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Abstract. Di�erential operators � C q are considered on metric Cayley graphs of the

�nitely generated free groups FM . The function q and the graph edge lengths may vary

with the M edge types. Using novel methods, a set of M multipliers �m.�/ depending on

the spectral parameter is found. These multipliers are used to construct the resolvent and

characterize the spectrum.
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1. Introduction

The interplay between a group action and the spectral analysis of a di�erential

operator invariant under the action is a popular theme in analysis. If the group acts

on a metric graph, the operators �D2 C q with invariant q are obvious candidates

for a spectral theoretic analysis. This work treats operators �D2 C q on a metric

Cayley graph TM of the nonabelian free groupFM on M generators. These Cayley

graphs are regular trees, with each vertex having degree 2M . In the present work

the M edge types of TM associated to the generators of FM may have di�erent

lengths, with even functions q varying over the M edge types. Remarkably, novel
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techniques show that there is a system of M multipliers �m.�/, resembling those

of Hill’s equation [20], which can be used to construct the resolvents of the

operators. Echoing the Hill’s equation analysis, the location of the spectrum is

encoded in the behavior of the multipliers on the real axis.

There is a large literature treating various aspects of analysis on symmetric

in�nite graphs. Homogeneous trees were considered as discrete graphs in [6].

Anisotropic random walks on homogeneous trees received an extensive treatment

in [11]. The quantum graph spectral theory of �D2 Cq on homogeneous trees was

studied in [7], assuming that each edge had length 1, and that q.x/ was the same

even function on each edge. These assumptions meant that the graph admitted

radial functions, a structure which facilitated a Hill’s equation type analysis of the

spectral theory. The spectral theory of radial tree graphs was considered in [8]

and [23]. A sampling of work exploiting this structure includes [5, 10, 12, 16, 26].

Certain physical models can also lead to graphs of lattices in Euclidean space

where the group (e.g. Z2) is abelian [19, 22]. When graphs have symmetric

trees as their universal covering spaces, there are explicit connections linking the

spectral theories of their di�erential or di�erence operators. These connections,

developed for manifolds in [2, 9], are used in [6, 7]. There is extensive related

work in [27, 28].

The quantum Cayley graph analysis begins in the second section with a review

of quantum graphs and the de�nition of the self-adjoint Hilbert space operator

� C q which acts by sending f in its domain to �D2f C qf . The third section

reviews basic material on Cayley graphs, and in particular the Cayley graphsTM of

the free groups FM . For each edge e of the Cayley graph and each � 2 CnŒ0; 1/, a

combination of operator theoretic and di�erential equations arguments identi�es a

one dimensional space of ’exponential type’ functions which are initially de�ned

on half of TM . The translational action of generators of FM on subtrees of TM

induces linear maps on the one-dimensional spaces of exponential functions, thus

producing multipliers �m.�/ for m D 1; : : : ; M . A square integrability condition

shows that j�m.�/j � 1 for all � 2 C n Œ0; 1/.

The fourth section starts by linking the multipliers and rather explicit formulas

for the resolvent of � C q. Recall that the multipliers for the classical Hill’s

equation satisfy quadratic polynomial equations with coe�cients which are entire

functions of the spectral parameter �. In this work the multipliers �m.�/ satisfy

a coupled system of quadratic equations with coe�cients that are entire functions

of �. An elimination procedure shows that the equations can be decoupled,

leading to higher order polynomial equations with entire coe�cients for individual

multipliers �m.�/. The multipliers �m.�/ have extensions from above and below
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to real � . The extension is generally holomorphic, but as in the classical Hill’s

equation the di�erence ım.�/ of the limits from above and below can be nonzero.

Except for a discrete set, the spectrum of � C q is characterized by the condition

ım.�/ 6D 0 for some m.

In the �nal section the system of multiplier equations is explicitly decoupled

for the case M D 2. Computer based calculations are used to generate several

spectral plots.

The author thanks the anonymous referee for suggestions leading to signi�cant

improvements in the paper.

2. Quantum graphs

Suppose � is a locally �nite graph with a �nite or countably in�nite vertex set V

and a directed edge set E. In the usual manner of metric graph construction [4],

a collection of intervals ¹Œ0; le�; e 2 Eº is indexed by the graph edges. Consistent

with the directions of the graph edges .v; w/, the initial endpoint v is associated

with 0, and w is associated with le. Assume that each unordered pair of distinct

vertices is joined by at most one edge. As a result, the map from the directed

graph to the undirected graph which simply replaces a directed edge .u; v/ with

an undirected edge Œu; v� is one-to-one on the edges. A topological graph results

from the identi�cation of interval endpoints associated to a common vertex.

The Euclidean metric on the intervals is extended to a metric on this topolog-

ical graph by de�ning the length of a path joining two points to be the sum of its

(partial) edge lengths. The (geodesic) distance between two points is the in�mum

of the lengths of the paths joining them. The resulting metric graph will also be

denoted �.

To extend the topological graph � to a quantum graph, function spaces and

di�erential operators are included. A function f W � ! C has restrictions to com-

ponents feW Œ0; le� ! C. Let L2.�/ denote the complex Hilbert space ˚eL2Œ0; le�

with the inner product

hf; gi D
Z

�

f g D
X

e

Z le

0

fe.x/ge.x/ dx:

Given a bounded real-valued function q on �, measurable on each edge, di�eren-

tial operators �D2Cq are de�ned to act component-wise on functions f 2 L2.�/

in their domains. The functions q are also assumed to be even on each edge,

qe.le � x/ D qe.x/. This assumption plays an important role as the analysis be-

comes more detailed.
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Self-adjoint operators acting by �D2 C q can be de�ned using standard vertex

conditions. The construction of the operator begins with a domain Dcom of

compactly supported continuous functions f 2 L2.�/ such that f 0
e is absolutely

continuous on each edge e, and f 00
e 2 L2Œ0; le�. In addition, functions in Dcom

are required to be continuous at the graph vertices, and to satisfy the derivative

condition
X

e�v

@�fe.v/ D 0; (2.1)

where e � v means the edge e is incident on the vertex v, and @� D @=@x in

outward pointing local coordinates.

Since the addition of a constant will make the potential nonnegative, but have

only a trivial e�ect on the spectral theory, the assumption

q � 0 (2.2)

is made for convenience. With the domain Dcom, the operators �D2 C q are

symmetric and bounded below, with quadratic form

h.�D2 C q/f; f i D
Z

�

jf 0j2 C qjf j2: (2.3)

These operators always have a self-adjoint Friedrich’s extension, denoted � C q,

whose spectrum is a subset of Œ0; 1/. When the edge lengths of � have a positive

lower bound the Friedrich’s extension is the unique self adjoint extension [4, p.

30].

Say that an edge e D .v�; vC/ 2 E of a connected graph � is a bridge if

the removal of (the interior of ) e separates the graph into two disjoint connected

subgraphs. If e is a bridge, let �C
e denote the closure of the connected component

of � n v� which contains the vertex vC. That is, �C
e consists of the vC side of �

together with the edge e, including the vertex v�. ��
e may be de�ned similarly.

For � 2 C n Œ0; 1/, the resolvents R.�/ D .� C q � �I/�1 of the self adjoint

operators � C q provide special solutions of �y00 C qy D �y on �˙
e . Let X˙

e

denote the space of functions y˙W �˙
e ! C which (i) satisfy

� y00 C qy D �y (2.4)

on each edge e 2 �˙
� , (ii) are continuous and square integrable on �˙

� , and (iii)

which satisfy the derivative conditions (2.1) at each vertex of �˙
� except possi-

bly v�.

Lemma 2.1. Suppose e is a bridge of the connected graph �, and � 2 C n Œ0; 1/.

Then X˙
e is one dimensional.
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Proof. Suppose two linearly independent functions g1; g2 on �C
e satisfy (i)–(iii).

Then a nontrivial linear combination h D ˛1g1 C ˛2g2 would satisfy h.v�/ D 0.

Consider altering the domain of � C q by replacing the vertex conditions at v�
by the Dirichlet condition f .v�/ D 0 for each edge incident on v�. The resulting

operator is still self-adjoint and nonnegative on L2.�/, and restricts to a self-

adjoint operator on L2.�C
e /. Let RD.�/ denote its resolvent. The function h is

then a square integrable eigenfunction with eigenvalue �, which is impossible.

A similar argument applies to ��
e . Thus X˙

e is at most one dimensional.

Let z be the nontrivial solution of the equation

� z00 C qz D �z; z.0/ D 0; z0.0/ D 1; (2.5)

on the interval Œ0; le�. Extend z by 0 to obtain an element of L2.�C
e /. Using the

Dirichlet resolvent above, de�ne f D RD.�/z. Note that f .v�/ D 0. Integration

by parts gives

0 D
Z le

0

f Œ�z00 C qz � �z� dx D Œ�f z0 C f 0z�
ˇ

ˇ

ˇ

le

0
C

Z le

0

jzj2 dx:

Since the boundary terms vanish at 0, either f .vC/ 6D 0 or f 0.vC/ 6D 0.

Since z vanishes outside of e, the function f D RD.�/z satis�es �f 00 Cqf D
�f on each edge of �C

e other than e. De�ne g 2 XC
e which agrees with f on

�C
e n e, but which satis�es (2.4) on e, with initial data g.vC/ D f .vC/ and with

@�g.vC/ chosen so the derivative conditions (2.1) at vC are satis�ed for g. The

space XC
e is then the span of g, and the case of X�

e is similar. �

The construction of Lemma 2.1 also provides the next result.

Lemma 2.2. Suppose e is a bridge of the connected graph �, and � 2 Cn Œ0; 1/.

A basis g.�/ of X˙
e may be chosen holomorphically in an open disc centered at

�, and real valued if � 2 .�1; 0/. If x 2 �˙
e then g.x; �/ is holomorphic.

Proof. For � 2 C n Œ0; 1/ the resolvent R.�/ is a holomorphic operator valued

function, so the functions f D R.�/z are holomorphic with values in the domain

of � C q. For x 2 �˙ n e the evaluations f .x/; f 0.x/ are continuous functionals

[18, p. 191-194] on the domain of � C q, so the values g.vC/ and @�gi .vC/ from

Lemma 2.1 are holomorphic, as are the L2.�˙/ functions g.�/ and the values

g.x; �/ for x 2 e. All of these functions can be chosen to be real valued if

� 2 .�1; 0/. �
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3. Quantum Cayley graphs

3.1. General remarks. Suppose G is a �nitely generated group with identity �.

Let S � G be a �nite generating set for G, meaning that every element of G can

be expressed as a product of elements of S and their inverses. Following [21],

the Cayley graph �G;S for the group G with generating set S is the directed graph

whose vertex set V is the set of elements of G. The edge set of �G;S is the set E

of directed edges .v; vs/ with s 2 S, initial vertex v 2 G and terminal vertex vs.

When confusion is unlikely we will simply write � for �G;S. Assume that if s 2 S,

then s�1 … S. This condition avoids loops .v; v�/, and insures that at most one

directed edge connects any (unordered) pair of vertices. We will often consider �

to have undirected edges Œv; vs�, with the directions given above available when

needed.

G acts transitively by left multiplication on the vertices of �; that is, for every

v; w 2 V there is a g 2 G such that w D gv. If e D .v; vs/ 2 E, then

ge D .gv; gvs/ 2 E, so G also acts on E, although this action is not generally

transitive. Say that two directed edges e1; e2 are equivalent if there is a g 2 G

such that e2 D ge1. The equivalence classes will be called edge orbits of the G

action on E.

Proposition 3.1. A set B of directed edges is an edge orbit if and only if there is

a unique s 2 S such that B D ¹.v; vs/; v 2 Gº. It follows that the number of edge

orbits is the cardinality of S.

Proof. If v; w 2 G, then wv�1.v; vs/ D .w; ws/, so for a �xed s 2 S all edges of

the form .v; vs/ are in the same orbit. If g.v; vs1/ D .w; ws2/, then gv D w and

gvs1 D ws2, so ws1 D ws2 and s1 D s2. �

Proposition 3.2. If G is generated by the �nite set S, then the undirected graph

�G;S is path connected.

Proof. If our requirements on generating sets are momentarily relaxed and S is

extended to the set S1 D ¹s; s�1; s 2 Sº, then the Cayley graph �G;S1
will have

a directed path from every element of G to �. An edge of this graph has one of

the forms .v; vs/ or .v; vs�1/. As an undirected edge, Œv; vs�1� D Œvs�1; v� D
Œvs�1; vs�1s�, so for every directed edge of �G;S1

there is an undirected edge of

�G;S with the same vertices. Consequently, the undirected graph �G;S is path

connected. �
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Cayley graphs � can be linked with the spectral theory of di�erential operators.

To maintain a strong connection with the group G, the edges of � in the same

G orbit will have the same length. The action of G on the combinatorial edges

may then be extended to the edges of the metric graph by taking x 2 .0; l.v;vs//

to gx D x 2 .0; l.gv;gvs//. This group action also provides a G action on

the functions f on �. The action simply moves the edge index, so that in

terms of function components gfge.x/ D fe.x/. Functions are G-invariant if

fge.x/ D fe.x/ for all directed edges e and all g 2 G. A quantum Cayley graph

will be a quantum graph whose underlying combinatorial graph is the Cayley

graph of a �nitely generated group, whose edge lengths are constant on edge

orbits, and whose di�erential operator � C q commutes with the group action

on functions. Since there is little chance of confusion, the same notation, e.g. �,

will be used for the corresponding quantum, metric, and combinatorial graphs.

3.2. Free groups and their graphs TM . This work treats the Cayley graphs

with G D FM , the free group [21] with rank M . Recall that the elements of FM

are equivalence classes of �nite length words generated by M distinct symbols

s1; : : : ; sM and their inverse symbols s�1
1 ; : : : ; s�1

M . Two words are equivalent if

they have a common reduction achieved by removing adjacent symbol pairs sms�1
m

or s�1
m sm. The group identity is the empty word class, the group product of words

w1; w2 is the class of the concatenation w1w2, and inverses are formed by using

inverse symbols in reverse order, e.g. .s2s�1
3 s1/�1 D s�1

1 s3s�1
2 .

Given a free group FM with generating set S D ¹s1; : : : ; sM º, let TM denote

the corresponding Cayley graph. These (undirected) graphs (see Figure 1) have a

simple structure [21, p. 56].

Proposition 3.3. The undirected graph TM is a tree whose vertices have degree

2M .

Proof. Suppose TM had a cycle with distinct vertices w1; : : : ; wK and edges

ŒwK ; w1� and Œwk ; wkC1� for k D 1; : : : ; K � 1. In the undirected graph TM edges

extend from wk by some sm or s�1
m , so that wkC1 D wksm or wkC1 D wks�1

m ,

and each vertex has degree 2M . The sequence of visited vertices w1; : : : ; wK; w1

is described by a word of right multiplications by the generators and their inverse

symbols equal to � in FM . Since this word can be reduced to the empty word, it

must have adjacent symbols sms�1
m or s�1

m sm. This means the vertices w1; : : : ; wK

are not distinct, so no such cycle exists. Since TM is connected by Proposition 3.2

and has no cycles, TM is a tree. �
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Figure 1. A rescaled graph T2.

3.3. Abelian subgroups and multipliers for TM . Each edge e D .v; vs/ 2 TM

is a bridge. With v D v� and vs D vC, the subgraphs �˙
e described above will be

subtrees of TM , denoted by T
˙
e . The vector spaces X˙

� are as in Lemma 2.1.

Lemma 3.4. Suppose e D .v; vs/ is an edge of TM and � 2 C n Œ0; 1/. If y˙ is

a nontrivial element of X˙
e , then y˙ is nowhere vanishing on T

˙
e .

Proof. Suppose y˙.x0/ D 0 for some x0 2 T
˙
e . First notice that y˙ must then

vanish identically on the subtree T0 consisting of points x1 of T˙
e with the property

that paths from x1 to v must include x0. Otherwise, a nonnegative self-adjoint

operator � C q could be obtained on L2.T0/ by using the boundary condition

f .x0/ D 0. This operator would have a nontrivial square integrable eigenfunction,

the restriction of y˙ to T0, with the eigenvalue � 2 CnŒ0; 1/, which is impossible.

Since solutions of �y00 C qy D �y are identically zero on an edge e if

y.x0/ D y0.x0/ D 0 for some x0 2 e, we may assume x0 is a vertex. Since the

function y˙ vanishes identically on T0, the continuity and derivative conditions

at x0 force y to vanish on all the edges with x0 as a vertex. The function y˙ must

now be identically zero on T
˙
e , contradicting the assumption that the function was

nontrivial. �

The structure of the elements of X˙
e is strongly constrained by the symmetries

of T˙
e combined with the fact that X˙

e is one dimensional. A simple observation

is the following.
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Lemma 3.5. Suppose e1 D .v1; v1sm/, g 2 G, and e2 D .v2; v2sm/ D
.gv1; gv1sm/. For j D 1; 2 let yj 2 X˙

ej
with yj .vj / D 1. Then gy1 D y2.

Proof. The action by g is an isomorphism of T
˙
e1

and T
˙
e2

. Since X˙
e2

is one

dimensional, gy1 is a scalar multiple of y2. These two functions agree at v2,

so are equal. �

For each vertex v and integers k, left multiplication by the abelian subgroup

of elements vsk
mv�1 acts on TM . These maps carry the edge e.0/ D .v; vsm/ to

the edges e.k/ D .vsk
m; vskC1

m /. The key role of these group actions is related to

the following geometric observation.

Lemma 3.6. The trees TC
e.k/

are nested, with T
C
e.kC1/

� T
C
e.k/

. In addition,

TM D
1
[

kD0

T
C
e.�k/

:

Proof. Other than vsk
m, the vertices of the trees T

C
e.k/

are those elements of FM

which have a representation vsk
msmg, where smg is a reduced word in FM . If

w D vskC1
m smg 2 T

C
e.kC1/

is a vertex with smg reduced, then s2
mg is reduced and

w D vsk
msmsmg 2 T

C
e.k/

. Thus the trees TC
e.k/

are nested.

More generally, for any integer k, a word w 2 FM may be represented as

w D vsk
msmg with smg D s�k

m v�1w. First take a reduced representative u for

v�1w. Suppose u begins on the left with a string s
j
m, followed by an element of S

di�erent from s˙1
m . Taking k D j � 1 gives the desired form, and every vertex w

is in some T
C
e.k/

. �

Suppose y 2 X
C
e.0/

satis�es y.v/ D 1, and z 2 X
C
e.1/

satis�es z.vsm/ D 1.

Since T
C
e.1/

� T
C
e.0/

, the restriction of y to T
C
e.1/

is an element of XC
e.1/

. Because

y is nonvanishing, there is a nonzero multiplier �m.�/ 2 C associated to each

generator sm such that y D �m.�/z on T
C
e.1/

. In particular �m.�/ D y.lm/=y.0/.

Lemma 3.7. The multipliers �m.�/ are holomorphic for � 2 C n Œ0; 1/, with

�m.�/ D �m.�/.

Proof. By Lemma 2.2 the formula �m.�/ D y.lm/=y.0/ shows that �m.�/ is

holomorphic when � 2 C n Œ0; 1/. If � 2 .�1; 0/ and y is chosen real, then

�.�/ is real. The two functions �m.�/ and �m.�/ are holomorphic and agree for

� 2 .�1; 0/, so agree for all � 2 C n Œ0; 1/. �
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Because the function q is even on each edge, that is q.lm � x/ D q.x/, the

same multipliers will arise when comparing elements of X�
e if the edge directions

are reversed by using the generators s�1
m of FM instead of sm. These multipliers

provide a global extension of functions in X
˙
e.0/

.

Lemma 3.8. Suppose T
C
e.0/

� T
C
e.j /

� T
C
e.k/

. If yj 2 X
C
e.j /

with yj .v/ D 1, and

yk 2 X
C
e.k/

with yk.v/ D 1, then yj D yk on Te.j /. Elements y˙ of X˙
e.0/

may be

extended via the multipliers to functions de�ned on all of TM .

Proof. The function yk restricts to an element of XC
e.j /

. Since nontrivial elements

of XC
e.j /

never vanish, but yk.v/�yj .v/ D 0, the di�erence is the zero element of

X
C
e.j /

. Since these extensions of XC
e.0/

are consistent, elements y˙ of X˙
e.0/

extend

via the multipliers to functions de�ned on all of the trees TC
e.k/

. �

Lemma 3.9. For � 2 C n Œ0; 1/, the multipliers satisfy j�m.�/j < 1.

Proof. Recall that y is nowhere vanishing, so

Z vsm

v

jyj2 6D 0:

A nontrivial element y of X˙
e is square integrable on T

C
e , so in particular

1
X

kD0

Z vs
kC1
m

vsk
m

jyj2 D
Z vsm

v

jyj2
1

X

kD0

j�m.�/2kj < 1;

and j�m.�/j < 1. �

4. Analysis of the multipliers

On each edge Œ0; lm� the space of solutions to the eigenvalue equation (2.4) has a

basis Cm.x; �/; Sm.x; �/ satisfying Cm.0; �/ D 1 D S 0
m.0; �/ and Sm.0; �/ D 0 D

C 0
m.0; �/. These solutions satisfy the Wronskian identity

Cm.x; �/S 0
m.x; �/ � C 0

m.x; �/Sm.x; �/ D 1: (4.1)

If q D 0 and ! D
p

�, these functions are simply Cm.x; �/ D cos.!x/,

Sm.x; �/ D sin.!x/=!.
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If Sm.lm; �/ D 0 then � is an eigenvalue for a classical Sturm–Liouville

problem, implying � 2 Œ0; 1/. For � 2 C n Œ0; 1/ there is a unique solution

of (2.4) with boundary values ym.0; �/ D ˛, ym.lm; �/ D ˇ given by

ym.x; �/ D ˛Cm.x; �/ C ˇ � ˛Cm.lm; �/

Sm.lm; �/
Sm.x; �/: (4.2)

Because qm.x/ D qm.lm � x/ for each edge, there is an identity

Cm.lm � x; �/ D S 0
m.lm; �/Cm.x; �/ � C 0

m.lm; �/Sm.x; �/;

since both sides of the equation are solutions of (2.4) with the same initial data at

x D lm. Setting x D 0 leads to the identity

Cm.lm; �/ D S 0
m.lm; �/: (4.3)

In addition to the coordinates originally given to the edges of TM , it will be

helpful to also consider local coordinates for TC
e which identify edges with the

same intervals Œ0; lk�, but with the local coordinate increasing with distance from

a given vertex v. Since q is assumed even on each edge, the operators � C q are

unchanged despite the coordinate change.

4.1. Multipliers and the resolvent. The next results show that edges in the same

orbit have the same multipliers.

Theorem 4.1. Assume e D .v; vsm/, � 2 C n Œ0; 1/, and y 2 XC
e with y.v/ D 1.

Suppose the edge � in T
C
e is in the same edge orbit as e, with the local coordinate

for � increasing with the distance from v. Using the identi�cations of e and � with

Œ0; lm�, the restriction y1 of y to � satis�es

y1.lm/

y1.0/
D y.lm/

y.0/
D �m.�/:

Proof. If w is the vertex of the edge � closest to v (see Figure 2), then � has one

of the forms .w; wsm/ or .ws�1
m ; w/. In the �rst case, where wv�1e D �, the tree

T
C
� is a subtree of TC

e , and translation by wv�1 carries XC
e to XC

� . As functions

on Œ0; lm�, y1 is a nonzero multiple of y since XC
e and XC

� are one dimensional.

In the second case, when � D .ws�1
m ; w/, the tree T

C
� is generally not a subtree

of TC
e , but T�

.ws�1
m ;w/

is. A di�erent argument will reduce the second case to the

�rst. As undirected graphs there are isomorphisms between the trees TC
.w;wsm/

and

T
�
.ws�1

m ;w/
. One such is obtained by interchanging the roles of sm and s�1

m . There

is a corresponding involution of XC
e obtained by interchanging function values on
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Figure 2. Edges in a common orbit.

the isomorphic trees. Since XC
� is one dimensional, this involution is given by a

constant factor. The nonzero value of y at the vertex w is �xed by the involution,

so the tree interchange must leave the functions �xed. �

Corollary 4.2. Assume e D .v; vsm/, � 2 Cn Œ0; 1/, and y 2 XC
e with y.v/ D 1.

Suppose that for j D 1; 2, the edges �j D .wj ; wj sk/ in T
C
e are in the same edge

orbit, with the local coordinates for �j increasing with the distance from v. The

restrictions yj of y to �j satisfy

y1.lm/

y1.0/
D y2.lm/

y2.0/
D �k.�/:

Proof. If e1 D .vs�1
k

; v/, then T
C
e is a subtree of TC

e1
. Since e1 and �j lie in the

same edge orbit, the previous theorem may now be applied. �

As a consequence of Theorem 4.1 and Corollary 4.2 the functions y 2 XC
e

have the following description.
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Theorem 4.3. Assume � 2 CnŒ0; 1/, e D .v; vsm/ and yC 2 XC
e with yC.v/ D 1.

Suppose w is a vertex in T
C
e , and the path from v to w is given by the reduced word

sms˙1
k.1/

: : : s˙1
k.n/

. Then

yC.w/ D �m�k.1/ : : : �k.n/: (4.4)

Using (4.2), the vertex values of yC can be interpolated to the edges.

Because the functions in XC
e are continuous, the multipliers �k.�/ are simply

the value at lk of a solution yk in XC
e with initial value 1 at x D 0 on edges of

type k. That is,

�k.�/ D Ck.lk; �/ C y0
k.0/Sk.lk; �/: (4.5)

Theorem 4.3 may also be used to describe the functions y� 2 X�
e . The

functions yC; y� can be used to construct the resolvent R.�/ D Œ� C q � ���1

on C n Œ0; 1/. This construction begins with consideration of the Wronskian

Wk.�/ D yCy0
� � y0

Cy�.

If the (nonvanishing) functions y� and yC were linearly dependent on e, then

there would be a nonzero constant c such that y�.x/ D cyC.x/ for x 2 e, and the

function
²

y�.x/; x 2 T
�
e

cyC.x/; x 2 T
C
e

³

would be a square integrable eigenfunction for �Cq. Consequently, the functions

y� and yC must be linearly independent on e if � 2 C n Œ0; 1/.

In particular for each � 2 C n Œ0; 1/ the Wronskian Wk.�/ D yCy0
� � y0

Cy�
for edges of each type k is nonzero, and independent of x. By using (4.5)

the Wronskian Wk.�/ can be expressed in terms of the multipliers. Consider

evaluation of Wk.�/ at x D lk. Compared to yC, which satis�es (4.5), with

yC.0; �/ D 1, the function y� would have the edge direction reversed. This

function has y�.lk/ D 1, and because of the reversed edge direction,

y�.x; �/ D Ck.lk � x; �/ � y0
�.lk/Sk.lk � x; �/;

so that

�k.�/ D y�.0; �/ D Ck.lk ; �/ � y0
�.lk/Sk.lk; �/:

Evaluation at x D lk gives

Wk.�/ D .yCy0
� � y0

Cy�/.lk/

D �k.�/
Ck.lk ; �/ � �k.�/

Sk.lk ; �/
�

h

C 0
k.lk ; �/ C �k.�/ � Ck.lk ; �/

Sk.lk ; �/
S 0

k.lk; �/
i
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and the identities (4.1) and (4.3) give the simpli�cation

Wk.�/ D
1 � �2

k
.�/

Sk.lk ; �/
: (4.6)

The resolvent R.�/ D Œ� C q � ���1 has a simple representation when it acts

on functions fe with support in a single edge e. Assuming that t 2 e, and using

the identi�cation of e with Œ0; le�, interpret the inequality x � t to mean x 2 T
�
e ,

and x � t with the usual meaning if x 2 e. Interpret x � t similarly when x 2 T
C
e .

For � 2 C n Œ0; 1/ and t 2 e, de�ne the (variation of parameters) kernel

Re.x; t; �/ D

8

<

:

y�.x; �/yC.t; �/=Wk.�/; x � t � le;

y�.t; �/yC.x; �/=Wk.�/; 0 � t � x:
(4.7)

If fe has support in the interior of e, the function

he.x/ D
Z le

0

Re.x; t; �/fe.t / dt

satis�es the equation Œ� C q � ��he D fe, the continuity and derivative vertex

conditions (2.1), and is square integrable on TM . Thus he D R.�/fe, the image

of the resolvent acting on fe. Since the linear span of functions fe is dense in

L2.TM /, and the resolvent is a bounded operator for � 2 CnŒ0; 1/, this discussion

implies the next result.

Theorem 4.4. For � 2 C n Œ0; 1/,

R.�/f D
X

e

Z le

0

Re.x; t; �/fe.t / dt; f 2 L2.TM /;

the sum converging in L2.TM /.

4.2. Equations for the multipliers

Theorem 4.5. For � 2 C n Œ0; 1/ and m D 1; : : : ; M , the multipliers �m.�/

satisfy the system of equations

�2
m.�/ � 1

Sm.lm; �/�m.�/
� 2

M
X

kD1

�k.�/ � Ck.lk; �/

Sk.lk ; �/
D 0: (4.8)
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Proof. Suppose e D .v; vsm/ is an edge of type m. The vertex w D vsm has

2M �1 other incident edges: a type m edge .w; wsm/ and for k 2 ¹1; : : : ; M ºn¹mº
the type k edges .w; wsk/ and .w; ws�1

k
/. If y 2 XC

e satis�es y.w/ D 1, then by

Theorem 4.3 the values of y at the vertices adjacent to w are

y.v/ D ��1
m ; y.wsm/ D �m; y.wsk/ D y.ws�1

k / D �k; k 6D m:

For each edge incident on w choose coordinates identifying w with 0. Using

y.w/ D 1, the interpolation formula (4.2) provides the following values for y0.0/

on the incident edges:

��1
m � Cm.lm; �/

Sm.lm; �/
on .v; w/;

�m � Cm.lm; �/

Sm.lm; �/
on .w; wsm/;

�k � Ck.lk ; �/

Sk.lk; �/
on .w; wsk/ and .w; ws�1

k /; k 6D m:

The sum of these derivative values is 0 by (2.1); (4.8) follows by simple algebra.

�

The next result characterizes the solutions �1.�/; : : : ; �M .�/ of (4.8) coming

from the resolvent of � C q.

Theorem 4.6. For � 2 C n Œ0; 1/, assume that �1.�/; : : : ; �M .�/ satisfy (4.8).

This M -tuple is the set of the multipliers for � C q if and only if all eigenvalues �

of the matrix

A D

0

B

B

B

B

@

j�1j2 2j�1j2 2j�1j2 : : : 2j�1j2
2j�2j2 j�2j2 2j�2j2 : : : 2j�2j2

:::
:::

::: : : :
:::

2j�M j2 2j�M j2 : : : 2j�M j2 j�M j2

1

C

C

C

C

A

(4.9)

satisfy j�j < 1.

Proof. The proof takes advantage of several equivalent formulations of the result.

Suppose e D .v; vsm/ is a �xed edge, and let w denote any vertex in T
C
e . De�ne

a function yCWTC
e ! C by taking yC.v/ D 1, de�ning yC.w/ by (4.4), and

interpolating the vertex values of yC to the edges using (4.2). The three conditions

(i) j�j < 1 for all eigenvalues � of A, (ii) the function yC is square integrable on

T
C
e , and (iii)

X

w2TC
e

jyC.w/j2 < 1; (4.10)
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will be shown to be equivalent. In addition, if these conditions hold and the map

y�WT�
e ! C is de�ned similarly using these multipliers, then the formula (4.7)

gives the resolvent of � C q as in Theorem 4.4.

The �rst step will show that the function yC is square integrable on T
C
e if and

only if (4.10) holds. The solutions of (4.8) satisfy �m.�/ 6D 0. For j D 1; 2,

two edges .wj ; wj sm/ 2 T
C
e have vertex values satisfying yC.wj sm/=yC.wj / D

�m.�/, so the interpolated edge values yj given by (4.2) satisfy y2.0/y1.x/ D
y1.0/y2.x/, and

Z lm

0

jy2.x/j2 dx D jy2.0/j2
jy1.0/j2

Z lm

0

jy1.x/j2 dx:

Fixing a reference edge of type m for y1 which is incident on vsm, the �rst step is

then proven by writing
R

T
C
e

jyCj2 as sums of integrals over edges of the M types.

Running the argument of Theorem 4.5 in reverse shows that the continuity and

derivative conditions (2.1) hold at the vertices of TC
e except possibly at v. If (4.10)

holds, then yC 2 XC
e and the claims about the resolvent formula follow.

The condition (4.10) has a description in terms of the multipliers �k.�/.

If the path from v to w is given by the reduced word sms˙1
k.1/

: : : s˙1
k.n/

, then

yC.w/ D �m�k.1/ : : : �k.n/ by Theorem 4.3. For j D 1; : : : ; M let �j .n/ D
P

j;d.w;v/DnC1 jyC.w/j2 denote the partial sum taken over vertices w 2 T
C
e whose

combinatorial distance to v is equal to n C 1, with the last edge on the path from

v to w having type k.n/ D j . Then

X

w2TC
e

jyC.w/j2 D
1

X

nD0

M
X

j D1

�j .n/: (4.11)

A path given by the reduced word sms˙1
k.1/

: : : s˙1
k.n/

, may be extended by one

edge to a vertex more distant from v in one way if the new edge has the previous

edge type k.n/ and in two ways for each of the other edge types. Thus

�j .n C 1/ D j�j j2Œ�j .n/ C 2
X

k 6Dj

�k.n/�; j D 1; : : : ; M; (4.12)

or
0

B

@

�1.n C 1/
:::

�M .n C 1/

1

C

A
D A

0

B

@

�1.n/
:::

�M .n/

1

C

A
; (4.13)

where A is the matrix of (4.9). Given that the �rst edge has type m, the initial

condition for these sums is

�m.0/ D j�mj2; �j .0/ D 0; j 6D m:
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Suppose Vm denotes the vector which is zero except for the m-th component,

which is j�mj2. The condition (4.10) thus becomes

1
X

nD1

.1; : : : ; 1/AnVm < 1: (4.14)

The matrix geometric series
P1

nD1 An converges [3, p. 491] if and only if all

eigenvalues � of A satisfy j�j < 1, so this condition is su�cient for convergence

of (4.14).

To see that the condition is necessary, �rst observe that TC
e has subtrees TC

e.k/

whose initial edge may be any of the M edge types. Thus (4.14) must hold for

m D 1; : : : ; M . If the series
P1

nD1 An diverges and Em denotes the m-th standard

basis vector, then
P1

nD1 AnEm is divergent for some m D 1; : : : ; M . Because the

entries of A are all positive, the components of the partial sums
PN

nD1 AnEm are

increasing nonnegative sequences, at least one of which is unbounded. Conse-

quently, if j�j � 1 for any eigenvalue � of A, then the series (4.14) is divergent for

some m. �

The equations (4.8) have implications for the decay of �m.�/.

Theorem 4.7. For 0 < � < � , let � denote the set of � with j arg.�/ � �j � �

and j�j � 1. For � 2 �,

lim
j�j!1

j�m.�/jej=.
p

�/jlm D 1

2M
: (4.15)

Proof. Rewrite (4.8) as

�m.�/p
�Sm.�; lm/

� 1p
�Sm.�; lm/�m.�/

D 2

M
X

kD1

�k.�/ � Ck.�; lk/p
�Sk.�; lk/

: (4.16)

Take =.
p

�/ > 0 and recall that j�k.�/j � 1. The functions Ck.�; lk/; Sk.�; lk/

satisfy the estimates [24, p. 13]

jCk.�; lk/ � cos.
p

�lk/j � C

j
p

�j
exp.j=.

p
�/jlk/;

ˇ

ˇ

ˇ

ˇ

Sk.�; lk/ � sin.
p

�lk/p
�

ˇ

ˇ

ˇ

ˇ

� C

j�j exp.j=.
p

�/lk/;

while

cos.
p

�x/ D 1

2
e�i

p
�x.1 C e2i

p
�x/; sin.

p
�x/ D i

2
e�i

p
�x.1 � e2i

p
�x/:
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For � 2 �, taking j�j ! 1 in (4.16) gives

lim
j�j!1

1p
�Sm.lm/�m.�/

D �2iM;

which implies (4.15). �

For each � 2 C and m D 1; : : : ; M , the equations (4.8) are a system

Pm.�1; : : : ; �M ; �/ D 0 which is satis�ed by the multipliers �1; : : : ; �M . The

independence of the equations and local structure of the solutions may be deter-

mined by computing the gradients rPm with respect to �1; : : : ; �M , with � treated

as a parameter. Recall from Lemma 3.9 that the multipliers satisfy j�m.�/j < 1 if

� 2 C n Œ0; 1/.

Theorem 4.8. Suppose � 2 C, Sm.�; lm/ 6D 0, and �m.�/2 C 1 6D 0 for

m D 1; : : : ; M . Then the complex gradients rPm are linearly independent if

M
X

mD1

�2
m

�2
m C 1

6D 1=2: (4.17)

Proof. The relevant partial derivatives are

@Pm

@�m

D 1

Sm.lm/

h 1

�2
m.�/

� 1
i

and for j 6D m
@Pm

@�j

D �2
1

Sj .lj /
:

That is, there is an m-independent vector function W such that

rPm D Vm C W; W D �2

0

B

@

1=S1.l1/
:::

1=SM .lM /

1

C

A
;

with Vm having m-th component equal to

@Pm=@�m C 2=Sm.lm/ D 1

Sm.lm/

h 1

�2
m.�/

C 1
i

and all other components zero.

If the vectors Vk C W are linearly dependent, then there are constants ˛k not

all zero such that
P

k ˛k.Vk C W / D 0. If Sm.lm/ 6D 0 the component equations

can be written as

˛m

h 1

�m.�/2
C 1

i

D 2

M
X

kD1

˛k:
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This linear system is

diag
h�2

1 C 1

�2
1

; : : : ;
�2
M C 1

�2
M

i

0

B

@

˛1

:::

˛M

1

C

A
D 2

0

B

@

1 : : : 1
::: : : :

:::

1 : : : 1

1

C

A

0

B

@

˛1

:::

˛M

1

C

A
:

If none of the �2
m have the value �1, this system says Œ˛1; : : : ; ˛M � is an

eigenvector with eigenvalue 1=2 for the matrix
0

B

B

B

B

@

�2
1

�2
1

C1
: : :

�2
1

�2
1

C1

::: : : :
:::

�2
M

�2
M

C1
: : :

�2
M

�2
M

C1

1

C

C

C

C

A

:

Vectors with
P

˛k D 0 are in the null space of this matrix, and the remaining

eigenvalue is the trace, with eigenvector
� �2

1

�2
1

C1
; : : : ;

�2
M

�2
M

C1

�

. Thus the condition

for dependent gradients is

M
X

mD1

�2
m

�2
m C 1

D 1=2: �

By applying the inverse and implicit function theorems for holomorphic func-

tions [14, p. 18-19] we obtain the following corollary.

Corollary 4.9. Suppose, as in Theorem 4.8, that �1.�/; : : : ; �M .�/ is a solution

of (4.8). Assume that � 2 C, Sm.�; lm/ 6D 0, and

�m.�/2 C 1 6D 0;

M
X

mD1

�2
m

�2
m C 1

6D 1=2; m D 1; : : : ; M:

Then the solutions of the system (4.8) are locally given inCM �C by a holomorphic

CM - valued function of �.

Theorem 4.10. There is a discrete set Z0 � R and a positive integer N such

that for all � 2 C n Z0 the equations (4.8) satis�ed by the multipliers �m.�/ have

at most N solutions �1.�/; : : : ; �M .�/. For � 2 C n Z0, the functions �m.�/ are

solutions of polynomial equations pm.�m/ D 0 in the one variable �m of positive

degree, with coe�cients which are entire functions of �.

Proof. The polynomial equation in the single variable �1.�/ will be considered;

the equations satis�ed by the other functions �m.�/ may be treated in the same

manner.
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Notice that the system (4.8) has the form

F1.�1; �/ D g.�1; : : : ; �M ; �/; : : : ; FM .�M ; �/ D g.�1; : : : ; �M ; �/;

with

Fm.�m; �/ D �2
m.�/ � 1

Sm.lm/�m.�/
; (4.18)

g.�1; : : : ; �M ; �/ D 2

M
X

kD1

�k.�/ � Ck.lk/

Sk.lk/
:

Subtraction of successive equations eliminates the right hand sides from M � 1

equations, giving a system of M equations, the equations indexed by the value of

j D 1; : : : ; M ,

j D 1 F1.�1; �/ D g.�1; : : : ; �M ; �/;

j D 2 F1.�1; �/ � F2.�2; �/ D 0;

:::

j D M FM �1.�M �1; �/ � FM .�M ; �/ D 0:

For m > 1, the m-th equation can be written as

�m.�/2 D
� �2

m�1.�/ � 1

Sm�1�m�1.�/

�

Sm�m C 1; (4.19)

or by using the quadratic formula,

2�m.�/ �
� �2

m�1.�/ � 1

Sm�1�m�1.�/

�

Sm D
h� �2

m�1.�/ � 1

Sm�1�m�1.�/

�2

S2
m C 4

i1=2

: (4.20)

The variables �M ; : : : ; �2 can be successively eliminated from the �rst equa-

tion. Starting with k D M and continuing up the list of indices, the �rst equation

can be written as a polynomial equation for �k with coe�cients which are poly-

nomials in �1; : : : ; �k�1 and the entire functions Sm.lk; �/. Repeated use of the

substitution (4.19), followed by clearing of the denominators, reduces the �rst

equation to degree one in �k . These substitutions result in an equivalent system of

equations as long as � … Z0, where

Z0 D
[

m

¹Sm.lm; �/ D 0º: (4.21)
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Now solve for 2�k , subtract Œ�2
m�1.�/ � 1�Sm=ŒSm�1�m�1.�/�, use the substitu-

tion (4.20), and square both sides. Since squaring is a two-to-one map, it will

not change the dimension of the set of solutions. After applying these substitu-

tions, the variable �k has been eliminated, and after clearing the denominators,

the modi�ed j D 1 equation is a polynomial in �1.�/; : : : ; �k�1.�/ with entire co-

e�cients. The substitution process provides a common bound N for the degrees

of the polynomials pm.

Suppose the �nal version of the �rst equation does not have positive degree for

�1. De�ne Qm D Fm.�m; �/ � FmC1.�mC1; �/ for m D 1; : : : ; M � 1. The system

of equations for �1; : : : ; �M is then the system

Q1 D 0; : : : ; QM �1 D 0;

where

@Qm

@�m

D 1

Sm

h 1

�2
m.�/

� 1
i

;
@Qm

@�mC1

D �1

SmC1

h 1

�2
mC1.�/

� 1
i

;

and all other partial derivatives are zero. Suppose Sm.�; lm/ 6D 0, and �m.�/2 C
1 6D 0 for m D 1; : : : ; M . Then the M �1 gradients rQm are linearly independent,

so outside of a discrete set of � the functions �1; : : : ; �K�1 would be holomorphic

functions of �; �M ; that is, the solution set would have dimension 2, contradicting

Corollary 4.9 which showed the dimension is 1. �

4.3. Extension of multipliers to Œ0; 1/ and the spectrum. The mapping z !�

given by

� D
� 1 � z

1 C z

�2

; z D 1 �
p

�

1 C
p

�

is a conformal map from the unit disc ¹jzj < 1º onto � 2 C n Œ0; 1/. By using

this conformal map and Lemma 3.9 the functions �m.�.z// may be considered

as bounded holomorphic functions on the unit disc. Classical results in function

theory [17, p. 38] insure that �m.�.z// has nontangential limits almost everywhere

as a function of z, and so the limits

�˙
m.�/ D lim

�!0C
�m.� ˙ i�/ (4.22)

exist almost everywhere on Œ0; 1/. By (4.8) and (4.21), the values �˙
m.�/ are

bounded away from zero uniformly on compact subsets of C n Z0.
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Since the functions �m.�/ satisfy the polynomials equations pm.�m/ D 0,

more information about �˙
m.�/ is available. The equations pm.�m/ D 0 have

entire coe�cients and positive degree for � 2 C n Œ0; 1/. Let Zm � C denote the

discrete set where the leading coe�cient vanishes. A contour integral computation

which is a variant of the Argument Principle, [1, p. 152] or Problem 2 of [15, p. 174],

shows that for � 2 CnZm the roots of pm.�/, in particular �m.�/, are holomorphic

as long as the root is simple. For � 2 C n Zm the roots extend continuously to

� 2 Œ0; 1/ even if the roots are not simple. The limiting values �˙.�/ need not

agree; let

ım.�/ D �C
m.�/ � ��

m.�/; � 2 Œ0; 1/:

Proposition 4.11. If �C
m.�/ D ��

m.�/ for � 2 .˛; ˇ/ n Zm, then �m.�/ extends

holomorphically across .˛; ˇ/.

Proof. On any subinterval .˛1; ˇ1/ � .˛; ˇ/ where �m.�/ extends continuously to

the common value �˙
m.�/, the extension is holomorphic by Morera’s Theorem [13,

p. 121]. The points in the discrete set Zm \.˛; ˇ/ appear to be possible obstacles to

the existence of a holomorphic extension, but since the extended function �m.�/

is bounded the extension can be continued holomorphically across Zm \ .˛; ˇ/

too by Riemann’s Theorem on removable singularities. �

Theorem 4.12. Assume � … Z0. For m D 1; : : : ; M suppose �˙
m.�/ 6D ˙1 and

�m.�/ extends holomorphically (resp. continuously) to � 2 R from above (resp.

below). Then the kernel function Re.x; t; �/ of (4.7) extends holomorphically

(resp. continuously) from above (resp. below) to

R˙
e .x; t; �/ D lim

�!0C
Re.x; t; � C i�/; � 2 R:

Proof. The Wronskian formula (4.6) shows that 1=Wm.�/ extends holomorphi-

cally (resp. continuously) if �m.�/ does and �˙
m.�/ 6D ˙1. Theorem 4.3 shows

that the vertex values y˙.w/ extend in the same fashion as the multipliers �m. Fi-

nally, the interpolation formula (4.2) provides a holomorphic extension of y˙ from

the vertex values as long as � … Z0, that is Sm.lm; �/ 6D 0 for m D 1; : : : ; M . �

Recall [25, p. 237,264] that if P denotes the family of spectral projections for

a self adjoint operator, in this case � C q, then for any f 2 L2.T/

1

2
ŒPŒa;b� C P.a;b/�f D lim

�#0

1

2�i

Z b

a

ŒR.� C i�/ � R.� � i�/�f d�: (4.23)
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Theorem 4.13. Suppose .˛; ˇ/ \ Z0 D ;. For m D 1; : : : ; M also assume that

.˛; ˇ/ \ Zm D ; and that �˙
m.�/ 6D ˙1 for all � 2 .˛; ˇ/. If Œa; b� � .˛; ˇ/, e is

an edge of type m, and f 2 L2.e/, then

PŒa;b�f D 1

2�i

Z b

a

ŒRC
e .�/ � R�

e .�/�f d�: (4.24)

If �1 2 .˛; ˇ/, then �1 is not an eigenvalue of � C q.

Proof. As noted above, the assumption that .˛; ˇ/\Zm D ; means the multipliers

�m extend continuously to Œa; b� from above and below. Since �˙
m.�/ 6D ˙1

the function 1=Wm.�/ extends continuously to Œa; b�. Based on Theorem 4.3 and

the interpolation formula (4.2), the kernel Re.x; t; �/ described in (4.7) extends

continuously to Œa; b� from above and below. The convergence of Re.x; t; � ˙ i�/

to Re.x; t; �/ is uniform for t; x coming from a �nite set of edges.

If the support of g 2 L2.TM / is contained in a �nite set of edges, then (4.23)

and the uniform convergence of Re.x; t; � ˙ i�/ to Re.x; t; �/ gives

h1

2
ŒPŒa;b� C P.a;b/�f; gi D 1

2�i

Z b

a

ŒRC
e .�/ � R�

e .�/�hf; gi d�:

The set of g with with support in a �nite set of edges is dense in L2.TM /, so the

restriction on the support of g may be dropped. Suppose g is an eigenfunction

with eigenvalue �1 2 .a; b/ and with kgk D 1, while f is the restriction of g to

the edge e. Then the continuity of Re.x; t; �/ means there is a Ce such that

j 1

2�i

Z b

a

ŒRC
e .�/ � R�

e .�/�hf; gi d� j � Cejb � aj:

This implies hP�1
g; gi D 0, so the eigenfunction g doesn’t exist. Finally, the

absence of point spectrum in .˛; ˇ/ means that PŒa;b� D P.a;b/, giving the formula

(4.24). �

Theorem 4.14. Assume � 2 Œ0; 1/nZ0 and for m D 1; : : : ; M suppose �˙
m.�/ 6D

˙1. Then � is in the resolvent set of � C q if and only if ım.�/ D 0 in an open

neighborhood of � for m D 1; : : : ; M .

Proof. If � is in the resolvent set then the kernels described in (4.7) will have a

common holomorphic extension to � from above and below. Evaluation gives

Rm.lm; 0; �/ D �2
m.�/

1 � �2
m.�/

Sm.lm; �/ D
h 1

1 � �2
m.�/

� 1
i

Sm.lm; �/
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so that .�C
m/2.�/ D .��

m/2.�/. A second evaluation,

Rm.0; 0; �/ D �m.�/

1 � �2
m.�/

Sm.lm; �/;

shows �C
m.�/ � ��

m.�/ D ım.�/ D 0.

Now suppose ım.�/ D 0 in open neighborhood of � . Theorem 4.12 notes

that Rm.x; t; �/ extends holomorphically to a neighborhood of � . If g 2 L2.�/

with support in a �nite set of edges, the function hRm.�/f; gi also extends holo-

morphically as a single valued function in an interval .˛; ˇ/ containing � . If

Œa; b� � .˛; ˇ/, then for any f 2 L2.e/

D1

2
ŒPŒa;b� C P.a;b/�f; g

E

D 0:

The set of g with with support in a �nite set of edges is dense in L2.�/, so
1
2
ŒPŒa;b� C P.a;b/�f D 0 for all f 2 L2.e/. By linearity ŒPŒa;b� C P.a;b/�h D 0

for any h 2 L2.�/ with support in a �nite set of edges, and since the projections

are bounded we conclude that PŒa;b� C P.a;b/ D 0 and .˛; ˇ/ is in the resolvent

set [18, p. 357]. �

Corollary 4.15. Assume � 2 Œ0; 1/ n Z0 and for m D 1; : : : ; M suppose

�˙
m.�/ 6D ˙1. Then � is in the resolvent set of � C q if and only if �C

m.�/ is

real valued in open neighborhood of � for m D 1; : : : ; M .

Proof. If �C
m.�/ is real valued, then the symmetry �m.�/ D �m.�/ established

in Lemma 3.7 means ��
m.�/ has the same real value. The same symmetry also

implies that ım.�/ 6D 0 if �C
m.�/ is not real valued. �

Theorem 4.16. For q � 0 and M � 2 the spectrum of �Cq has a strictly positive

lower bound.

Proof. Since

h.� C q/f; f i D h�f; f i C
Z

TM

qjf j2;

it su�ces to verify the result when q D 0.

Consider the case when the edge lengths lm are all equal to 1. Then the

system (4.8) reduces to

.2M � 1/�2.�/ � 2MC.1; �/�.�/ C 1 D 0:

The quadratic formula gives

�.�/ D 2MC.1; �/ ˙
p

4M 2C 2.1; �/ � 4.2M � 1/

2.2M � 1/
:
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Since C.1; 0/ D cos.0/ D 1, the discriminant has the positive value 4M 2 �
4.2M � 1/ D 4.M � 1/2 when � D 0, and �.�/ is real as long as cos2.

p
�/ �

.2M � 1/=M 2.

Returning to the general case of a graph � with unconstrained edge lengths,

recall (2.3) that the quadratic form for � is

h�f; f i D
Z

TM

.f 0/2:

Let x be a coordinate for intervals Œ0; lm� and t for the interval Œ0; 1�. For m D
1; : : : ; M let x D �m.t / be a smooth change of variables. Assume �0 � C1 > 0

and �0.t / D 1 for t in neighborhoods of 0 and 1. If f is in the domain of � for the

graph �, then f ı � will be in the domain of � for a graph �1 whose edge lengths

are all 1.

The chain rule and the change of variables formula for integrals give

Z lm

0

jf .x/j2 dx D
Z 1

0

jf .�m.t //j2�0
m.t / dt;

and
Z lm

0

ˇ

ˇ

ˇ

ˇ

df .x/

dx

ˇ

ˇ

ˇ

ˇ

2

dx D
Z 1

0

ˇ

ˇ

ˇ

ˇ

d

dt
f .�m.t //

ˇ

ˇ

ˇ

ˇ

2
1

�0
m.t /

dt:

As a consequence there is a constant C > 0 such that

R

�

ˇ

ˇ

df .x/
dx

ˇ

ˇ

2
dx

R

�
jf .x/j2 dx

� C

R

�1

ˇ

ˇ

df .�.t//
dt

ˇ

ˇ

2
dt

R

�1
jf .t/j2 dt

:

The calculation for graphs with edge lengths 1 shows that the expression on the

right has a strictly positive lower bound. �

Corollary 4.17. Suppose M � 2 and the lengths lm are rational. Then the

resolvent set of � includes an unbounded subset of Œ0; 1/.

Proof. Assume � 2 C n .�1; 0/ so that
p

� may be taken to be continuous and

positive for � > 0. In case q D 0,

C.lm; �/ D cos.lm
p

�/;
p

�S.lm; �/ D sin.lm
p

�/;

and these functions are periodic in
p

� with period 2�=lm. If lm D �m=�m

with �m; �m positive integers, then the functions have a common period p D
2�

QM
mD1 �m.

The functions C.lm; �/ and S.lm; �/ appear as coe�cients in (4.8). After

multiplication by 1=
p

�, the equations (4.8) exhibit the same periodicity, so have
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identical solutions for � and �1 whenever
p

�1 D
p

� C 2np for any positive

integer n.

By Theorem 4.6 the solutions of (4.8) which are multipliers are determined by

the summability condition if � 2 C n Œ0; 1/, so �m.Œ
p

� C 2np�2/ D �m.�/ for

non-real �. This identity extends by continuity to � 2 Œ0; 1/. By Theorem 4.16

there is a �0 > 0 such that Œ0; �0/ is in the resolvent set of �. Corollary 4.15 shows

that except possibly at a discrete set of points, the points � 2 Œ0; 1/ which are

in the resolvent set are characterized by real values of the multipliers �m.�/, so

except for a discrete set of possible exceptions, .4n2p2; Œ
p

�0 C 2np�2/ is a subset

of the resolvent set for �. �

5. Sample computations

In this section some sample spectral computations are carried out for the case

M D 2. The �rst step is to reduce the system of equations (4.8) to equations for

individual multipliers. Two equations of degree four with entire coe�cients are

obtained. For q D 0 these equations are solved numerically (using Matlab) for

positive values � of the spectral parameter. After eliminating spurious solutions,

the multiplier data is displayed in several �gures.

5.1. Elimination step. When M D 2 the system of equations (4.8) may be

written as

�2
1.�/ � 1

S1.l1; �/�1.�/
D 2

�1.�/ � C1.l1; �/

S1.l1; �/
C 2

�2.�/ � C2.l2; �/

S2.l2; �/
; (5.1)

�2
2.�/ � 1

S2.l2; �/�2.�/
D 2

�1.�/ � C1.l1; �/

S1.l1; �/
C 2

�2.�/ � C2.l2; �/

S2.l2; �/
:

Subtracting the second equation from the �rst gives

�2
1.�/ � 1

S1.l1; �/�1.�/
� �2

2.�/ � 1

S2.l2; �/�2.�/
D 0;

Solving this quadratic equation for 2�2.�/ gives

2�2.�/ � �2
1.�/ � 1

S1.l1; �/�1.�/
S2.l2; �/ D ˙

h .�2
1.�/ � 1/2

S2
1 .l1; �/�2

1.�/
S2

2 .l2; �/ C 4
i1=2

: (5.2)

Equation (5.1) is already �rst order in �2.�/, and may be rewritten as

2�2.�/ � �2
1.�/ � 1

S1.l1; �/�1.�/
S2.l2; �/ D �2S2.l2; �/

�1.�/ � C1.l1; �/

S1.l1; �/
C 2C2.l2; �/:
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Replacing the left hand side using (5.2) and squaring gives

.�2
1.�/ � 1/2

S2
1 .l1; �/�2

1.�/
S2

2 .l2; �/ C 4

D 4S2
2 .l2; �/Œ

�1.�/ � C1.l1; �/

S1.l1; �/
�2

� 8C2.l2; �/S2.l2; �/
�1.�/ � C1.l1; �/

S1.l1; �/
C 4C 2

2 .l2; �/

After some clean-up we get

3S2
2 .l2; �/�4

1.�/ � 8ŒS1.l1; �/C2.l2; �/S2.l2; �/ C S2
2 .l2; �/C1.l1; �/��3

1.�/

C Œ2S2
2 .l2; �/ � 4S2

1 .l1; �/ C 4S2
2 .l2; �/C 2

1 .l1; �/ C 4C 2
2 .l2; �/S2

1 .l1; �/

C 8S1.l1; �/C2.l2; �/S2.l2; �/C1.l1; �/��2
1.�/ � S2

2 .l2; �/

D 0:

The equation satis�ed by �2.�/ is obtained by interchanging the subscripts 1

and 2.

5.2. Numerical work. Figures 3, 4, and 5 display multiplier data for three cases.

In all cases q D 0 and l1 D 1. The values of l2 are (i) l2 D 1, (ii) l2 D 0:89, and

(iii) l2 D 2.

For a range of positive values of � , solutions of the degree four polynomial

equations for �1.�/ and �2.�/ are computed. Actual multiplier pairs .�1; �2/

must satisfy the system (4.8), as well as the eigenvalue bounds of Theorem 4.6.

To eliminate spurious solutions, the expressions in (4.8) were evaluated, and

candidate pairs .�1; �2/ were rejected if either equation had an expression with

magnitude greater than 10�8. Pairs were also rejected if the eigenvalue bounds of

Theorem 4.6 were exceeded.

Each �gure contains two parts, the multiplier arguments and the logarithm of

the magnitudes. Figure 3 is the case with l1 D l2 D 1. In this case the two

multipliers are equal. By Corollary 4.15, real points in the resolvent set can be

recognized by real values for both multipliers, except when � lies in a discrete

exceptional set. Eigenvalues in these sets are possible, as discussed in [7].

Figure 4 illustrates the case l2 D 0:89. When the multipliers are not real they

will appear in conjugate pairs; in this case the multipliers have distinct extensions

�˙
m.�/ to the real axis, as discussed before Proposition 4.11. One then sees four

multipliers in the �gure. Unlike the classical Hill’s equation, multipliers may vary

in magnitude when they are not real valued. The multiplier arguments may exhibit

occasional discontinuities.
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Figure 5 illustrates the case l2 D 2. The multiplier argument discontinuities

are clearly visible. Notice that the horizontal axis displays �1=2; the predicted

periodicity from the proof of Corollary 4.17 is evident.

Figure 3. Case l1 D 1, l2 D 1.

Figure 4. Case l1 D 1, l2 D 0:89.
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Figure 5. Case l1 D 1, l2 D 2.
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