; : : : ; iC 1, i.e., there are s rises followed
by s descents. And B is called stretched if all its faces are stretched. Stretched
vertex-pointed 2p-angulations are the bijective intermediates in Proposition 3 (i.e.,
these are the maps in correspondence with p-descending mobiles via ˆ and with
vertex-pointed p-constellations via ˆ�). Moreover, as shown in [7], p-descending
mobiles are in bijection with vertex-pointed .pC1/-constellations with all light faces
of degree p C 1 (shortly called .p C 1/-regular constellations – note that those are
nothing but Eulerian .pC 1/-angulations endowed with a proper bi-coloring of their
faces). We provide here a simple shortcut (to jump over p-descending mobiles) in
the bijective chain

vertex-pointed p-constellations

 ! vertex-pointed stretched 2p-angulations

 ! p-descending mobiles

 ! vertex-pointed .p C 1/-regular constellations.

Given a vertex-pointed stretched 2p-angulation B , draw in each (stretched) face
a diagonal e from the largest to the smallest vertex. This splits the face into two faces
of degrees p C 1, and we color the one on the right of e as dark and the one on the
left of e as light. The resulting figure is clearly a vertex-pointed .p C 1/-regular
constellation E. In addition, if B is endowed with its geodesic labeling, then the
induced labeling on E is exactly the geodesic labeling of E. The inverse mapping is
easy. Given a .p C 1/-regular constellation E, endow E with its geodesic labeling,
which has the property that the labels in clockwise (resp. counterclockwise) order
around each dark (resp. light) face are of the form i; i C 1; : : : ; i C p. Erasing the
edges of the form i; i C p, we naturally obtain a stretched (vertex-pointed) bipartite
2p-angulation endowed with its geodesic labeling. To summarize, we obtain the
following result.

Proposition 4. There is a bijection between vertex-pointed p-constellations and
vertex-pointed .pC 1/-regular constellations with the following properties. For C a
vertex-pointed p-constellation and E the corresponding vertex-pointed .p C 1/-reg-
ular constellation (both endowed with their geodesic labeling), each face f of C

corresponds to a right local max vertex of E of label max.f /C 1, and each vertex
v of C corresponds to a non right local max vertex v0 of E of the same label.

There is already a classical bijection between vertex-pointed p-constellations and
vertex-pointed .p C 1/-regular constellations, using the characterization in terms of
vertex-coloring, see Figure 13. However, similarly as in Proposition 2, the bijection
of Proposition 4 has the advantage that it preserves the distance to the pointed vertex.
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Figure 13. The usual bijection between vertex-pointed p-constellations and vertex-pointed
.p C 1/-regular constellations. From left to right: add a vertex of color p in each light face
and extend each dark face by making its edge .p � 1; 0/ pass by the vertex in the light face to
its left. From right to left: draw a diagonal in each dark face between the vertices of color 0

and p � 1, then erase the vertices of color p and their incident edges.

2.6. Proof that the mappings ˆ=‰ give a bijection

2.6.1. Proof of Claim 1. Let S be the figure obtained from B 2 B by applying the
BDG rules, and then deleting the local min and the edges of B . We show here that S

is a map, i.e., is connected. A first easy remark is that S has no isolated vertices, i.e.,
each vertex of S has at least one incident edge in S . Let sv , se, sf be the numbers of
vertices, edges, and faces1 of S . Let m be the number of local min of B . By the BDG
rules, se is the number of edges of B , and sv Cm is the number of vertices plus the
number of faces of B . Hence, by the Euler relation applied to B , sv Cm D se C 2.
Moreover, the Euler relation applied to S ensures that sv C sf D se C 1C k, where
k is the number of connected components of S . Hence, S is connected if and only
if sf � m (indeed, S is connected if and only if k � 1). To prove that sf � m, it
is enough to show that (seeing S and B as superimposed) there is at least one local
min of B inside each face f of S . Let w be a white vertex of smallest label on the
boundary of f . Since S has no isolated vertices, it is easy to see that there is an
edge e incident to w on the boundary of f and such that the corner following e in
counterclockwise order around w is in f . By the BDG rule shown in Figure 4 left,
the next edge after e in counterclockwise order around w is an edge e0 of B that leads
to a white vertex w0 of label `.w/ � 1. By the choice of e, e0 is inside f , and by
minimality of `.w/, w0 can not be on the boundary of f . Since w0 is in f but not on
its boundary, w0 does not belong to S , hence w0 is a local min of B . Hence there is a
local min of B inside f .

1A face of a (not necessarily connected) graph G embedded on a surface † is defined as a connected
component of †nG. Note that the boundary of a face might have several components if G is not connected
or if † has nonzero genus.
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2.6.2. Proof of Claim 2 and that ˆ B ‰ D Id. Let H 2 H , let S be the star
representation of H , and superimpose S with B WD ‰.H/. Looking at Figure 14(b)
it is clear that any pair of connected white vertices of S are connected in B . Since
S is connected, B is also connected, i.e., is a map.2 In addition, it is clear also from
the figure that the edges of S will exactly be those selected by the BDG rules. Hence
ˆ.B/ D H .

Figure 14. (a) Situation (after applying ‰) for a corner at a black vertex of S (edges of B are
oriented in label decreasing direction). (b) Situation (after applying ‰) around a black vertex
of S : each black vertex of S yields a face of B .

2.6.3. Proof that‰Bˆ D Id. LetB 2 B, H D ˆ.B/, and S the star-representation
of H . In the following it is convenient to see B as superimposed with S . An easy
observation (following from the BDG rules) is that, if we direct the edges of B in
label-decreasing way, then each corner c of S at a white vertex v —since B and S

are superimposed, there is a bunch of edges of B in c— contains a unique edge of B

going out of v, which is the clockwise-most in c (note that this local property is to be
satisfied after applying ‰), see Figure 15(a). Denote by ec this edge. We have seen
in Section 2.6.1 that H 2 H , there is exactly one local min of B strictly inside each
face f of S , and this local min has label min.f / � 1. So the first step of ‰ (adding
a vertex inside each face f of label min.f / � 1) is the inverse of the last step of ˆ

(deleting all the local min); and in addition for each corner c of S at a white vertex
v, if ec goes to the local min in the face incident to c, then ec will be created by ‰. It
remains to show that for each corner c such that ec does not go to a local min (otherly
stated, for each edge e of B not incident to a local min), ec will be created by ‰. Let
f be any face of S , with vf the local min of B inside f , and let e be an edge of B

inside f and not incident to vf . Adding e to f splits f into two faces Lf .e/; Rf .e/

respectively on the left and on the right of e directed in label decreasing way. Let u be

2Since the arguments are to be extended to higher genus in Section 2.7 it is good to also have a polygon-
gluing proof that B is a map: as can be seen from Figure 14(b), each black vertex b of S yields a face
fb of B , and it is easy to see (since each face of S is covered by sectors of the form of Figure 14(a)) that
these faces fb cover the entire surface (a sphere up to now).
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the extremity of e of largest label and v the extremity with smaller label, say `.u/ D i

and `.v/ D i � 1. To show that e will be created when applying ‰ (to S ), it remains
to establish the following property.

Claim 5. The local min vf is inside Le.f /, v has a unique incident corner in Re.f /

(the one delimited by e on the right side) and any other corner in Re.f / at a white
labeled vertex w satisfies `.w/ � i .

Proof of the claim. Recall the BDG rule (illustrated in Figure 15): for each edge e

of S , with black extremity b and white (labeled) extremity w, the next edge after e

in counterclockwise order around w leads to a white vertex of label `.w/ � 1. Let
w` be a white vertex of smallest possible label on the contour of Le.f /, note that
w` ¤ u. Since w` ¤ u, the BDG rule recalled above implies that w` has a neighbor
of label `.w`/ � 1 in Le.f /, either at vf or on the contour of Le.f /. The second
case is excluded by minimality of w`, so we conclude that vf is inside Le.f /, see
Figure 15(b). The statement about Re.f / is proved similarly. Denote by c the corner
of Re.f / that is incident to v and delimited by e on the right side. Call a corner of
Re.f / admissible if it is different from c and incident to a white vertex. Choose an
admissible corner c0 in Re.f / of smallest possible label (label of the incident white
vertex). Let w0 be the white vertex incident to c0. Again, since c0 ¤ c the BDG
rule implies that w0 has a neighbor of label `.w0/� 1 on the contour of Re.f /. This
neighbor is necessarily v (otherwise it would yield an admissible corner of smaller
label than c0, contradicting the minimality of c0), hence `.w0/ D i . �

Figure 15. (a) After applying ˆ to B , each corner c of S contains a unique edge of B going
out, which is the clockwise-most edge of B inside c. (b) Situation in the proof of Claim 5.
The shown edges of B are directed in the label-decreasing way.

2.7. Extension to higher genus. Up to now the bijective results have been stated
and proved with maps and hypermaps on the sphere, but everything can be defined,
stated and proved in the same way in genus g � 0 (the sphere corresponds to g D 0,
recall that a map of genus g is a connected graph G embedded on the genus g surface
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† such that any component of †nG is a topological disk). We point out here the few
places where one can not copy verbatim.

In the proofs, the only place involving g as a parameter is in the use of the
Euler relation in the proof of Claim 1. In genus g, the Euler relation applied to
B gives sv C m D se C 2 � 2g, and the Euler relation applied to S ensures that
sv C sf � se C 2� 2g, with equality if and only if S is a map of genus g. Hence S

is a map of genus g if and only if sf � m, as in the genus 0 case.
In the definitions, note that a mobile (i.e., the star-representation of a well-labeled

hypermap with a unique light face and minimal label 1) is not a tree in higher genus
but a unicellular map of genus g. And the notion of constellation in genus g has to
be defined in terms of the color-property (in higher genus, the condition of light face-
degrees being multiple of p is strictly weaker than the condition with colors), that is,
for p � 2, a p-constellation in genus g is a p-hypermap of genus g whose vertices can
be colored, with colors in 0; 1; : : : ; p�1, such that the colors of vertices in clockwise
order around any dark face are 0; 1; : : : ; p � 1. The extension of Proposition 1
(bijection between vertex-pointed bipartite maps and mobiles) to higher genus was
first given in [9].

3. Two-point functions depending on a single size parameter

In this section we shall use specializations of the above bijections to compute distance-
dependent two-point functions for a number of families of maps or hypermaps. More
precisely, we shall concentrate on 2-hypermaps, i.e., hypermaps having all their dark
faces of degree 2, and 3-hypermaps with all their dark faces of degree 3. Recall that
general maps, whose two-point function was already obtained in [1], are trivially
identified with 2-hypermaps by blowing each edge of the map into a dark face of
degree 2. We shall also consider the case of 2-constellations, trivially identified with
bipartite maps, and that of 3-constellations. All these maps will be counted according
to their natural size parameter, namely the number of edges (for maps) or dark faces
(for hypermaps).

The (distance-dependent) two-point function of a class of maps is, informally
speaking, the generating function of such maps with two marked points at a prescribed
distance. More precisely, we consider planar (hyper)maps that are both vertex-pointed
and rooted, i.e., with a marked oriented edge (the root edge). In the case of hypermaps,
we furthermore assume that the root edge is oriented in such a way that its incident
dark face (the root face) lies on its right. The two-point function is defined as the
generating function of these vertex-pointed and rooted (hyper)maps with prescribed
geodesic distances from the pointed vertex to all vertices incident to the root edge
(for maps) or to the root face (for hypermaps). Since we consider only a single size
parameter, the two-point function depends on a single formal variable t , the weight
per edge or dark face.
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The reader shall be warned that, in order to avoid introducing too many symbols,
indexes or subscripts, we will keep the same notation for the two-point function and
related quantities regardless of the class of maps considered.

3.1. The two-point function of general maps. Consider a pointed rooted map (i.e.,
a map with a pointed vertex and a marked oriented edge): we say that its root edge
is of type .k; j / if its origin and endpoint are at respective distances k and j from
the pointed vertex. Here k and j are non-negative integers satisfying jj � kj � 1.
Following the notation of [8], we denote by Ri � Ri .t /, i � 1, the generating
function of pointed rooted maps enumerated with a weight t per edge whose root
edge is of type .j � 1; j / for j � i . By reversing the orientation of the root edge,
pointed rooted maps whose root edge is of type .j C 1; j / for j � i are enumerated
by RiC1. We finally denote by S2

i � Si.t /
2, i � 0, the generating function of pointed

rooted maps whose root edge is of type .j; j / for j � i (we write this generating
function as a square to stick to the notation of [8]). Note that the generating function
of pointed rooted maps where the endpoint of the root edge is at distance at most i

from the origin is equal to Ri CRiC1 C S2
i .

3.1.1. Computation from the bijective approach. Using the trivial identification
of maps with 2-hypermaps, Ri may alternatively be understood as the generating
function for vertex-pointed and rooted 2-hypermaps, with a weight t per dark face,
and a root face of ccw-type � D .j; j � 1/ for j � i if we endow the hypermap with
its geodesic labeling. From Theorem 2, those are in one-to-one correspondence with
2-mobiles, i.e., mobiles having all their black vertices of degree 2, with a marked
black vertex (in correspondence with the root face) of cw-type �" D .j; j C 1/,
j � i .

Similarly, S2
i may be viewed as the generating function for vertex-pointed and

rooted 2-hypermaps, with a weight t per dark face, and a root face of ccw-type
� D .j; j / for j � i (under the geodesic labeling), one side of the root face being
distinguished (in correspondence with the root edge). From Theorem 2, those are
now in in one-to-one correspondence with 2-mobiles with a marked black vertex of
cw-type �" D .jC1; jC1/, j � i , one of the incident half edges being distinguished.

Recall that mobiles are required to have a minimal label 1. The summation over
all j � i allows however to waive this constraint. Indeed, shifting the labels by
i � j � 0 in a mobile with a marked black vertex of cw-type �" D .j; j C 1/ (resp.
�" D .jC1; jC1/) produces a new labeled tree with marked black vertex of cw-type
�" D .i; i C 1/ (resp. �" D .i C 1; i C 1/) whose minimal label 1C i � j is now,
after summation over j , an arbitrary integer between 1 and i (respectively iC1). We
shall call floating mobiles these new objects with an arbitrary positive minimal label
(the rules for labels around a black vertex remain unchanged).

Denoting by Ti D Ti .t / the generating function of floating 2-mobiles planted at
a white vertex labeled i , enumerated with a weight t per black vertex, we deduce
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immediately the identifications

Ri D 1C tTiTiC1; i � 1; (1a)

and

Si D
p

tTiC1; i � 0; (1b)

where we incorporated in Ri a conventional term 1. Now we have at our disposal
explicit expressions for the generating function Ti , as obtained for instance by solving
the equation

Ti D 1

1� t .Ti�1 C Ti C TiC1/
; i � 1 (2)

with initial condition T0 D 0 (this equation simply expresses the recursive nature of
planted floating 2-mobiles, namely that a floating 2-mobile planted at a white vertex
labeled i may be viewed as a sequence of planted floating 2-mobiles – attached to
the root vertex via bivalent black vertices – having themselves a root label i � 1, i or
i C 1). From various techniques, it was found (see [5]) that

Ti D T
.1� yi /.1� yiC3/

.1� yiC1/.1� yiC2/
where T D 1C 3tT 2 and yC 1

y
C 1 D 1

tT 2
: (3)

Here, and for similar equations below, we always pick for T the solution satisfying
T D 1CO.t/ and for y the solution with modulus less than 1. Plugging this formula
in the expressions for Ri and Si above, we deduce, after simplification, that

Ri D R
.1� yiC1/.1� yiC3/

.1� yiC2/2
where R D 1C tT 2 (4)

and

Si D S
.1� yiC1/.1� yiC4/

.1� yiC2/.1� yiC3/

D S �p
Ry

�1 � yiC2

1 � yiC3
� 1 � yiC1

1 � yiC2

�
; where S D ptT:

(5)

Note that R D limi!1 Ri and S2 D limi!1 S2
i may be understood as the generat-

ing functions for pointed rooted maps whose root edge is of type .j �1; j / and .j; j /

respectively without bound on j . In particular, the generating function for pointed
rooted planar maps is 2.R � 1/C S2 D 3tT 2 D T � 1 which (from the Schaeffer
bijection for instance) is known to be half the generating function for pointed rooted
quadrangulations. This result could have been deduced directly from the “trivial”
bijection between general maps and quadrangulations.
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Let us finally compute the generating function Vi for vertex-pointed maps, enu-
merated with a weight t per edge, with an extra marked vertex at distance j � i

from the pointed vertex, with i � 1. Recall that such doubly-pointed maps (suppos-
edly drawn on the sphere) may present a k-fold symmetry by rotation around their
two marked vertices (supposedly drawn at antipodal positions). As customary, we
decide to enumerate maps with this k-fold symmetry with a symmetry factor 1=k.
Only with this definition has Vi a simple expression. As before, Vi may alternatively
be understood as the generating function (with symmetry factors) for vertex-pointed
2-hypermaps with an extra marked vertex labeled j � i under the geodesic label-
ing. From Theorem 2, these are in one-to-one correspondence with 2-mobiles with a
marked non-right-local-max vertex of the same label j . Shifting the labels by .i �j /

and summing over all j � i , Vi is the generating function for floating 2-mobiles with
a marked non-right-local-max vertex labeled i . Upon decomposing such a mobile at
the marked vertex, we obtain a cyclic sequence of planted subtrees, at least one of
them having root label i C 1, which translates into the expression

Vi D
X
k�1

t .t .Ti�1C Ti C TiC1//k

k
�

X
k�1

.t .Ti�1 C Ti //
k

k

D log
� 1� t .Ti�1C Ti /

1� t .Ti�1C Ti C TiC1/

�

D log.Ti.1 � t .Ti�1 C Ti///

D log.1C tTiTiC1/

D log.Ri /;

valid for i � 1 (the 1=k factors on the first line come from the fact that sequences of
subtrees differing by a cyclic shift must be identified).

3.1.2. Comparison with the continued fraction approach. It is interesting to com-
pare the explicit expressions (4) and (5) to those obtained from the continued fraction
approach developed in [8] for maps with a control of their face degrees. Note that
enumerating maps with a weight t per edge is equivalent to enumerating maps with
unbounded face degrees and a weight gk D tk=2 per face of degree k. The continued
fraction approach allows to write

Ri D R
uiuiC2

u2
iC1

(6a)

and

Si D S �pR
� QuiC2

uiC2

� QuiC1

uiC1

�
(6b)

where R and S2 have the same interpretation as above as pointed rooted map gener-
ating functions and where ui and Qui may be expressed in terms of .i C 1/ � .i C 1/
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Hankel determinants Hi and zHi (with the notation of [8], ui D Hi�2=R.i�1/.i�2/=2

and .i � 1/Sui �
p

R Qui D zHi�2=R.i�1/.i�2/=2). R and S are determined by the
system (see equation (1.6) in [8])

S D
1X

kD1

tk=2P.k � 1; R; S/; (7a)

R D 1C 1

2

1X
kD1

tk=2P.k; R; S/� S2

2
; (7b)

where P.k; R; S/ denotes the generating function of three-step paths, i.e., lattice
paths in the discrete Cartesian plane consisting of up-steps .1; 1/, level-steps .1; 0/

and down-steps .1;�1/, starting at .0; 0/ and ending at .k; 0/, with a weight S attached
to each level-step and a weight

p
R attached to each up- or down-step. The summation

over three-step paths yields immediately

S D pt.1 � 2
p

tS C t .S2 � 4R//�1=2;

R D 1C 1

2

� Sp
t
� 1

�
� S2

2
;

from which we deduce the explicit values

S D 1�p1 � 12t

6
p

t
;

R D 1C 12t �p1� 12t

18t
:

It is readily seen that these values coincide with the above expressions S D ptT and
R D 1C tT 2 for a function T given by

T D 1�p1 � 12t

6t

which is precisely the solution of T D 1C 3tT 2. This corroborates, as it should, our
results for R and S .

As for ui and Qui , it is known that, in the case of maps with bounded face degrees,
the related Hankel determinants may be expressed as symplectic Schur functions
whose variables are the solutions x of a characteristic equation; see equation (1.10)
in [8] (up to a x ! 1=x symmetry, this equation admits as many solutions as the
maximal allowed face degree minus 2). As such, ui and Qui may be expressed in
terms of determinants of a fixed size, independent of i . For unbounded face degrees
however, we have no such simplification a priori and in the present case, we have not
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been able to derive simple expressions for ui and Qui directly from their expressions
via Hankel determinants. Still it is instructive to write the characteristic equation

1 D
1X

kD2

tk=2

k�2X
qD0

P.k � 2� q; R; S/
�p

Rx C S C
p

R

x

�q

:

By exchanging the sums, it may be rewritten as

1 D t .1� 2
p

tS C t .S2 � 4R//�1=2

1 �pt
�p

Rx C S C
p

R

x

�

which, upon setting S D ptT and R D 1CtT 2, and using T D 1C3tT 2, simplifies
into

x2 C 1

x2
C 1 D 1

tT 2
:

Note that, up to obvious symmetries x ! �x and x ! 1=x, this equation determines
a unique solution. Moreover, comparing with our bijective results, we are led to the
identification x2 D y, while eqs. (4) and (5) show that ui D c�i .1 � x2iC2/ for
some (undetermined) c and � and Qui D c�ix.1� x2i / . It is remarkable that ui and
Qui admit such a simple form: this property still awaits a proper explanation in the
continued fraction approach.

3.1.3. Applications. As a simple application of the above formulas, we may com-
pute the average number of edges of type .i � 1; i/, .i; i/ or .i C 1; i/ in an infinitely
large vertex-pointed map, i.e., a vertex-pointed map with n edges in the limit n!1.
(Note that, in all rigor, our computation incorporates a symmetry factor 1=k to those
vertex-pointed maps having a k-fold symmetry. These symmetric maps are however
negligible in the large n limit.) The large n asymptotics is easily captured by the
singularity of the above generating functions when t ! 1=12. We have singularities
of the form

Ri jsing. � .1� 12t/3=2ıi ;

S2
i jsing. � .1� 12t/3=2�i ;

with values of ıi and �i easily computed from the exact expressions above for Ri

and Si . We immediately deduce the large n asymptotics Œtn�Ri � 12np
�n5=2

3
4
ıi and

Œtn�S2
i � 12np

�n5=2

3
4
�i , to be compared with the asymptotics 12n

2
p

�n5=2 for the number

of vertex-pointed maps (as obtained for instance via Œtn�.2RCS2/=.2n/). This leads
to the following expressions for the average numbers of edges of type .i � 1; i/, .i; i/
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and .i C 1; i/, respectively

ei�1;i D 3

2
.ıi � ıi�1/

D i.i C 3/.2i C 3/
�
5i4 C 30i3 C 67i2 C 66i C 28

�
35.i C 1/2.i C 2/2

;

ei;i D 3

2
.�i � �i�1/

D 2Ei

35.i C 1/2.i C 2/.i C 3/2

withEi D 5i8C80i7C537i6C1964i5C4251i4C5528i3C4175i2C1660iC280,

eiC1;i D ei;iC1

D 3

2
.ıiC1 � ıi/

D .i C 1/.i C 4/.2i C 5/.5i4 C 50i3 C 187i2 C 310i C 196/

35.i C 2/2.i C 3/2
;

for i � 0. We have in particular an average number e0;1 D 28=9 (resp. e0;0 D 8=9) of
half edges incident to the pointed vertex whose complementary half edge is incident
to a distinct (resp. the same) vertex. These two numbers add up to 4, as expected
since a large map has asymptotically 4 times more half edges than vertices. From the
singularity

log.Ri /jsing. � .1 � 12t/3=2�i

we easily deduce the average number of vertices at distance i from the pointed vertex
in infinitely large vertex-pointed maps:

vi D 3

2
.�i � �i�1/ D 3

280
.2i C 3/.10i2 C 30i C 9/; for i � 1.

3.2. The two-point function of bipartite maps. We may now easily play the same
game with general bipartite maps, which, upon blowing their edges into dark faces
of degree 2, are nothing but general 2-constellations.

3.2.1. Computation from the bijective approach. Considering a pointed rooted
bipartite map, its root edge is now necessarily of type .j � 1; j / or .j C 1; j / for
some j . We use the same notation Ri � Ri.t / to now denote the generating function
of pointed rooted bipartite maps enumerated with a weight t per edge, whose root edge
is of type .j �1; j / for j � i . This is also the generating function for vertex-pointed
and rooted 2-constellations, with a weight t per dark face, and a root face of ccw-type
� D .j; j � 1/ for j � i if we endow the constellation with its geodesic labeling.
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From Proposition 3, the later are in one-to-one correspondence with 2-descending
mobiles with a marked black vertex of cw-type �" D .j; j C 1/, j � i .

Denoting Ti D Ti .t / the generating function of floating (i.e., with arbitrary posi-
tive minimal label) 2-descending mobiles planted at a white vertex labeled i , enumer-
ated with a weight t per black vertex, we deduce immediately the same identification
as before

Ri D 1C tTiTiC1 i � 1: (8)

The generating function Ti is now obtained by solving the equation

Ti D 1

1� t .Ti�1C TiC1/
; i � 1

with initial condition T0 D 0, and one finds [6]

Ti D T
.1� yi /.1� yiC4/

.1� yiC1/.1� yiC3/
; where T D 1C 2tT 2 and y C 1

y
D 1

tT 2
: (9)

This leads, after simplification, to

Ri D R
.1� yiC1/.1 � yiC4/

.1� yiC2/.1 � yiC3/
; where R D 1C tT 2:

We may also compute along the same lines as before the generating function Vi

for vertex-pointed bipartite maps, enumerated with a weight t per edge, with an extra
marked vertex at distance j � i from the pointed vertex, with i � 1. Following the
same chain of arguments as above, we have

Vi D
X
k�1

.t .Ti�1C TiC1//k

k
�

X
k�1

.tTi�1/k

k

D log
� 1 � tTi�1

1 � t .Ti�1 C TiC1/

�

D log.Ti .1� tTi�1//

D log.1C tTiTiC1/

D log.Ri /;

valid for i � 1. Note that the relation between Vi and Ri is unchanged when
going from general to bipartite maps. It holds for all classes of maps and hypermaps
described here, as a consequence of the general BDG bijection; see [7], p. 12 and
p. 21.
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3.2.2. Comparison with the continued fraction approach. Again, part of this
result may be re-derived from the approach of [8] by noting that enumerating bipartite
maps with weight t per edge amounts to enumerating bipartite maps with unbounded
even face degrees and with a weight tk per 2k-valent face. The generating function
R is obtained in this framework via

R D 1C
X
k�1

tk

�
2k � 1

k � 1

�
Rk D 1Cp1 � 4tR

2
p

1 � 4tR
I (10)

namely

R D 1�p1 � 8t C 4t

8t
:

This expression is compatible with R D 1C tT 2 for

T D 1 �p1� 8t

4t

which is the solution of T D 1C2tT 2, as wanted. For bipartite maps, the generating
function Ri is now expected to take the form [5]

Ri D R
uiuiC3

uiC1uiC2

(11)

and the characteristic equation reads

1 D
1X

kD1

tkRk�1

k�1X
qD0

�
2k � 2� 2q

k � 1 � q

��
x C 1

x

�2q

D t .1� 4tR/�1=2

1� tR
�
x C 1

x

�2
:

Setting R D 1C tT 2 and using T D 1C 2tT 2, this simplifies into

x2 C 1

x2
D 1

tT 2

which again allows us to identify x2 D y and deduce the simple form

ui D c�i .1� x2iC2/

for some c and �. Getting this expression for ui via the continued fraction approach
is still an open question.
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3.2.3. Applications. Again, we may compute the average number of edges of type
.i � 1; i/ or .i C 1; i/ in an infinitely large vertex-pointed bipartite map, as well as
the average number of vertices at distance i . We find

ei�1;i D 2i.i C 4/.10i4 C 80i3 C 233i2 C 292i C 141/

105.i C 1/.i C 2/.i C 3/

and

eiC1;i D ei;iC1

D 2.i C 1/.i C 5/.10i4 C 120i3 C 533i2 C 1038i C 756/

105.i C 2/.i C 3/.i C 4/
;

for i � 0, and

vi D 4

315
.i C 2/.10i2 C 40i C 13/;

for i � 1. We have in particular an average number e0;1 D 3 of half edges incident to
the pointed vertex, as expected since a large bipartite map has asymptotically 3 times
more half edges than vertices (this is easily seen from the “trivial” bijection between
bipartite maps and Eulerian triangulations).

3.2.4. The two-point functions of general hypermaps. The recourse to 2-descend-
ing mobiles used above for the computation of the two-point function of bipartite maps
turns out to be also helpful to compute the two-point function of general hypermaps.
Recall that in vertex-pointed hypermaps, each vertex v is labeled by the length of
a shortest path from the pointed vertex to v and having only dark faces to its right.
Upon using Remark 4, it can be shown that the generating function Ri D Ri .t / of
vertex-pointed general hypermaps with a marked edge of type .j � 1; j / for j � i

(hence with a dark face on the right of the edge), enumerated with a weight t per
edge of the hypermap, is identical to that of 2-descending mobiles with a marked
triple of consecutive white labeled vertices of labels .j; j C 1; j C 2/ with j � i ,
with a weight t per black vertex. A proof of this statement is given just below. The
two-point function Ri therefore reads

Ri D 1C t2TiTiC1TiC2; (12)

i � 1, with Ti as in (9) (again we incorporate in Ri a conventional term 1). Using
the explicit form of Ti , we immediately deduce the factorized form

Ri D R
.1� yiC2/.1� yiC4/

.1 � yiC3/2
where R D 1C t2T 3:

As for vertex-pointed general hypermaps with a marked edge of a type different from
.j �1; j /, we have no simple expression for their generating function. Equation (12)
is a consequence of the following claim.
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Claim 6. In the bijection of Remark 4 between vertex-pointed hypermaps (endowed
with their geodesic labeling) and 2-descending mobiles, each edge .i � 1; i/ of the
hypermap corresponds to a triple of consecutive white labeled vertices of labels
.i; iC 1; iC 2/ in counterclockwise order around the mobile. And the vertex of label
i of the edge identifies to the vertex of label i of the triple.

Proof. Recall that the bijection can be seen as the composition of 3 correspondences,
see Figure 16: (1) between vertex-pointed hypermaps and vertex-pointed bipartite
maps (Proposition 2), (2) between vertex-pointed bipartite maps and vertex-pointed
stretched quadrangulations, (3) between vertex-pointed stretched quadrangulations
and 2-descending mobiles (the composition of (2) and (3) corresponding to Proposi-
tion 3, upon identifying bipartite maps with 2-constellations).

Figure 16. Local rules for the correspondence between a vertex-pointed hypermap H and a
2-descending mobile T , via a vertex-pointed bipartite map B and a vertex-pointed stretched
quadrangulation Q. The top-line shows that an edge .i�1; i/ of H corresponds to a consecutive
triple .i � 1; i; i C 1/ in clockwise order around a face of B .

We have to study how an edge .i � 1; i/ of the hypermap is transported through
each of the 3 steps. Given the local rules of ˆ� (see Figure 16), it is clear that each
edge .i � 1; i/ of a vertex-pointed hypermap corresponds to a triple of consecutive
vertices of labels .i � 1; i; i C 1/ in clockwise order around a face of the associated
vertex-pointed bipartite map. To look at the parameter-correspondence in steps (2)
and (3) we find it simpler to take the point of view of stretched quadrangulations. Let
Q be a vertex-pointed stretched quadrangulation, B the corresponding vertex-pointed
bipartite map. Each non local max vertex v of label i in Q identifies to a vertex of
label i in B . By the local rules of ˆ�, a corner c of Q at v yields an edge e of B
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incident to v if and only if the neighbor (in Q) of v on the left side of c has label
i C 1, and in that case the other extremity of e has same label as the neighbor (in Q)
of v on the right side of c. It easily follows that each clockwise-consecutive triple
.i � 1; i; iC 1/ in B corresponds in Q to a vertex v of label i together with a triple of
(clockwise) consecutive neighbors of v of labels .i C 1; i C 1; i � 1/. Regarding Q,
define an .i�1/-sector of v as a corner at v upon removing the edges .i; iC1/ around
v; note that clockwise-consecutive triples of neighbors of labels .i C 1; i C 1; i � 1/

around v are in 1-to-1 correspondence with .i � 1/-sectors (around v) of multiplicity
strictly larger than 1 (the multiplicity being the number of removed .i; i C 1/ edges).
Now we can discuss step (3) of the bijection. Let T be the 2-descending mobile
associated to Q. By the local rules of ˆ, each .i � 1/-sector s at v yields exactly one
edge of T (in the first corner in clockwise order around the sector). In addition, as
shown in Figure 17, this edge leads to a white vertex w of label i � 1 (resp. i C 1)
if s has multiplicity 0 (resp. > 0), and in the second case the next vertex after w

(in counterclockwise order around the mobile) has label i (resp. i C 2) if s has
multiplicity 1 (resp. > 1). This concludes the proof.

Figure 17. The 3 cases for an .i � 1/-sector at a vertex of label i in Q: multiplicity 0, 1 and
� 2, respectively. The second case can take the degenerated form where the faces on each side
of the edge .i; i C 1/ are the same, in which case w is a leaf of the 2-descending mobile. In
the third case, the successor of w of label i C 2 around the mobile is generically defined as the
unique neighbor x of w such that the neighbor preceding x (in clockwise order around w) has
label i and all neighbors of w between x and y have label i C 2.

3.3. The two-point function of 3-hypermaps. Consider now a vertex-pointed and
rooted 3-hypermap (recall that the root edge is oriented so as to have the dark incident
face – the root face – on its right). We wish to enumerate such 3-hypermaps endowed
with their geodesic labeling and with their root face of ccw-type .j1; j2; j3/. By
convention, when giving the type of the root face, we shall always start the cyclic se-
quence from the endpoint of the root edge (in particular, the root edge has its origin and
endpoint at respective distances j2 and j1 from the pointed vertex). Note that the only
possible ccw-types for the root face are of the form .j; j�1; j �2/, .j; j � 1; j � 1/,
.j; j � 1; j /, .j; j � 1; j C 1/, .j; j; j � 1/, .j; j; j /, .j; j; j C 1/, .j; j C 1; j /,
.j; j C 1; j C 1/ and .j; j C 2; j C 1/ for some j . We call Ri1;i2;i3 D Ri1;i2;i3.t /
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the generating function for vertex-pointed and rooted 3-hypermaps, enumerated with
a weight t per dark face, whose root face is of ccw-type � D .i1�m; i2�m; i3�m/

for some m � 0 (clearly m � min.i1; i2; i3/ by definition and the allowed values
of .i1; i2; i3/ have the same form as the ccw-types listed above). Note that, in a
3-hypermap, the number of edges is three times the number of dark faces, so our
counting amounts to attaching a weight t1=3 to each edge.

From Theorem 2, these 3-hypermaps are in one-to-one correspondence with 3-
mobiles with a marked black vertex of cw-type �", one of its incident half-edges
being distinguished. Note that the labels encountered in the sequence �" are precisely
i1 � m C 1, i2 � m C 1 and i3 � m C 1 (with a prescribed order of appearance).
Hence, gathering all cases for all m � 0 and shifting the labels by m, we end up with
floating 3-mobiles with a marked black vertex adjacent to white vertices with labels
i1 C 1, i2 C 1 and i3 C 1 in a prescribed order. This allows to write, for the allowed
values of .i1; i2; i3/

Ri1;i2;i3 D tTi1C1Ti2C1Ti3C1

where Ti is the generating function of floating 3-mobiles planted at a white vertex
with label i . This later generating function is easily shown to satisfy

Ti D 1

1 � Ti

;

where

Ti D t .Ti�2Ti�1CT 2
i�1C2Ti�1TiCT 2

i CTi�1TiC1C2TiTiC1CT 2
iC1CTiC1TiC2/;

for i � 1 with initial conditions T0 D 0 and T�1T0 D 0. This equation expresses that
a floating 3-mobiles planted at a white vertex labeled i may be viewed as a sequence
of pairs of planted floating 3-mobiles – attached to the root vertex via trivalent black
vertices – with appropriate root labels. As explained in [5], Section 6.1, and in [8],
we have the explicit formula

Ti D T
vi.y1; y2/viC3.y1; y2/

viC1.y1; y2/viC2.y1; y2/
; where T D 1C 10tT 3:

Here y1 and y2 are the two solutions (with modulus less than 1) of

y2 C 6y C 6C 6

y
C 1

y2
D 1

tT 3

(note that, in particular y1 and y2 are related by y1C y�1
1 C y2C y�1

2 C 6 D 0) and
vi.y1; y2/ denotes

vi .y1; y2/ D 1� 1 � y1y2

y1 � y2

yiC1
1 � 1� y1y2

y2 � y1

yiC1
2 � yiC1

1 yiC1
2 :

Consider now a vertex-pointed and rooted 3-hypermap and concentrate on the type
of its root edge, defined as the pair .k; j / of the respective distances of its origin
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and of the endpoint from the pointed vertex. In particular, we denote as in previous
sections by Ri � Ri .t /, i � 1 the generating function for vertex-pointed and rooted
3-hypermaps with a root edge is of type .j � 1; j / for j � i . Listing the possible
corresponding ccw-type of the root face, namely .j; j � 1; j � 2/, .j; j � 1; j � 1/,
.j; j � 1; j / or .j; j � 1; j C 1/, we deduce

Ri D 1CRiC1;i;i�1 CRiC1;i;i CRiC1;i;iC1CRiC1;i;iC2

D 1C tTiTiC1.Ti�1 C Ti C TiC1 C TiC2/

with, as before, a conventional term 1. After some tedious calculations, we find, using
the above mentioned relation between y1 and y2, the remarkable simplification

Ri D R
viC1.y1; y2/viC3.y1; y2/

.viC2.y1; y2//2
where R D 1C 4tT 3:

We may finally compute the generating function Vi for vertex-pointed 3-hypermaps,
enumerated with a weight t per dark face, with an extra marked vertex at distance
j � i from the pointed vertex, with i � 1 (again with their symmetry factor). From
Proposition 3, Vi is the generating function for floating 3-mobiles with a marked
non-right-local-max vertex labeled i and we may write

Vi D
X
k�1

Tk
i � .t .Ti�2Ti�1 C T 2

i�1 C 2Ti�1Ti C T 2
i C TiTiC1//k

k

D log.Ti.1 � t .Ti�2Ti�1 C T 2
i�1 C 2Ti�1Ti C T 2

i C TiTiC1///

D log.1C tTiTiC1.Ti�1 C Ti C TiC1 C TiC2//

D log.Ri/;

valid for i � 1 (the subtracted term removes configurations where the root vertex
would be a right-local max). We thus recover the same relation Vi D log.Ri / as in
previous sections, as expected.

3.4. The two-point function of 3-constellations. Consider finally vertex-pointed
and rooted 3-constellations endowed with their geodesic labeling, whose root face
is of ccw-type .i1 � m; i2 � m; i3 � m/ for some m � 0 and denote again by
Ri1;i2;i3 D Ri1;i2;i3.t / their generating function. The possible values of .i1; i2; i3/

are now restricted to .i; i � 1; i � 2/, .i; i � 1; i C 1/ and .i; i C 2; i C 1/ for some i .

3.4.1. Computation from the bijective approach. From Proposition 3, vertex-
pointed and rooted 3-constellations with root face of ccw-type � are in one-to-one
correspondence with 3-descending mobiles with a marked black vertex of cw-type
�", one of its incident half-edges being distinguished. By the same argument as
before, we find

Ri1;i2;i3 D tTi1C1Ti2C1Ti3C1
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for the allowed values of .i1; i2; i3/. Here Ti denotes the generating function for
floating 3-descending mobiles planted at a white vertex labeled i . It satisfies

Ti D 1

1 � t .Ti�2Ti�1 C Ti�1TiC1 C TiC1TiC2/

for i � 1 with initial conditions T0 D 0 and T�1T0 D 0. The solution of this equation
was found (in the context of Eulerian quadrangulations viewed as a particular case
of 4-constellations; see [5] and [12]) to be

Ti D T
vi .y1; y2/viC5.y1; y2/

viC1.y1; y2/viC4.y1; y2/
; where T D 1C 3tT 3:

Here y1 and y2 are the two solutions (with modulus less than 1) of

y2 C 2y C 2

y
C 1

y2
D 1

tT 3

(note that, in particular y1 and y2 are related by y1C y�1
1 C y2C y�1

2 C 2 D 0) and
vi.y1; y2/ now denotes

vi .y1; y2/ D 1� p1 � y4
1p2

p1 � p2

yi
1 �

p2 � y4
2p1

p2 � p1

yi
2 C

y4
2p1 � y4

1p2

p1 � p2

yi
1yi

2;

where

p1 D y1 C y2
1 C y3

1 and p2 D y2 C y2
2 C y3

2 :

We may as before concentrate on the type of the root edge only and look for instance
at the generating function Ri � Ri.t /, i � 1 for vertex-pointed and rooted 3-
constellations with a root edge of type .j � 1; j / for j � i . By listing the possible
ccw-type of the root face, namely .j; j � 1; j � 2/ and .j; j � 1; j C 1/, we obtain

Ri D 1CRiC1;i;i�1 CRiC1;i;iC2

D 1C tTiTiC1.Ti�1 C TiC2/

with, as before, a conventional term 1. We find the remarkable simplification

Ri D R
viC1.y1; y2/viC5.y1; y2/

viC2.y1; y2/viC4.y1; y2/
; where R D 1C 2tT 3:

We may as before evaluate the generating function Vi for vertex-pointed 3-constella-
tions, enumerated with a weight t per dark face, with an extra marked vertex at distance
j � i from the pointed vertex, with i � 1 (with symmetry factors). Repeating the
arguments of previous Sections, we again have the relation Vi D log.Ri /.
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3.4.2. Comment on the form of the two-point function. Let us now comment on
the respective forms of Ti and Ri : first we note that the indices involved in the re-
spective bi-ratios of v’s match what we expect for constellations. As discussed in [5],
and in [12], we expect the two-point function for pointed rooted p-constellations to
display a bi-ratio of the form .Ui=UiC1/=.UiCp=UiCpC1/. The observed form of Ti

is thus typical of 4-constellations (with Ui  ! vi ) in agreement with the fact that,
from the BDG bijection, Ti may be interpreted as a two-point function for 4-regular
constellations (i.e., Eulerian quadrangulations). As for the form of Ri , it is typical
of 3-constellations (with Ui  ! viC1) as it should. A second remark concerns
the precise value of the function vi.y1; y2/. Its observed form is characteristic of
4-constellations while, for a 3-constellation, one would have expected instead in [5]
and in [12]

vi .y1; y2/ D 1� p0
1 � y3

1p0
2

p0
1 � p0

2

yi
1 �

p0
2 � y3

2p0
1

p0
2 � p0

1

yi
2 C

y3
2p0

1 � y3
1p0

2

p0
1 � p0

2

yi
1yi

2;

where
p0

1 D y1 C y2
1 ; and p0

2 D y2 C y2
2 :

Remarkably enough, the two expressions do coincide whenever y1 C y�1
1 C y2 C

y�1
2 C2 D 0, which is precisely the above mentioned condition satisfied by y1 and y2

in the solution for Ti . In other words, the observed form for vi.y1; y2/ matches both
that expected for 4-constellations and that expected for 3-constellations, a non-trivial
property. Note that the relation between y1 and y2 (and therefore the coincidence of
the two expressions for vi ) holds only when dealing with a very specific family of
4-constellations, namely the 4-regular ones.

This property generalizes as follows: the expected form for the two-point func-
tion Ri for a p-constellation is (see [5] and [12])

Ri D R
viviCpC1

viC1viCp

where vi D vi.y1; y2; � � � ; ym/ takes the form

vi.y1; y2; � � � ; ym/ D
X

I�f1;2;��� ;mg

Y
k2I

�kyi
k

Y
k;k02I

.p
.p/

k
� p

.p/

k0 /.q
.p/

k
� q

.p/

k0 /

.p
.p/

k
� q

.p/

k0 /.q
.p/

k
� p

.p/

k0 /
:

Here the sum is over all subsets I of f1; 2; � � � ; mg. The quantities yi are the solutions
(with modulus less than one) of a characteristic equation depending on the problem
at hand (and their number m depends on the problem too) and the �k are fixed by
demanding v0 D v

1
D v�2 D � � � D v�mC1 D 0. Finally, p

.p/

k
and q

.p/

k
are defined

as

p
.p/

k
D yk C y2

k C � � � C y
p�1

k
and q

.p/

k
D y�1

k C y�2
k C � � � C y

�pC1

k
:
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The reader will easily check that all the specific expressions given above for 2-, 3-,
and 4-constellations are indeed of this form. Now, from our bijections, the two-point
function Ri in the case of p-constellations enumerated with a weight t per dark face
is easily expressed in terms of the generating function Ti for descending p-mobiles
with a weight t per black vertex, which is itself the two-point function for a particular
instance of .p C 1/-constellations, namely .p C 1/-regular constellations (i.e., with
all their dark and light faces of degree .pC 1/), enumerated with a weight t per dark
face. As such, Ti takes the form expected for a .pC 1/-constellation (with moreover
m D p � 1 in this case)

Ti D T
viviCpC2

viC1viCpC1

(with T solution of T D 1 C tpT p in this case) where vi D vi.y1; y2; � � � ; yp�1/

now reads

vi .y1; y2; � � � ; yp�1/

D
X

I�f1;2;��� ;p�1g

Y
k2I

�kyi
k

Y
k;k02I

.p
.pC1/

k
� p

.pC1/

k0 /.q
.pC1/

k
� q

.pC1/

k0 /

.p
.pC1/

k
� q

.pC1/

k0 /.q
.pC1/

k
� p

.pC1/

k0 /
:

The reader may again check that the specific expressions given above for 3- and
4-regular constellations are indeed of this form. It is tempting to conjecture that the vi

appearing in Ri is the same as that appearing in Ti (we have seen above that this holds
for p D 2 and p D 3) and that the precise relation between Ri and Ti is responsible
for the change of indices in the involved bi-ratios. As a check of consistency for
this conjecture to hold for general p, we can verify that vi .y1; y2; � � � ; yp�1/, as
given just above, may be rewritten in the form expected for a p-constellation, which
requires, for all pairs fyk; yk0g of distinct solutions of the characteristic equation for
.pC 1/-regular constellations,

.p
.pC1/

k
� p

.pC1/

k0 /.q
.pC1/

k
� q

.pC1/

k0 /

.p
.pC1/

k
� q

.pC1/

k0 /.q
.pC1/

k
� p

.pC1/

k0 /
D .p

.p/

k
� p

.p/

k0 /.q
.p/

k
� q

.p/

k0 /

.p
.p/

k
� q

.p/

k0 /.q
.p/

k
� p

.p/

k0 /
: (13)

The later reads explicitly

H.y/ �
p�1X
kD1

.p � k/
�
yk C 1

yk

�
D 1

tT p
; where T D 1C ptT p:

To prove (13), we note, using y
p

k
q

.p/

k
D p

.p/

k
, that

.p
.p/

k
� p

.p/

k0 /.q
.p/

k
� q

.p/

k0 /

.p
.p/

k
� q

.p/

k0 /.q
.p/

k
� p

.p/

k0 /
D a

.p/

kk0 C a
.p/

k0k
� 1

a
.p/

kk0a
.p/

k0k
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where

a
.p/

kk0 D
y

p

k0p
.p/

k
� p

.p/

k0

p
.p/

k
� p

.p/

k0

so (13) is satisfied if a
.p/

kk0 D a
.pC1/

kk0 , or equivalently

0 D .y
p

k0p
.p/

k
� p

.p/

k0 /.p
.pC1/

k
� p

.pC1/

k0 / � .y
pC1

k0 p
.pC1/

k
� p

.pC1/

k0 /.p
.p/

k
� p

.p/

k0 /

D .ykyk0/p.1� yk0/.H.yk/ �H.yk0//;

which holds precisely whenever yk and yk0 are two solutions of the characteristic
equation, since H.yk/ D H.yk0/ in this case. That the passage from Ti to Ri induces
the wanted change of indices in the involved bi-ratios of vi is far from obvious and we
have not found any simple argument that would explain this property for general p.

4. Two-point functions depending on two parameters

So far, we have not exploited the full power of the bijection of Theorem 2, and in
particular the property that it transforms the faces of a (hyper)map into right local
max of the corresponding mobile. In this section, we will use this property in order
to derive the two-point function of general planar maps and bipartite planar maps
counted according to two size parameters: the number of edges and the number of
faces. (Note that the number of vertices is then fixed by Euler’s relation.)

The case of general planar maps was actually first treated in [1], Section 5, but
we will recall its derivation for completeness.

4.1. The two-point function of general maps with edge and face weights. Our
purpose is to obtain a generalization of the two-point function of general maps derived
in Section 3.1 depending on two formal variables: the previous weight t per edge,
and an extra weight z per face. We still denote by Ri � Ri .t; z/, i � 1 (resp.
S2

i � Si.t; z/2, i � 0) the generating function of pointed rooted maps whose root
edge is of type .j � 1; j / (resp. .j; j /) for j � i .

By Theorem 2, these generating functions may alternatively be understood as
counting some floating 2-mobiles, and the variable z now plays the role of a weight
per right local max. Note that, upon removing the bivalent black vertices, a right
local max is nothing but a vertex having no neighbor with strictly larger label. We
still denote by Ti � Ti .t; z/ the generating function of floating 2-mobiles planted
at a white vertex labeled i , with this extra variable. In order to extend (2) to the
case z ¤ 1, we shall introduce another generating function Ui � Ui .t; z/ counting
the same objects, but where the root vertex does not receive the weight z if it is a
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local max. We then have the equations

Ti D z C t .TiUi�1 C T 2
i C UiTiC1/; (14a)

Ui D 1C t .UiUi�1 C Ui Ti C UiTiC1/; (14b)

with initial data T0 D U0 D 0, which are obtained by a straightforward recursive de-
composition. Clearly, these equations admit a unique solution in the set of sequences
of formal power series in t and z.

Ambjørn and Budd derived these equations in a slightly different form and, re-
markably, found an exact expression for their solution. It takes the form of equa-
tion (26) in [1]

Ti D T
.1� yi /.1� ˛2yiC3/

.1 � ˛yiC1/.1� ˛yiC2/
; (15a)

Ui D U
.1� yi /.1� ˛yiC3/

.1� yiC1/.1� ˛yiC2/
; (15b)

where T , U , y and ˛ may be determined by the condition that this ansatz satisfies the
equations. In practice, substituting (15) into (14) yields a system of two equations of
the form

Ps.t; z; T; U; y; ˛; yi/ D 0; s D 1; 2; (16)

where P1; P2 are seven-variable polynomials that are independent of i . Thus, ex-
panding P1; P2 with respect to the last variable, all the coefficients should vanish
identically, which yields a system of algebraic equations relating t; z; T; U; y; ˛.
Miraculously, this system defines a two-dimensional variety, which allows to de-
termine the “unknowns” T; U; y; ˛ as algebraic power series in the variables t and
z. Of course, we find that T and U are nothing but the constant solutions of (14),
namely they are specified by the tree equations

T D z C t .T 2 C 2T U /; (17a)

U D 1C t .2T U C U 2/; (17b)

while we find that y and ˛ are obtained by inverting the relations

t D y.1 � ˛y/3.1� ˛y3/

.1C y C ˛y � 6˛y2 C ˛y3 C ˛2y3 C ˛2y4/2
; (18a)

z D ˛.1� y/3.1 � ˛2y3/

.1 � ˛y/3.1� ˛y3/
: (18b)

The first few terms of y and ˛ read

y D t C .2C 5z/t2 C .5C 31z C 23z2/t3

C .14C 153z C 275z2 C 102z3/t4 C : : :
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and

˛ D z C 3z.1� z/t C 3z.1� z/.4C z/t2

C z.1 � z/.49C 51z C 4z2/t3 C : : : ;

and it can be shown that y and ˛ are indeed series in t whose coefficients are polyno-
mials in z with integer coefficients. Furthermore, it appears that all coefficients of y

and ˛y are nonnegative, which suggests a possible combinatorial interpretation. For
bookkeeping purposes, let us mention the nice relations

U

T
D .1� ˛y/2

˛.1� y/2

and

tT 2 D ˛2y.1 � y/4

.1� ˛y/3.1� ˛y3/
:

Recalling now the actual mobile interpretation of the generating functions Ri and
Si of Section 3.1, we easily obtain the expressions

Ri D 1C tUiTiC1; i � 1;

Si D
p

tTi ; i � 0;

which extend (1) in the case z ¤ 1. Interestingly, we find that Ri reads

Ri D R
.1� ˛yiC1/.1� ˛yiC3/

.1� ˛yiC2/2

where

R D 1C tU T D .1 � ˛y2/2

.1� ˛y/.1� ˛y3/
;

which naturally matches the form (6) expected from the continued fraction approach,
since our problem now amounts to considering maps with a weight gk D ztk=2 per
face of degree k. As for Si , it might also be written in the form (6), albeit in a non-
unique manner. We might also repeat the exercise of Section 3.1.2 and check that R

and S D ptT satisfy the relations

S D z

1X
kD1

tk=2P.k � 1; R; S/; (19a)

R D 1C z

2

1X
kD1

tk=2P.k; R; S/� S2

2
; (19b)

extending (7). Doing a full derivation of the two-point functions from the continued
fraction approach is a challenging open question.
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4.2. The two-point function of bipartite maps with edge and face weights. We
may attempt the same approach in the case of bipartite maps, to obtain a two-variable
generalization of the two-point function derived in Section 3.2. Let Ri � Ri.t; z/,
i � 1, be the generating function of pointed rooted bipartite maps whose root edge
is of type .j � 1; j /, j � i , counted with a weight t per edge and z per face. By
Proposition 3, such maps are in bijection with some floating 2-descending mobiles,
with z a weight per (right) local max. Denote again by Ti � Ti .t; z/ (resp. Ui �
Ui .t; z/) the generating functions of floating 2-descending mobiles planted at a white
vertex labeled i , counted with a weight t per black vertex and z per right local max
(resp. right local max distinct from the root vertex). We now find the recursive
decomposition equations

Ti D z C t .TiUi�1 C UiTiC1/; (20a)

Ui D 1C t .UiUi�1 C UiTiC1/; (20b)

with initial data T0 D U0 D 0.
Inspired by the Ambjørn-Budd solution (15) for general maps and by the form (9)

for Ti D Ui at z D 1, we make the ansatz

Ti D T
.1� yi /.1� ˛2yiC4/

.1 � ˛yiC1/.1� ˛yiC3/
; (21a)

Ui D U
.1� yi /.1� ˛yiC4/

.1� yiC1/.1� ˛yiC3/
: (21b)

Repeating the same strategy as in the previous section we find, miraculously again,
that there exists T , U , y and ˛ which are algebraic power series in t and z such that
the ansatz satisfies the equations. As expected T and U are specified by

T D z C 2tT U; (22a)

U D 1C tU.T C U /; (22b)

while y and ˛ are obtained by inverting

t D y.1 � ˛y/2.1� ˛y4/

.1C y/2.1 � ˛y2/3
; (23a)

z D ˛.1 � y/2.1 � y2/.1C ˛y2/

.1� ˛y/2.1� ˛y4/
: (23b)

We note that T and U are parametrized in terms of y and ˛ by

T D ˛.1� y2/2.1 � ˛y2/

.1 � ˛y/2.1 � ˛y4/
; (24a)

U D .1C y/.1� ˛y2/2

.1 � ˛y/.1 � ˛y4/
(24b)



On the two-point function of general planar maps and hypermaps 303

and that the first few terms of y and ˛ read

y D t C 2.1C z/t2 C .5C 13z C 3z2/t3 C .14C 66z C 40z2 C 4z3/t4 C : : : ;

and
˛ D z C 2z.1� z/t C z.1 � z/.8� z/t2 C 32z.1� z/t3 C : : : :

(It can again be shown that y and ˛ are series in t whose coefficients are polynomials in
z with integer coefficients, and it seems that all coefficients of y and ˛y are positive.)

By the mobile interpretation of Ri explained in Section 3.2, we have

Ri D 1C tUiTiC1

which extends (8) for z ¤ 1. We deduce that

Ri D R
.1� ˛yiC1/.1� ˛yiC4/

.1� ˛yiC2/.1� ˛yiC3/

where

R D 1C tU T D .1� ˛y2/.1� ˛y3/

.1� ˛y/.1� ˛y4/
;

which matches the form (11) expected for the two-point function of a family of
bipartite maps, according to the continued fraction approach (our weighting scheme
is indeed equivalent to attaching a weight ztk to each face of degree 2k).

Finally, by a straightforward generalization of the arguments given in Section 3.2.4,
we may compute the generating function Ri D Ri .t; z/ of vertex-pointed general
hypermaps with a marked edge of type .j � 1; j / for j � i , enumerated now with
both a weight t per edge of the hypermap and a weight z per dark face. It simply
reads

Ri D 1C t2UiUiC1TiC2; i � 1

(with as before a conventional term 1). Using the explicit form of Ti and Ui above,
we arrive at the factorized form

Ri D R
.1� ˛yiC2/.1� ˛yiC4/

.1� ˛yiC3/2

where

R D 1C t2U 2T:

5. Conclusion

In this paper, we made extensive use of bijections to obtain the two-point function
for a number of families of maps and hypermaps with unbounded faces degrees. We
now list a few remarks and discuss possible extensions of our work, as well as open
questions.
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First, we have found that the two-point function Ri of general maps (resp. bipartite
maps) counted by their number of edges is closely related to that of quadrangulations
(resp. 3-regular constellations, i.e., Eulerian triangulations), counted by their number
of faces (resp. dark faces). Indeed, we have Ri D 1C tTiTiC1 where Ti , given by (3)
(resp. (9)), and defined as a mobile generating function, can also be viewed as the
two-point function for quadrangulations (resp. Eulerian triangulations), see [6]. As
a consequence, it is easily checked that these quantities are the same in the scaling
limit, namely the continuum two-point function '.r/ of general maps (resp. bipartite
maps)

'.r/ D lim
n!1

Œtn�Rbrn1=4c
Œtn�R

coincides with that of quadrangulations (resp. Eulerian triangulations), which reads
explicitly [5]

'.r/ D lim
n!1

Œtn�Tbrn1=4c
Œtn�T

D 4p
�

Z 1

0

d��2e��2
�
1 � 6

1 � cosh.ar
p

�/ cos.ar
p

�/

.cosh.ar
p

�/ � cos.ar
p

�//2

�

with a D p3 (resp. a D p2). Recall that '.r/ is known to coincide with the density
of the supremum of the support of the Integrated Super-Brownian Excursion (ISE);
see [11], [5], and [4]. Note that '.r/ with a D p2 is also the continuum two-point

function of general hypermaps '.r/ D limn!1
Œtn�R

brn1=4c

Œtn�R
. The equality of the

two-point functions of general maps and quadrangulations in the scaling limit sug-
gests the stronger property that these metric spaces are asymptotically the “same”
(note that in both cases, the two-point function corresponds to the actual, symmetric,
graph distance). Precisely, we conjecture that the Ambjørn-Budd bijection defines
a coupling between uniform planar maps with n edges and uniform planar quadran-
gulations with n faces such that their Gromov-Hausdorff distance is asymptotically
almost surely negligible with respect to n1=4. Since the latter are known to converge
to the Brownian map (see [15] and [13]), the convergence of the former would follow.
(Addendum to the final version: this result has now been proved in [3].)

Second, we have shown that the two-point functions of general and bipartite maps
match the form expected from the continued fraction approach. It would be interesting
to have a full independent rederivation of our results via this approach. This requires
the computation of Hankel determinants of growing size: in the context of maps
with bounded face degrees; see [8], this was made through an identification of these
determinants as symplectic Schur functions. Here no such reduction is available and
this is therefore a challenging question.

Third, we have exhibited in Section 4 explicit expressions for the two-point func-
tions of general maps and bipartite maps counted by both their number of edges and
their number of faces. Our derivation makes use only of the case p D 2 of Theorem 2
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and Proposition 3. It is natural to expect an extension of these formulas for general p,
i.e., for p-hypermaps and p-constellations counted by both their number of dark faces
and their number of light faces. In other words, we expect the system of equations
satisfied by the corresponding 2-parameter generating functions to be still integrable.
We have not however been able to guess its actual solution.

Returning to the case p D 2, the extra control on the number of faces allows
to interpolate naturally between trees (maps with a single face) and arbitrary maps
(with an unconstrained number of faces). For a fixed large number n of edges, the
typical distance falls down from the known order n1=2 for trees to n1=4 for maps.
We may then wonder about the possibility of obtaining new, non-generic, scaling
limits for maps with “few” faces, where the distances would be of order nˇ with
1=4 < ˇ < 1=2. We plan to investigate the question in the future.
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