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Formal descriptions of Turaev’s loop operations

Gwénaël Massuyeau

Abstract. Using intersection and self-intersection of loops, Turaev introduced in the

seventies two fundamental operations on the algebra QŒ�� of the fundamental group � of

a surface with boundary. The �rst operation is binary and measures the intersection of two

oriented based curves on the surface, while the second operation is unary and computes the

self-intersection of an oriented based curve. It is already known that Turaev’s intersection

pairing has an algebraic description when the group algebra QŒ�� is completed with respect

to powers of its augmentation ideal and is appropriately identi�ed to the degree-completion

of the tensor algebra T .H/ of H WD H1.� IQ/.

In this paper, we obtain a similar algebraic description for Turaev’s self-intersection

map in the case of a disk with p punctures. Here we consider the identi�cation between the

completions of QŒ�� and T .H/ that arises from a Drinfeld associator by embedding � into

the pure braid group on .pC 1/ strands; our algebraic description involves a formal power

series which is explicitly determined by the associator. The proof is based on some three-

dimensional formulas for Turaev’s loop operations, which involve 2-strand pure braids and

are shown for any surface with boundary.

Mathematics Subject Classi�cation (2010). Primary: 57N05; Secondary: 57M05, 57M27,

20F36, 17B37.

Keywords. Loop operations, surfaces, braid groups, Drinfeld associators, Kontsevich

integral.



40 G. Massuyeau

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2 Fox pairings and quasi-derivations . . . . . . . . . . . . . . . . . . . . 44

3 Turaev’s loop operations . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Three-dimensional formulas for Turaev’s loop operations . . . . . . . 59

5 Special expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 The special expansion de�ned by the Kontsevich integral . . . . . . . 79

7 Formal description of Turaev’s self-intersection map . . . . . . . . . . 86

8 Proof of the formal descriptions . . . . . . . . . . . . . . . . . . . . . 89

A Formal description of Turaev’s intersection pairing . . . . . . . . . . . 109

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

1. Introduction

Let † be a connected oriented surface with non-empty boundary. Let ZŒ�� be the

group ring of the fundamental group � WD �1.†; �/ based at a point � 2 @†.

Turaev introduced in [42] two fundamental operations in ZŒ��. On the one hand,

there is the homotopy intersection pairing

�WZŒ�� � ZŒ�� �! ZŒ��;

which is a version of Reidemeister’s equivariant intersection pairing in †. It

appeared later that the pairing � and the Hopf algebra structure of ZŒ�� determine

all the loop operations that have been considered by Goldman in his study of the

Poisson structures on the representation varieties of surface groups [16]; these

operations include the so-called “Goldman bracket.” The pairing � has also been

rediscovered in [40], where it is used to study the unitarity property for the Magnus

representation of mapping class groups and the Burau/Gassner representations of

braid groups.

On the other hand, there is the homotopy self-intersection map, which is more

naturally de�ned on the group ring of the fundamental group E� WD �1.U †; E� / of

the unit tangent bundle of †:

E�WZŒE�� �! ZŒ��:

Using the Hopf algebra structures of ZŒE�� and ZŒ��, this map determines the so-

called “Turaev cobracket” introduced in [43], which constitutes a Lie bialgebra

with the Goldman bracket. The map E� has also been used in [9] to generalize
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Whitney’s index formula to arbitrary surfaces. It is legitimate to regard the

homotopy self-intersection map as a re�nement of the homotopy intersection

pairing, since we have

E�.Ea Eb/ D a E�.Eb/C E�.Ea/ bC �.a; b/

for any Ea; Eb 2 E� mapping to a; b 2 � under the canonical projection E� ! � .

We now take rational coe�cients and consider the completion bQŒ�� of the

group algebra QŒ�� with respect to the �ltration de�ned by powers of the augmen-

tation ideal I . Since � is a free group, there exists an isomorphism of complete

Hopf algebras

bQŒ�� �! T ..H// (1.1)

onto the degree-completion T ..H// of the tensor algebra T .H/ generated by

H WD H1.†IQ/. For instance, given a basis .�i /i of � , we can always consider

the multiplicative map � ! T ..H// de�ned by

�i 7�! exp.Œ�i �/ where Œ�i � 2 H is the homology class of �i ; (1.2)

and extend this map by linearity/continuity to bQŒ��. Of course, there is (generally

speaking) no canonical isomorphism between the complete Hopf algebras bQŒ��

and T ..H//, but we can always require that (1.1) induces the canonical isomor-

phism at the graded level

Gr bQŒ�� ' Gr QŒ�� D
1M

kD0

I k=I kC1 '
�! T .H/ D Gr T .H/ ' Gr T ..H//

(1.3)

de�ned in degree 1 by .x � 1/ 7! Œx� for any x 2 � . Kawazumi and Kuno

proved in [24] that, if the surface † is compact with a single boundary component,

and if the isomorphism (1.1) is “symplectic” in some sense [32], then the Lie

algebra de�ned by the Goldman bracket corresponds to the Lie algebra associated

by Kontsevich to the symplectic vector space .H; !/ and to the cyclic operad of

associative algebras [28]. Note that Kontsevich’s Lie algebra is also the “necklace

Lie algebra” [8, 15] associated to a quiver with a single vertex and as many edges

as the genus of †. This “formal description” of the Goldman bracket has been

generalized in [33] where it is shown that, under the same assumptions, the loop

operation � corresponds through the isomorphism (1.1) to the sum of two simple

operations in T ..H//: the �rst tensor operation is de�ned by contraction with the

homology intersection form !WH �H ! Q, while the second tensor operation

involves some multiplications ruled by Bernoulli numbers.
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It is now natural to ask for similar “formal descriptions” of the homotopy self-

intersection map and the Turaev cobracket. This problem has been considered

in the past few years by Kawazumi and Kuno and, independently, by Turaev and

the author. Indeed Schedler upgraded the necklace Lie algebra to a Lie bialgebra

by de�ning a quiver analogue of the Turaev cobracket [41]. It turns out that, if

† is compact with a single boundary component and if the isomorphism (1.1) is

“symplectic”, then the Turaev cobracket corresponds to the Schedler cobracket

at the graded level. This cobracket correspondence between surfaces and quivers

was announced in [34] and has been proved in [35]. Independently, Kawazumi

and Kuno obtained a similar algebraic description of the graded level of the

Turaev cobracket, which has been proved in [25]. Their motivation in the study of

mapping class groups was to obtain new obstructions for the image of the Johnson

homomorphisms by relating Morita’s traces [36] to the Turaev cobracket: see the

survey paper [26]. But some computations done by Kuno [29] reveal that there

exist some isomorphisms (1.1) satisfying the symplectic condition, and for which

the cobracket correspondence between surfaces and quivers does not hold beyond
the graded level.

In this paper, we consider the simpler case where † is a disk with �nitely many

punctures numbered from 1 to p, and where the isomorphism (1.1) satis�es a “spe-

cial” condition replacing the above-mentioned symplectic condition. In this case

too, there is a formal description of the homotopy intersection pairing which can

be deduced from the case of a compact surface of genus p with a single boundary

component. We show that, if the isomorphism (1.1) arises from the Kontsevich

integral Z by embedding � into the group of .p C 1/-strand pure braids [17, 1],

then the self-intersection map translates into the sum of two simple operations in

T ..H//: the �rst tensor operation is canonical, while the second tensor operation

depends explicitly on the Drinfeld associator ˆ underlying the construction of Z

(see Theorem 7.1). To be more speci�c, this second tensor operation consists of

multiplications with a formal power series � de�ned by some coe�cients of ˆ,

and it turns out that � is essentially the �-function of ˆ de�ned by Enriquez [13].

Besides, we prove that the second tensor operation does not depend anymore on

ˆ if the latter is assumed to be even and, again, it reduces to some multiplications

ruled by the Bernoulli numbers (see Corollary 7.2). Finally we obtain that, for any

Drinfeld associator ˆ, the Turaev cobracket translates into the Schedler cobracket

associated to a star-shaped quiver consisting of one “central” vertex connected by

p edges to p “peripheral” vertices (see Corollary 7.3).

We mention that another formal description of the Turaev cobracket for a

punctured disk has been obtained recently by Kawazumi [23]. In his work, the
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isomorphism (1.1) is simply de�ned by (1.2) using the basis .�1; : : : ; �p/ of � given

by some small loops around the punctures. But this isomorphism does not have

the above-mentioned special property, so that the resulting formulas for the Turaev

cobracket seem to be much more complicated than ours. Besides, around the same

time when the �rst version of our paper was released, Alekseev, Kawazumi, Kuno

and Naef announced some results similar to ours: in their work [2], the use of

Drinfeld associators is replaced by solutions to the Kashiwara–Vergne problem.

It is expected that the results of [1] make the link between the two approaches.

To get our results for a punctured disk, we start by revisiting Turaev’s loop

operations. Speci�cally we prove some three-dimensional formulas for the oper-

ations � and E� which involve some embeddings of the groups � and E� into the

group of pure braids in †. Roughly speaking, for any a; b 2 � , our formula for

�.a; b/ is a certain “free di�erential operator” applied to the 2-strand pure braid

a�1

b

a

b�1

(see Theorem 4.3). Similarly, for any Ea 2 E� projecting to a 2 � , our formula for

E�.Ea/ is the same “free di�erential operator” applied to the 2-strand pure braid

“doubling” of Ea

a�1

a�1

(see Theorem 4.6). Despite their simplicity, these three-dimensional formulas

for Turaev’s loop operations seem to be new and we believe that they can be

of independent interest. Therefore we prove those formulas in the general case

of a connected oriented surface † with non-empty boundary. In particular, we

hope them to be useful to obtain some similar, formal descriptions of the map E�

and the Turaev cobracket when † is a compact surface with a single boundary

component. The proof of this more di�cult case would follow the same strategy

and should involve a higher-genus analogue of the Kontsevich integral: this could

be the invariant of surface tangles derived either from Enriquez’s higher-genus

associators [14, 19] or, alternatively, from the LMO functor [10, 37]. (See [21] for

a connection between these two alternatives.)
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The paper is organized as follows. We review in Section 2 the notion of

“Fox pairing” and present the related notion of “quasi-derivation”: these notions

abstract the properties of the pairing � and the map E�, respectively. In Section 3

we review the original two-dimensional de�nitions of the operations � and E�,

while the three-dimensional formulas for these operations are stated and proved

in Section 4. This �rst part of the paper holds for any connected oriented surface †

with non-empty boundary. Next, we assume that † is a punctured disk. Section 5

introduces “special expansions” of � D �1.†; �/, which produce the special

isomorphisms (1.1) that we need. The construction of a special expansion from

the Kontsevich integral is explained in Section 6. Section 7 states our main results:

the formal description of the self-intersection map E� for an arbitrary (respectively,

even) associator ˆ, and the formal description of the Turaev cobracket. Section 8

contains the proofs of these results. The paper ends with an appendix where the

formal description of � for a punctured disk is derived from the analogous result

for a compact surface with one boundary component.

In the sequel, we �x the following miscellaneous conventions.

˘ The set of non-negative integers is denoted by N0.

˘ We shall specify a commutative ring K at the beginning of each section

and by a “module”, an “algebra”, a “linear map”, etc: we shall mean a “K-

module”, an “associative K-algebra”, a “K-linear map”, etc.

˘ The commutator of two elements x; y of a group G is de�ned by Œx; y� WD

xyx�1y�1 2 G. The commutator of two elements a; b of an associative K-

algebra A is the element Œa; b� WD ab � ba 2 A.

˘ Given a based loop ˛ in a pointed topological space .X; �/, we still denote

by ˛ its class in the fundamental group �1.X; �/.

˘ We use the “blackboard framing” convention to present framed tangles by

their projection diagrams.

Acknowledgements. We are grateful to Benjamin Enriquez and Vladimir Tu-

raev for helpful discussions. We would like to thank Nariya Kawazumi for his

comments on a �rst version of this paper. We are also indebted to the referee for

their careful reading and for having corrected/simpli�ed the proof of Lemma A.1.

2. Fox pairings and quasi-derivations

We brie�y review from [34] the notion of “Fox pairing”, we present the notion of

“quasi-derivation” and we introduce several constructions related to these notions.
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In this section, K is an arbitrary commutative ring, and by a “Hopf algebra” we

mean an involutive Hopf algebra over K.

2.1. Fox derivatives. Let A be an augmented algebra with counit "WA ! K.

A map @WA ! A is a left (respectively, a right) Fox derivative if @.ab/ D

a@.b/C @.a/".b/ (respectively, @.ab/ D @.a/b C ".a/@.b/) for any a; b 2 A.

As an example, consider the free product G �F.z/ of a group G and the group

F.z/ freely generated by an element z. Let A WD KŒG�F.z/� be the group algebra

of G � F.z/. Then there is a unique left Fox derivative

@

@z
WA �! A

such that
@z

@z
D 1 and

@g

@z
D 0; for all g 2 G:

The following lemma, which develops this example, will be very useful in the next

sections.

Lemma 2.1. Let pWG � F.z/ ! G be the group homomorphism de�ned by
p.z/ WD 1 and p.g/ WD g for all g 2 G. Let J be a �nite ordered set and,
for every j 2 J , let "j 2 ¹�1;C1º and rj 2 G � F.z/. Then

p
@

@z

� Y

j 2J

rj z"j r�1
j

�
D
X

j 2J

"j p.rj / 2 KŒG�:

Proof. Let " 2 ¹�1;C1º, and r; s 2 G � F.z/. Then

p
@

@z
.rz"r�1s/ D p

�@r

@z

�
C p

�
r

@z"r�1s

@z

�

D p
�@r

@z

�
C p.r/ p

�@z"

@z
C z" @r�1s

@z

�

D p
�@r

@z

�
C "p.r/C p.r/ p

�@r�1s

@z

�

D p
�@r

@z

�
C "p.r/C p.r/ p

�
@r�1

@z
C r�1 @s

@z

�

D p
�@r

@z

�
C "p.r/C p.r/ p

�
� r�1 @r

@z

�
C p

�@s

@z

�

D "p.r/C p
�@s

@z

�
:

Hence the lemma follows from an induction on the cardinality of J . �
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2.2. Fox pairings. We recall some de�nitions and results from [34]. Let A be

a Hopf algebra with coproduct �WA ! A ˝ A, counit "WA ! K and antipode

S WA! A. We will use Sweedler’s convention

�.a/ D a0 ˝ a00; .�˝ id/�.a/ D a0 ˝ a00 ˝ a000; etc.

to denote the successive iterations of the coproduct of an element a of A.

A Fox pairing in A is a bilinear map �WA�A! A which is a left Fox derivative

in its �rst variable and a right Fox derivative in its second variable:

�.ab; c/ D a�.b; c/C �.a; c/ ".b/ and �.a; bc/ D �.a; b/c C ".b/ �.a; c/;

for all a; b; c 2 A. For instance, any element e 2 A de�nes an inner Fox pairing

de�ned by

�e.a; b/ WD .a � ".a// e .b � ".b// for all a; b 2 A:

The transpose of a Fox pairing � in A is the bilinear map �t WA�A! A de�ned

by �t .a; b/ WD S�.S.b/; S.a// for any a; b 2 A. Note that �t is a Fox pairing and

.�t /t D � (here we use the fact that S2 D id, see [34, Lemma 5.1]). Furthermore,

it can be proved that

�t.a; b/ D a0 S.�.b00; a00// b0; for all a; b 2 A: (2.1)

(see [34, Lemma 5.2]). The Fox pairing � is said to be skew-symmetric if �t D ��.

We now explain an auxiliary construction for Fox pairings. Consider the

bilinear map h�;�i�WA � A! A de�ned by

ha; bi� WD b0 S.�.a00; b00/0/ a0 �.a00; b00/00 for all a; b 2 A: (2.2)

The following facts are veri�ed by direct computations:

(i) h�;�i� is a derivation in its second variable (see [34, Lemma 6.1]);

(ii) for any e 2 A, the map h�;�i�e
induced by the inner Fox pairing �e is trivial

(see [34, Lemma 6.3]);

(iii) if � is skew-symmetric, h�;�i� induces a skew-symmetric bilinear map

h�;�i�W {A � {A ! {A on the quotient module {A WD A=ŒA; A�, where ŒA; A�

denotes the submodule spanned by commutators in the algebra A (see [34,

Lemma 6.2]).

The operation in {A produced in (iii) is called the bracket induced by the Fox pairing

�. In the sequel, with a slight abuse of notation, the class modulo ŒA; A� of an

element a 2 A is still denoted by a 2 {A.



Formal descriptions of Turaev’s loop operations 47

2.3. Quasi-derivations. Let zA and A be Hopf algebras. We shall denote their

coproducts, counits and antipodes by the same letters �, " and S , except if

this could lead to some confusion (in which case we shall write � zA; " zA; S zA and

�A; "A; SA). We also assume that a surjective homomorphism of Hopf algebras

pW zA ! A is given: the image p. Qa/ of an element Qa 2 QA will often be simply

denoted by a 2 A.

A linear map qW zA ! A is called a quasi-derivation ruled by the Fox pairing

�WA � A! A if it satis�es

q. Qa Qb/ D q. Qa/ bC a q. Qb/C �.a; b/; for all Qa; Qb 2 zA:

Denote by QDer.�/ the set of quasi-derivations zA! A ruled by �. (Clearly, this

set depends on the projection pW zA ! A too, but we omit it from our notations.)

The module of derivations zA! A (where A is regarded as an zA-bimodule via p)

acts freely and transitively by addition on the set QDer.�/.

Lemma 2.2. Let e1; e2 2 A and set e WD e1C e2. Then the linear map de�ned by

qe1;e2
. Qa/ WD .".a/� a/ e1 C e2 .".a/� a/

D ".a/ e � ae1 � e2a; for all Qa 2 zA;

is a quasi-derivation ruled by the inner Fox pairing �e.

Proof. For any Qa; Qb 2 zA,

qe1;e2
. Qa Qb/ � qe1;e2

. Qa/ b � a qe1;e2
. Qb/

D .".ab/ e � abe1 � e2ab/ � .".a/ e � ae1 � e2a/b

� a.".b/ e � be1 � e2b/

D ".a/".b/e � abe1 � e2ab

� ".a/ ebC ae1b C e2ab � ".b/ ae C abe1 C ae2b

D ".a/".b/ eC aeb � ".a/ eb � ".b/ ae

D �e.a; b/: �

The transpose of a q 2 QDer.�/ is the linear map qt W zA ! A de�ned by

qt . Qa/ WD SA q S zA. Qa/ for all Qa 2 zA. We say that q is skew-symmetric if qt D �q.

Lemma 2.3. For any q 2 QDer.�/, we have qt 2 QDer.�t/.
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Proof. For any Qa; Qb 2 zA, we have

qt . Qa Qb/ D Sq.S. Qb/ S. Qa//

D S.pS. Qb/ qS. Qa/C qS. Qb/ pS. Qa/C �.pS. Qb/; pS. Qa///

D S.S.b/ qS. Qa/C qS. Qb/ S.a/C �.S.b/; S.a///

D SqS. Qa/ bC a SqS. Qb/C S�.S.b/; S.a//

D qt . Qa/ b C a qt . Qb/C �t.a; b/: �

We now explain some auxiliary constructions for quasi-derivations. First, any

q 2 QDer.�/ can be transformed to a map dq W zA! A˝ A by the formula

dq. Qa/ WD p. Qa0/ SA.q. Qa00/0/˝ q. Qa00/00; for all Qa 2 zA; (2.3)

where the coproducts � zA. Qa/ D Qa0 ˝ Qa00 and �A.q. Qa00// D q. Qa00/0 ˝ q. Qa00/00 are

written with Sweedler’s convention. Note that q can be recovered from dq by the

formula q D ."A ˝ idA/dq .

Lemma 2.4. Let e1; e2 2 A and set e WD e1 C e2. Then the map de1;e2
WD dqe1;e2

is given by

de1;e2
. Qa/ D aS.e0/˝ e00 � a0S.e0

1/S.a00/˝ a000e00
1 � S.e0

2/˝ e00
2a for all Qa 2 zA:

Proof. Let Qa 2 zA. We have

de1;e2
. Qa/

D ".p. Qa00//p. Qa0/S.e0/˝ e00 � p. Qa0/S.p. Qa00/0 e0
1/˝ p. Qa00/00 e00

1

� p. Qa0/S.e0
2 p. Qa00/0/˝ e00

2 p. Qa00/00

D ". Qa00/p. Qa0/S.e0/˝ e00 � p. Qa/0S..p. Qa/00/0e0
1/˝ .p. Qa/00/00e00

1

� p. Qa/0S.e0
2.p. Qa/00/0/˝ e00

2.p. Qa/00/00

D aS.e0/˝ e00 � a0S.a00e0
1/˝ a000e00

1 � a0S.e0
2a00/˝ e00

2a000

D aS.e0/˝ e00 � a0S.e0
1/S.a00/˝ a000e00

1 � a0S.a00/S.e0
2/˝ e00

2a000

D aS.e0/˝ e00 � a0S.e0
1/S.a00/˝ a000e00

1 � S.e0
2/˝ e00

2a: �

Next, any q 2 QDer.�/ induces a map ıq W zA! {A˝ {A de�ned by

ıq. Qa/ WD dq. Qa/ � P21dq. Qa/ 2 {A˝ {A; for all Qa 2 zA; (2.4)

where P21W {A˝ {A! {A˝ {A is the permutation map de�ned by P21.u˝v/ WD v˝u.
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Lemma 2.5. Let e1; e2 2 A, set e WD e1C e2. Then the map ıe1;e2
WD ıqe1;e2

only
depends on e and is given by

ıe1;e2
. Qa/ D aS.e0/˝ e00 C ae00 ˝ S.e0/ � S.e0/˝ e00a � e00 ˝ S.e0/a 2 {A˝ {A

for all Qa 2 zA.

Proof. Let Qa 2 zA. We have

ıe1;e2
. Qa/ D aS.e0/˝ e00 � a0S.e0

1/S.a00/˝ a000e00
1 � S.e0

2/˝ e00
2a

� e00 ˝ aS.e0/C a000e00
1 ˝ a0S.e0

1/S.a00/C e00
2a˝ S.e0

2/

D aS.e0/˝ e00 � S.e0
1/S.a00/a0 ˝ a000e00

1 � S.e0
2/˝ e00

2a

� e00 ˝ aS.e0/C a000e00
1 ˝ S.e0

1/S.a00/a0 C e00
2a˝ S.e0

2/

D aS.e0/˝ e00 � S.e0
1/ S.S.a0/a00/˝ a000e00

1 � S.e0
2/˝ e00

2a

� e00 ˝ aS.e0/C a000e00
1 ˝ S.e0

1/ S.S.a0/a00/C e00
2a˝ S.e0

2/

D aS.e0/˝ e00 � S.e0
1/˝ ae00

1 � S.e0
2/˝ e00

2a

� e00 ˝ aS.e0/C ae00
1 ˝ S.e0

1/C e00
2a˝ S.e0

2/

D aS.e0/˝ e00 � S.e0
1/˝ ae00

1 � S.e0
2/˝ ae00

2

� e00 ˝ aS.e0/C ae00
1 ˝ S.e0

1/C ae00
2 ˝ S.e0

2/

D aS.e0/˝ e00 � S.e0/˝ ae00 � e00 ˝ aS.e0/C ae00 ˝ S.e0/: �

Let j {Aj be the quotient of the module {A by the submodule spanned by the class

of 1 2 A.

Lemma 2.6. Let � be a Fox pairing in A such that � C �t D �e for some
e 2 K1 � A. Then, for any q 2 QDer.�/ such that q.ker p/ � K1, the map
ıq induces a linear map

jıq jW j {Aj �! j {Aj ˝ j {Aj

with skew-symmetric values.

Proof. Since p is a coalgebra map, we have �.ker.p// � ker.p ˝ p/ and, since

p is surjective,

ker.p ˝ p/ D .ker p/˝ zAC zA˝ .ker p/:

Therefore, for any Qa 2 ker.p/,

dq. Qa/ D p. Qa0/S.q. Qa00/0/˝ q. Qa00/00
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belongs to A˝ .K1/. It follows that ıqW zA! {A˝ {A induces a map

ıqWA �! j {Aj ˝ j {AjI

moreover, ıq.1A/ D 0 since q.1 zA/ D 0. Thus it now remains to prove that

ıq. Qa Qb/ D ıq. Qb Qa/ for any Qa; Qb 2 zA. We have

dq. Qa Qb/ D p. Qa0 Qb0/ S.q. Qa00 Qb00/0/˝ q. Qa00 Qb00/00

and, since

q. Qa00 Qb00/ D p. Qa00/q. Qb00/C q. Qa00/p. Qb00/C �.p. Qa00/; p. Qb00//;

we get

dq. Qa Qb/ D p. Qa0 Qb0/S.p. Qa00/0q. Qb00/0/˝ p. Qa00/00q. Qb00/00

C p. Qa0 Qb0/S.q. Qa00/0p. Qb00/0/˝ q. Qa00/00p. Qb00/00

C p. Qa0 Qb0/S.�.p. Qa00/; p. Qb00//0/˝ �.p. Qa00/; p. Qb00//00

D p. Qa0/p. Qb0/S.q. Qb00/0/S.p. Qa00/0/˝ p. Qa00/00q. Qb00/00

C p. Qa0/p. Qb0/S.p. Qb00/0/S.q. Qa00/0/˝ q. Qa00/00p. Qb00/00

C p. Qa0/p. Qb0/S.�.p. Qa00/; p. Qb00//0/˝ �.p. Qa00/; p. Qb00//00

D a0p. Qb0/S.q. Qb00/0/S.a00/˝ a000q. Qb00/00

C p. Qa0/b0S.b00/S.q. Qa00/0/˝ q. Qa00/00b000

C a0b0S.�.a00; b00/0/˝ �.a00; b00/00

D a0p. Qb0/S.q. Qb00/0/S.a00/˝ a000q. Qb00/00

C p. Qa0/S.q. Qa00/0/˝ q. Qa00/00b

C a0b0S.�.a00; b00/0/˝ �.a00; b00/00 2 A˝ A

and, modulo commutators, this is equal to

dq. Qa Qb/ D p. Qb0/S.q. Qb00/0/˝ q. Qb00/00a

C p. Qa0/S.q. Qa00/0/˝ q. Qa00/00b

C b0S.�.a00; b00/0/a0 ˝ �.a00; b00/00 2 {A˝ {A:

We deduce that

ıq. Qa Qb/ � ıq. Qb Qa/ D b0S.�.a00; b00/0/a0 ˝ �.a00; b00/00

� �.a00; b00/00 ˝ b0S.�.a00; b00/0/a0

� a0S.�.b00; a00/0/b0 ˝ �.b00; a00/00

C �.b00; a00/00 ˝ a0S.�.b00; a00/0/b0:
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It can be proved using the formula (2.1) that

y0S.�.x00; y00/0/x0 ˝ �.x00; y00/00 D �t .y00; x00/00 ˝ x0S.�t .y00; x00/0/y0

for all x; y 2 A (see [34, equation (6.1.2)]), and it follows that

ıq. Qa Qb/ � ıq. Qb Qa/ D �t .b00; a00/00 ˝ a0S.�t.b00; a00/0/b0

� �.a00; b00/00 ˝ b0S.�.a00; b00/0/a0

� �t .a00; b00/00 ˝ b0S.�t.a00; b00/0/a0

C �.b00; a00/00 ˝ a0S.�.b00; a00/0/b0

D ��e.a00; b00/00 ˝ b0S.�e.a00; b00/0/a0

C �e.b00; a00/00 ˝ a0S.�e.b00; a00/0/b0:

A direct computation (see [34, Lemma 6.3]) shows that

b0S.�e.a00; b00/0/a0 ˝ �e.a00; b00/00 D S.e0/˝ ae00b C bS.e0/a˝ e00

� bS.e0/˝ ae00 � S.e0/a˝ e00b

and, using the assumption e 2 K1, we conclude that

ıq. Qa Qb/ � ıq. Qb Qa/ D �.ae00b ˝ S.e0/C e00 ˝ bS.e0/a

� ae00 ˝ bS.e0/ � e00b ˝ S.e0/a/

C .be00a˝ S.e0/C e00 ˝ aS.e0/b

� be00 ˝ aS.e0/ � e00a˝ S.e0/b/

D 0: �

The map jıqjW j {Aj ! j {Aj˝ j {Aj produced by Lemma 2.6 is called the cobracket
induced by the quasi-derivation q.

2.4. Filtrations and completions. A �ltration on a module V is a decreasing

sequence of submodules V D V0 � V1 � V2 � � � � : The completion of the

�ltered module V is the module yV WD lim
 �k

V=Vk equipped with the �ltration

inherited from V . The �ltered module V is complete if the canonical map V ! yV

is an isomorphism. Given an integer d , a linear map f WV ! W between �ltered

modules is said to be d -�ltered if f .Vk/ � WkCd for all integers k � max.0;�d/.

A linear map f WV ! W is �ltration-preserving if it is 0-�ltered. Any d -�ltered

linear map f WV ! W induces a (d -�ltered) linear map Of W yV ! yW , which we

call the completion of f .
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Let A be a �ltered Hopf algebra with coproduct �, counit " and antipode S .

This means that A is a Hopf algebra equipped with a �ltration

A0 � A1 � A2 � � � �

such that A1 D ker ", AiAj � AiCj for any i; j 2 N0, and the maps �; S

are �ltration-preserving. For instance, the �ltration de�ned by Aj WD I j for all

j 2 N0, where I WD ker ", is called the I -adic �ltration of A.

A Fox pairing �WA�A! A is �ltered if the induced linear map �˝WA˝A! A

is .�2/-�ltered, i.e. �.Ai ; Aj / � AiCj �2 for any i; j 2 N0 such that i C j � 2.

Given another �ltered Hopf algebra zA, and given a �ltration-preserving surjective

Hopf algebra homomorphism pW zA! A, we say that a quasi-derivation qW zA! A

ruled by � is �ltered if it is .�2/-�ltered, i.e: q. zAi/ � Ai�2 for any integer i � 2.

Lemma 2.7. Assume that the Hopf algebra A is equipped with the I -adic �ltra-
tion. Then any Fox pairing � in A is �ltered. Furthermore, if zA is equipped either
with the I -adic �ltration or with the �ltration de�ned by

zAk WD

bk=2cX

iD0

X

¹1;:::;k�iº
�
!¹1;2º

] ��1.2/Di

k�iY

j D1

I�.j / where

´
I1 WD ker ";

I2 WD ker p;
(2.5)

for all k 2 N0, then any q 2 QDer.�/ is �ltered.

Proof. Let �WA�A! A be a Fox pairing and assume that Ak D .ker "/k for any

k � 1. Then, for any i; j 2 N0, for any a 2 Ai , b 2 Aj and a0; b0 2 ker ", we have

�.aa0; b0b/ D a�.a0; b0/b 2 AiCj :

This proves that �.AiC1; Aj C1/ � AiCj for all i; j 2 N0, and it follows that � is

.�2/-�ltered.

We now consider a quasi-derivation qW zA ! A ruled by �. Assume �rst that
zAk D .ker "/k for any k � 1. Then, for any integer i > 0, for any Qa 2 zAi and
Qb 2 ker ", we have

q. Qa Qb/ D a q. Qb/„ƒ‚…
2Ai

C q. Qa/ b„ƒ‚…
2 ‹�A1

C �.a; b/„ƒ‚…
2Ai�1

:

Thus an induction on i > 0 shows that q. zAiC1/ � Ai�1.
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Let k � 2 and assume now that zAk is de�ned by the sum (2.5) indexed by

i 2 ¹0; : : : ; bk=2cº. For any i 2 ¹2; : : : ; bk=2cº, q vanishes on the i-th summand

since q vanishes on .ker p/2. Besides, q maps the 1-st summand of (2.5) to Ak�2

since, for any Qa 2 ker p, any Qb1; : : : ; Qbk�2 2 ker " and r 2 ¹1; : : : ; k � 1º we have

q. Qb1 � � � Qbr�1 Qa Qbr � � � Qbk�2/ D b1 � � � br�1 q. Qa/ br � � � bk�2 2 .ker "/k�2 D Ak�2:

Finally, the previous paragraph shows that q maps the 0-th summand of (2.5) to

Ak�2, and we conclude that q is .�2/-�ltered. �

The completion yA of A has a structure of complete Hopf algebra, i.e: it is a

“Hopf algebra” object in the category of complete �ltered modules equipped with

the monoidal structure de�ned by the completed tensor product. Speci�cally, the

coproduct y�W yA! yA y̋ yA of yA takes values in the completion of yA˝ yA. All the

notions introduced in the previous subsections that do not involve the coproduct

extend verbatim to the complete Hopf algebra yA: this includes the de�nition of

(�ltered) Fox pairing O�W yA� yA! yA and the de�nition of (�ltered) quasi-derivation

OqW yzA! yA. Note that any �ltered Fox pairing � in A and any �ltered q 2 QDer.�/

induce, respectively, a �ltered Fox pairing O� in yA and a �ltered Oq 2 QDer. O�/.

Furthermore, any construction of the previous subsections that involves the co-

product can be adapted mutatis mutandis to the setting of complete Hopf algebras,

and each of this construction “commutes” with the procedure of completion. For

instance, a skew-symmetric Fox pairing O� in yA induces a bracket

h�;�i O�W
{yA � {yA �! {yA (2.6)

by the same formula (2.2), where
{yA is the quotient of yA by the submodule of

commutators; if O� is now the completion of a skew-symmetric �ltered Fox pairing

� in A, the completion of the .�2/-�ltered linear map h�;�i O�W
{yA˝ {yA! {yA induced

by (2.6) is the completion of the .�2/-�ltered linear map h�;�i�W {A ˝ {A ! {A

induced by the bracket of �. Here we use the fact that the completion
b{yA of

{yA (with

respect to the �ltration that it inherits from yA) is canonically isomorphic to the

completion
y{A of {A (with respect to the �ltration that it inherits from A), which

implies that
1{yA˝ {yA '

b{yA y̋
b{yA ' y{A y̋ y{A ' 2{A˝ {A:

Similarly, any quasi-derivation OqW yzA ! yA ruled by a Fox pairing O� in yA induces

some linear maps

d Oq W
yzA �! yA y̋ yA and ı OqW

yzA �!
b{yA y̋

b{yA
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by the formulas (2.3) and (2.4), respectively, using the completed tensor product

of �ltered modules instead of the usual tensor product of modules; when O� is now

the completion of a �ltered Fox pairing � in A and Oq is the completion of a �ltered

q 2 QDer.�/, the above maps d Oq and ı Oq are the completions of the .�2/-�ltered

maps

dq W zA �! A˝ A and ıqW zA �! {A˝ {A

respectively. Lemma 2.6 can also be adapted to the setting of complete Hopf

algebras.

3. Turaev’s loop operations

In this section, K is a commutative ring and † is a connected oriented surface with

non-empty boundary. We review the loop operations on † that Turaev introduced

in [42].

3.1. Turaev’s intersection pairing. Let � WD �1.†; �/ where � 2 @† and let

KŒ�� denote the group algebra of � . The �rst loop operation introduced by Turaev

is the homotopy intersection pairing

�WKŒ���KŒ�� �! KŒ��:

The map � is bilinear and, for any a; b 2 � , we de�ne �.a; b/ 2 KŒ�� in the

following way. Let � be the oriented boundary component of † containing the

base point �. Let �; N 2 @† be some additional points such that � < � < N

along �. Given an oriented path  in † and two simple points p < q along  ,

we denote by pq the arc in  connecting p to q, while the same arc with the

opposite orientation is denoted by Nqp . Let ˛ be a loop based at � such that N���˛���

represents a and let ˇ be a loop based at N such that ��Nˇ N�N� represents b; we

assume that these loops are in transverse position and that ˛ \ ˇ only consists of

simple points of ˛ and ˇ:

� N

˛ ˇ

p

†

�

	

�
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Then

�.a; b/ WD
X

p2˛\ˇ

"p.˛; ˇ/ N���˛�p p̌N N�N� (3.1)

where the sign "p.˛; ˇ/ D ˙1 is equal to C1 if, and only if, a unit tangent

vector of ˛ at p followed by a unit tangent vector of ˇ at p gives a positively-

oriented frame of †. The homotopy intersection pairing was denoted by � in the

article [42], where it has a slightly di�erent de�nition; � is shown there to detect

pairs of elements of � that can be represented by disjoint loops. The pairing � is

also implicit in the work of Papakyriakopoulos [39] who studied Reidemeister’s

equivariant intersection pairings on surfaces.

As observed by Turaev in [42] (with an equivalent terminology adapted to

the equivalent pairing �), the bilinear map � is a Fox pairing which satis�es

� C �t D ��1 where �1 denotes the inner Fox pairing associated to 1 2 KŒ��.

These properties of � are easily deduced from the de�nition (3.1). Assuming that

1=2 2 K, we deduce that the Fox pairing �s WD 1
2
.� � �t / D � C �1=2 is skew-

symmetric.

It follows from the facts (ii) and (iii) mentioned in Section 2.2 that the Fox pair-

ing � induces a skew-symmetric bilinear operation h�;�i� in KŒ��=ŒKŒ��;KŒ���.

We identify this quotient module with the module K L� freely generated by the set L�

of conjugacy classes in � . A straightforward computation shows that the resulting

operation in K L� is the Goldman bracket [16]

h�;�iGWK L� �K L� �! K L�;

which is de�ned by

ha; biG WD
X

p2˛\ˇ

"p.˛; ˇ/ p̨ p̌:

Here ˛; ˇ are free loops representing some conjugacy classes a; b 2 L� and meeting

transversally in a �nite number of simple points, and p̨ p̌ denotes the loop ˛

based at p which is concatenated with the loop ˇ based at p.

3.2. Turaev’s self-intersection map. We endow the base point � 2 @† with

the unit vector E� tangent to @†, and we consider the fundamental group E� WD

�1.U †; E�/ of the unit tangent bundle of † based at E�. The second loop operation

introduced by Turaev is the homotopy self-intersection map

E�WKŒE�� �! KŒ��:
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The map E� is linear and, for any Ea 2 E� , we de�ne E�.Ea/ 2 KŒ�� as follows. Let

˛W Œ0; 1� ! † be an immersion with only �nitely many transverse double points

such that P̨ .0/ D P̨ .1/ D E�, and the unit tangent vector �eld of ˛ represents a:

†

	
˛

p

E�

Then

E�.Ea/ WD
X

p2P˛

"p.˛/ .˛�p p̨�/C a (3.2)

where a 2 � is the projection of Ea 2 E� , P˛ denotes the set of double points of ˛

and, for every p 2 P˛ , we use the following notations: ˛�p is the arc in ˛ running

from � to the �rst occurence of p while p̨� is the arc in ˛ running from the second

occurence of p to �; the sign "p.˛/ D ˙1 is equal toC1 if and only if the �rst unit

tangent vector of ˛ at p followed by the second unit tangent vector of ˛ at p gives

a positively-oriented frame of †. The original version of the map E�, which was

denoted by � in [42], is de�ned in a di�erent way on KŒ�� rather than KŒE��; the

map � is shown there to detect elements of � that can be represented by simple

loops. The above framed version E� has been considered in [9].

It can be veri�ed from the de�nition (3.2) that E� has the following properties:

�rst,

E�.Ea Eb / D a E�.Eb/C E�.Ea/ bC �.a; b/; for all Ea; Eb 2 E�; (3.3)

where a; b 2 � denote the projections of Ea; Eb 2 E�; second,

E�..Ea/�1/ D �E�.Ea/ � 1C a�1; for all Ea 2 E�; (3.4)

where we denote by x 7! Nx the antipode of the group algebra KŒ��. Similar

properties have already been observed in [42] for the unframed version of E�.

These properties can be rephrased as follows: �rst, E� is a quasi-derivation ruled

by the Fox pairing �, if we consider the homomorphism pWKŒE�� ! KŒ�� of

Hopf algebras induced by the bundle projection U † ! †; second, we have

E�t D �E�Cq�1;0. Therefore, assuming that 1=2 2 K, the map E�s WD 1
2
. E�� E�t / D

E�C q1=2;0 is a skew-symmetric quasi-derivation ruled by �s.
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We now compute the map d E�WKŒE�� ! KŒ�� ˝ KŒ�� induced by the quasi-

derivation E�. It follows directly from (2.3) and (3.2) that

d E�.Ea/ D
X

p2P˛

"p.˛/ a.˛�p p̨�/�1 ˝ ˛�p p̨� C aa�1 ˝ a

D
X

p2P˛

"p.˛/ ˛�p p̨p N̨p� ˝ ˛�p p̨� C 1˝ a;

where p̨p is the arc in ˛ running from the �rst occcurence of p to its second

occurence. Next, the map

ı E�WKŒE�� �! K L� ˝K L�

induced by E� is given by

ı E�.Ea/ D
X

p2P˛

.˛C
p ˝ ˛�

p � ˛�
p ˝ ˛C

p /C 1˝ a � a˝ 1 (3.5)

where ˛C
p and ˛�

p denote the free loops into which each point p 2 P˛ splits ˛, with

the condition that the tangent vector of ˛ at p pointing towards ˛C
p followed by

the tangent vector of ˛ at p pointing towards ˛�
p give a positively-oriented frame

of †.

Let

jK L�j WD K L�=.K1/:

According to Lemma 2.6, the map ı E� induces a linear map

jı E�jW jK L�j �! jK L�j ˝ jK L�j

with skew-symmetric values. We deduce from (3.5) that, for any a 2 L� repre-

sented by a free loop ˛ with only �nitely many transverse double points,

jı E�j.jaj/ D
X

p2P˛

.j˛C
p j ˝ j˛

�
p j � j˛

�
p j ˝ j˛

C
p j/;

where j�jWK L� ! jK L�j denotes the canonical projection. Let j L�j denote the set L�

deprived of (the conjugacy class of) 1 2 �: we can identify jK L�j with the module

Kj L�j freely generated by j L�j. Then the previous identity for a 2 j L�j writes

jı E�j.a/ D
X

p2P˛ nP 0
˛

.˛C
p ˝ ˛�

p � ˛�
p ˝ ˛C

p /;

where P 0
˛ is the subset of P˛ consisting of the points p such that one of the free

loops ˛˙
p is null-homotopic. We conclude that jı E�j coincides with the Turaev co-

bracket ıT introduced in [43]. In other words, we have the following commutative
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diagram:

KŒE��
ı E� //

j�jıp

��

K L� ˝K L�

j�j˝j�j

��
Kj L�j

ıT // Kj L�j ˝Kj L�j

(3.6)

where the left vertical map j�jWKŒ��! Kj L�j is the composition of the canonical

projection KŒ��! K L� with j�jWK L� ! Kj L�j.

3.3. Completions of Turaev’s loop operations. The Hopf algebra KŒ�� is en-

dowed with the I -adic �ltration:

.KŒ��/k WD I k where I WD ker "; for all k 2 N0: (3.7)

According to the �rst statement of Lemma 2.7, the Fox pairing � is �ltered so

that it induces a �ltered Fox pairing O� in the complete Hopf algebra 1KŒ�� D

lim
 �k

KŒ��=.KŒ��/k: The bracket h�;�i O� induced by O� is the completion of the

bracket induced by �, namely the completion of the Goldman bracket:

h�;�iyGW
bK L� �bK L� �!bK L�

Here bK L� denotes the completion of K L� ' KŒ��=ŒKŒ��;KŒ��� with respect to the

�ltration that it inherits from KŒ��.

Recall that pWKŒE�� ! KŒ�� is the Hopf algebra homomorphism induced by

the bundle projection U †! †. We endow the Hopf algebra KŒE�� either with its

I -adic �ltration, or with the �ltration (2.5) where zA WD KŒE��. Then, according

to the second statement of Lemma 2.7, the quasi-derivation E� is �ltered in either

case so that it induces a �ltered quasi-derivation OE� ruled by O� in the complete

Hopf algebra 1KŒE�� D lim
 �k

KŒE��=.KŒE��/k : The cobracket jı OE�
j induced by OE� is the

completion of the cobracket induced by E�, namely the completion of the Turaev

cobracket
OıTW1Kj L�j �!1Kj L�j y̋1Kj L�j:

Here 1Kj L�j denotes the completion of Kj L�j ' jK L�j ' KŒ��=.ŒKŒ��;KŒ���CK1/

with respect to the �ltration that it inherits from KŒ��.

3.4. Remarks. 1. The ways how the Goldman bracket and the Turaev cobracket

can be derived from Turaev’s loop operations have been explained in [34] and

in [25, 35], respectively. Kawazumi has also studied a framed version of an

operation which is equivalent to Turaev’s self-intersection map �: the resulting

framed version of the Turaev cobracket ıT is announced in [22].
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2. For our purposes in Sections 5–8 where † will be a punctured disk, we only

need to consider the I -adic �ltration on KŒE��. Nonetheless, the �ltration (2.5)

should be useful for surfaces of positive genus.

3. All the properties of � and E� that have been claimed without proof in this

section (namely, the facts that � is a Fox pairing, that E� is a quasi-derivation

ruled by � and the formulas computing �t and E�t ) will follow from the results

in Section 4.

4. Three-dimensional formulas for Turaev’s loop operations

In this section, K is a commutative ring and † is a connected oriented surface

with non-empty boundary. We set � WD �1.†; �/ where � 2 @†. We give some

three-dimensional formulas for Turaev’s loop operations using pure braids in †.

4.1. Preliminaries. We recall the notion of “clasper” introduced by Habiro

in [18]. This notion will be useful in the sequel to describe local modi�cations

on tangles.

A clasper C for a framed tangle T � † � Œ0; 1� is a copy in the exterior of T

of the following surface

leaf edge leaf

decomposed into an edge and two leaves. We assume that each leaf bounds a disk

in †� Œ0; 1� meeting T transversely in �nitely many points. The surgery along C

is the framed tangle TC obtained from T by the following local modi�cation:

� � �

� � �

� � �

� � �

T

C
Ý

� � �

� � �

� � �

� � �

TC

The clasper C is said to be simple if a single string of T goes through each leaf

of T . (Note that, in the terminology of [18], our “claspers” should be called “strict

basic claspers.”)
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4.2. A three-dimensional formula for Turaev’s intersection pairing. Let

Bn.†/ (respectively, PBn.†/) denote the n-strand braid group (respectively, the

n-strand pure braid group) in † corresponding to the choice of n points in the

interior of †. We will mainly need the case n D 2, and denote the two interior

points of † by u and v. We choose some simple arcs �u and �v connecting �

to u and v respectively, such that �u \ �v D ¹�º and the unit tangent vectors of

�u and �v at � in this order gives a negatively-oriented frame of †:

�

u v

�u �v

† 	

Set �u WD �1.† n ¹uº; �/ and �v WD �1.† n ¹vº; �/. There is a natural embedding

of �1.† n ¹vº; u/ into PB2.†/ whose image consists of the braids with strand v

“straight vertical”; by composition with the isomorphism �v ' �1.† n ¹vº; u/

de�ned by the path �u, we obtain an embedding of groups

�v ,�! PB2.†/: (4.1)

By exchanging the roles of u and v, we de�ne in a similar way an embedding of

groups

�u ,�! PB2.†/: (4.2)

Fix now a point � 2 @† before � along the oriented boundary of †: by “pushing”

the initial point of �u towards �, we get a new simple arc �u connecting � to u.

Let †u be the surface obtained by removing from † a regular neighborhood of �u:

†u

�u

u v

�v

� �
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The obvious retraction † ! †u composed with the inclusion †u � † n ¹uº

induces an injective group homomorphism

�uW� ,�! �u;

whose image consists of the loops that do not cut �u. Fix another point N 2 @†

after � along the oriented boundary of †: by “pushing” the initial point of �v

towards N, we get a new simple arc Nv connecting N to v:

†v

u v

� N

�u
Nv

In a way similar to the de�nition of �u, we de�ne an injective homomorphism of

groups

�vW� ,�! �v

whose image consists of the loops that do not cut Nv . In the sequel, the homo-

morphisms (4.1) and (4.2) are regarded as true inclusions, so that �u and �v also

de�ne some injective group homomorphims

�vW� ,�! PB2.†/ and �uW� ,�! PB2.†/:

We have the free-product decompositions

�u D �u.�/ � F.zu/ and �v D �v.�/ � F.zv/ (4.3)

where .zu/�1 2 �u and .zv/�1 2 �v are represented by the oriented boundaries

of small neighborhoods of �u and �v respectively:

�

u v

zu zv

† 	
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Note also that zu D zv 2 �u \ �v � PB2.†/; this pure braid can be obtained

from the trivial 2-strand braid by surgery along the following simple clasper:

�

�u �v † � ¹0º

† � ¹1º

Finally, observe that the projections

�u pu

�! �u.�/ ' � and �v pv

�! �v.�/ ' �

de�ned by the free-product decompositions (4.3) are induced by the inclusions

† n ¹uº � † and † n ¹vº � †, respectively.

Lemma 4.1. For any x 2 �u \ �v � PB2.†/, we have

pv
� @x

@zv

�
D pu

� @x

@zu

�
D pv

�@x�

@zv

�
2 KŒ��

where x�WD�x��1 is the conjugate of x by the elementary positive braid �2B2.†/:

�

�u �v † � ¹0º

	

† � ¹1º

�

Proof. We start with the following observation. Let C be a simple clasper for the

trivial 2-strand braid T � †� Œ0; 1�. Surgery along C produces a 2-strand string-

link TC . We can regard TC as a string-knot in .† n ¹vº/� Œ0; 1�, which de�nes an

element

ŒTC �v 2 �1.† n ¹vº; u/
�u

' �v;

or, alternatively, we can regard it as a string-knot in .†n¹uº/�Œ0; 1�, which de�nes

an element

ŒTC �u 2 �1.† n ¹uº; v/
�v

' �u:
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For instance, if TC turns out to be a 2-strand pure braid, then we have ŒTC �v D TC

and ŒTC �u D TC via the inclusions (4.1) and (4.2) respectively. Let c be a loop in

† � Œ0; 1� based at .�; 0/ which follows the edge of C (oriented from the strand u

to the strand v) in the following way:

u v

c
C

T

�

† � ¹0º

† � ¹1º

This loop represents an element

c 2 �1..† � Œ0; 1�/ n T; .�; 0//' �1.† n ¹u; vº; �/DW �uv:

Then, our observation is that

ŒTC �v D pu.c/ zv .pu.c//�1 2 �v and ŒTC �u D .pv.c//�1 zu pv.c/ 2 �u

(4.4)

where puW�
uv ! �v and pvW�

uv ! �u are the group homomorphisms induced

by the inclusions † n ¹u; vº � † n ¹vº and † n ¹u; vº � † n ¹uº, respectively.

Let now x be an arbitrary element of �u \ �v� PB2.†/. Then x 2 �v

satis�es pv.x/ D 1, so that x belongs to the normal subgroup of �v generated

by zv: therefore, there exist a �nite ordered subset ¹sj ºj 2J of �v and some signs

"j 2 ¹C1;�1º for all j 2 J such that

x D
Y

j 2J

sj .zv/"j s�1
j 2 �v: (4.5)

By application of Lemma 2.1, we obtain

pv
� @x

@zv

�
D
X

j 2J

"j pv.sj /: (4.6)

For any j 2 J , the pure braid sj zv s�1
j 2 �u\�v � PB2.†/ can be obtained from

the trivial braid T by surgery along a simple clasper, since zv has this property.
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We deduce from our initial observation that there exists a cj 2 �uv such that

sj zv s�1
j D pu.cj / zv .pu.cj //�1 2 �v

and

sj zv s�1
j D .pv.cj //�1 zu pv.cj / 2 �u:

By applying Lemma 2.1 to the �rst identity, we obtain pv.sj / D p.cj / where

pW�uv ! � is the group homomorphism induced by the inclusion †n¹u; vº � †.

Setting rj WD .pv.cj //�1 2 �u, the second identity writes sj zv s�1
j D rj zur�1

j .

Note that rj satis�es pu.rj / D .p.cj //�1 D .pv.sj //�1 2 � .

Thus we have found for all j 2 J an element rj 2 �u such that pu.rj / D

.pv.sj //�1 2 � and

x
(4.5)
D

Y

j 2J

rj .zu/"j r�1
j 2 �u:

This second formula for x has two consequences. First, by a new application of

Lemma 2.1, we deduce that

pu
� @x

@zu

�
D
X

j 2J

"j pu.rj / D
X

j 2J

"j .pv.sj //�1: (4.7)

Second, it implies that

x� D �x��1 D
Y

j 2J

.�rj ��1/ .�.zu/"j ��1/ .�r�1
j ��1/

D
Y

j 2J

.�rj ��1/ .zv/"j .�r�1
j ��1/:

The map �u ! �v de�ned by y 7! �y��1 is the group homomorphism de�ned

by zu 7! zv and �u.a/ 7! .zv/�1�v.a/zv for all a 2 �: in particular, we have

pu.y/ D pv.�y��1/ for all y 2 �u. By applying Lemma 2.1 a third and last time,

we obtain

pv
�@ x�

@zv

�
D
X

j 2J

"j pv.�rj ��1/ D
X

j 2J

"j pu.rj / D
X

j 2J

"j .pv.sj //�1: (4.8)

The lemma now follows from (4.6), (4.7), and (4.8). �

We now de�ne a bilinear pairing �0WKŒ�� � KŒ�� ! KŒ�� by setting, for any

a; b 2 � ,

�0.a; b/ WD pv
�@Œ�u.b�1/; �v.a/�

@zv

�
;

where Œ�u.b�1/; �v.a/� 2 �u \ �v denotes the commutator in the group PB2.†/.
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Lemma 4.2. For any a; b 2 � , we have

�0.a; b/ D pv
�@ �u.b�1/�v.a/�u.b/

@zv

�

D pu
�@ Œ�u.b�1/; �v.a/�

@zu

�

D b�1pu
�@ �v.a/�u.b/�v.a�1/

@zu

�
:

Moreover, �0 is a Fox pairing in KŒ��.

Proof. We prove the �rst identity: for any a; b 2 � ,

pv
�@
�
�u.b�1/; �v.a/

�

@zv

�

D pv
�@ .�u.b�1/�v.a/�u.b// �v.a�1/

@zv

�

D pv
�@ �u.b�1/�v.a/�u.b/

@zv
C �u.b�1/�v.a/�u.b/

@�v.a�1/

@zv

�

D pv
�@ �u.b�1/�v.a/�u.b/

@zv

�
:

The third identity is proved similarly, and the second identity follows from

Lemma 4.1.

We now show that �0 is a Fox pairing using the previous identities. For any

a1; a2; b 2 � , we have

�0.a1a2; b/ D pv
�@ �u.b�1/�v.a1/�v.a2/�u.b/

@zv

�

D pv
�@ .�u.b�1/�v.a1/�u.b// .�u.b�1/�v.a2/�u.b//

@zv

�

D pv
�@ �u.b�1/�v.a1/�u.b/

@zv

�

C pv
�
�u.b�1/�v.a1/�u.b/

@ �u.b�1/�v.a2/�u.b/

@zv

�

D �0.a1; b/C a1�0.a2; b/
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and, for any a; b1; b2 2 � , we have

�0.a; b1b2/ D .b1b2/�1 pu
�@ �v.a/�u.b1b2/�v.a�1/

@zu

�

D b�1
2 b�1

1 pu
�@ .�v.a/�u.b1/�v.a�1// .�v.a/�u.b2/�v.a�1//

@zu

�

D b�1
2 b�1

1 pu
�@ �v.a/�u.b1/�v.a�1/

@zu

C �v.a/�u.b1/�v.a�1/
@ �v.a/�u.b2/�v.a�1/

@zu

�

D b�1
2 �0.a; b1/C �0.a; b2/

which is equivalent to the identity �0.a; b1b2/ D �0.a; b1/b2 C �0.a; b2/. �

Theorem 4.3. We have �0 D �.

Proof. Let a; b 2 � . Recall that we have three points � < � < N along the

oriented boundary component � of † that contains �. Let ˛u and ˇv be some

loops based at u and v, respectively, such that �u˛u Nu� and �vˇv Nv� represent

a and b respectively, ˛u and ˇv meet transversely in a �nite set of simple points,

and we have the following local picture in a neighborhood of �:

� � N

u v
˛u ˇv

�u
�u �v

Nv

Set ˛ WD �u˛u Nu� and ˇ WD Nvˇv NvN: then �.a; b/ 2 ZŒ�� is given by

formula (3.1).

In order to compute �0.a; b/, we need to consider
�
�u.b�1/; �v.a/

�
2 PB2.†/.

This pure braid on two strands u and v can be schematically represented as follows:

N̨u "v

"u ˇv

˛u "v

"u
Ň
v
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This pure braid is isotopic to the 2-strand string-link

N̨u "v

˛u "v

ıu ˇv

"u
Ň
v

whose second “slice” ıu ˇv is obtained from "u ˇv by several surgeries along

simple claspers: speci�cally, there is one clasper for every intersection point

p 2 ˛ \ ˇ D ˛u \ ˇv . The string-link consisting of the �rst and second slices in

the above diagram

ıu ˇv

"u
Ň
v

de�nes a loop in † n ¹vº based at u and, using the observation at the beginning of

the proof of Lemma 4.1, we see that this loop represents the following product of

conjugates of Zv WD Nu�zv�u in the group �1.† n ¹vº; u/:

Y

p2˛\ˇ

Kp .Zv/"p.˛;ˇ/ K�1
p 2 �1.† n ¹vº; u/:

Here the product over ˛\ˇ is ordered following the positive direction of ˛ (starting

from u); for every p 2 ˛\ˇ, we de�ne the sign "p.˛; ˇ/ as in formula (3.1) and Kp

is a certain element of �1.†n¹vº; u/which is mapped to ˛up p̌v Nv��u 2 �1.†; u/

by the canonical projection. We deduce that Œ�u.b�1/; �v.a/� as an element of

�v D �1.† n ¹vº; �/ is equal to

Y

p2˛\ˇ

kp .zv/"p.˛;ˇ/ k�1
p

where kp 2 �v has the property to be sent to �u˛up p̌v Nv� 2 � by the projection

pv . It follows from Lemma 2.1 that

�0.a; b/ D pv
�@Œ�u.b�1/; �v.a/�

@zv

�

D
X

p2˛\ˇ

"p.˛; ˇ/ pv.kp/

D �.a; b/ 2 KŒ��: �
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Example 4.4. Assume that † is a compact connected oriented surface of genus 1

with one boundary component. Represent † as a holed square whose opposite

edges are linearly identi�ed, and let a; b 2 � be represented by the following

loops:

	

�

b

a

Then the pure braid Œ�u.b�1/; �v.a/� is represented by the following projection

diagrams:

�

	

u
v

�u
�v

isotopic
'

�

	

u
v

�u
�v

Therefore, we have

Œ�u.b�1/; �v.a/� D �u.b�1/ zu �u.b/

which implies that

�0.a; b/ D pu
�@Œ�u.b�1/; �v.a/�

@zu

�
D b�1 D b D �.a; b/;

as expected from Theorem 4.3.

4.3. A three-dimensional formula for Turaev’s self-intersection map. We use

the same notations as in Section 4.2. The point � endowed with the unit vector

tangent to @† is denoted by E�. Set E� WD �1.U †; E�/ and denote the natural

projection E� ! � by Ex 7! x. Consider the group homomorphism

cW E� �! PB2.†/
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that is de�ned as follows. Let E�v be a unit vector �eld along the arc �v which

is equal to E� at the point �, is nowhere tangent to �v and gives a unit vector Ev at

point v “ending at” u: this path in U † induces an isomorphism between E� and

�1.U †; Ev/. The latter group can be interpreted as the framed 1-strand braid group

based at Ev so that, by the “doubling” operation, we have a group homomorphism

�1.U †; Ev/ ! PB2.†/. Then c is the composition of this homomorphism with

the previous isomorphism E� ' �1.U †; Ev/.

We de�ne a linear map

E�0WKŒE�� �! KŒ��

by setting, for any Ea 2 E� ,

E�0.Ea/ WD pv

�
@ �u.a�1/ c.Ea/ �v.a�1/

@zv

�
:

Lemma 4.5. For any Ea 2 E� , we have

E�0.Ea/ D pv
�@ �u.a�1/ c.Ea/

@zv

�

D pu
�@ �u.a�1/ c.Ea/ �v.a�1/

@zu

�

D a�1pu
�@ c.Ea/ �v.a�1/

@zu

�
:

Moreover, E�0 is a quasi-derivation ruled by �0 satisfying

. E�0/t D �E�0 C q�1;0:

Proof. We prove the �rst identity of the �rst statement: for any Ea 2 E� , we have

pv
�@ �u.a�1/ c.Ea/ �v.a�1/

@zv

�
D pv

�@ �u.a�1/ c.Ea/

@zv
C �u.a�1/ c.Ea/

@�v.a�1/

@zv

�

D pv
�@ �u.a�1/ c.Ea/

@zv

�
:

The third identity of the �rst statement is proved similarly, and the second identity

follows from Lemma 4.1.
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We now show that E�0 2 QDer.�0/ using the �rst statement. For any Ea; Eb 2 E� ,

we have

E�0.EaEb/ D pv
�@ �u.b�1/�u.a�1/ c.Ea/c.Eb/

@zv

�

D pv
�@ .�u.b�1/�u.a�1/c.Ea/�u.b// .�u.b�1/c.Eb//

@zv

�

D pv
�@ �u.b�1/�u.a�1/c.Ea/�u.b/

@zv

�

C pv
�
�u.b�1/�u.a�1/c.Ea/�u.b/

@ �u.b�1/c.Eb/

@zv

�

D pv
� .@ �u.b�1/�v.a/�u.b// .�u.b�1/�v.a�1/�u.a�1/c.Ea/�u.b//

@zv

�
C a E�0.Eb/

D pv
�@ �u.b�1/�v.a/�u.b/

@zv

�

C apv
�@ �u.b�1/�v.a�1/�u.a�1/c.Ea/�u.b/

@zv

�
C a E�0.Eb/

D �0.a; b/C apv
�@ �u.b�1/�v.a�1/�u.a�1/c.Ea/�u.b/

@zv

�
C a E�0.Eb/:

To proceed, we observe that �u.b�1/�v.a�1/�u.a�1/c.Ea/�u.b/ belongs to �u \ �v

so that Lemma 4.1 applies:

pv
�@ �u.b�1/�v.a�1/�u.a�1/c.Ea/�u.b/

@zv

�

D pu
�@ �u.b�1/�v.a�1/�u.a�1/c.Ea/�u.b/

@zu

�

D pu
�@ �v.a�1/�u.a�1/c.Ea/�u.b/

@zu

�
b

D pu
�@ �v.a�1/�u.a�1/c.Ea/

@zu

�
b

D pv
�@ �v.a�1/�u.a�1/c.Ea/

@zv

�
b

D a�1pv
�@ �u.a�1/c.Ea/

@zv

�
b

D a�1 E�0.Ea/b:

We deduce that E�0.EaEb/ D �0.a; b/C E�0.Ea/ b C a E�0.Eb/.
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Finally, we show that . E�0/t D �E�0 C q�1;0. For any Ea 2 E� , we deduce from

Lemma 4.1 that

E�0.Ea/ D pv
�@ �u.a�1/ c.Ea/ �v.a�1/

@zv

�

D pv
�@ ��u.a�1/ c.Ea/ �v.a�1/��1

@zv

�

D pv
�@ ��u.a�1/��1 �c.Ea/��1 ��v.a�1/��1

@zv

�

D pv
�@ .zv/�1�v.a�1/zv c.Ea/ �u.a�1/

@zv

�

D �1C pv
�@ �v.a�1/zv c.Ea/ �u.a�1/

@zv

�

D �1C a�1pv
�@ zv c.Ea/ �u.a�1/

@zv

�

D �1C a�1 C a�1pv
�@ c.Ea/ �u.a�1/

@zv

�

D �1C a�1 C a�1pv
�
� c.Ea/ �u.a�1/

@ .c.Ea/ �u.a�1//�1

@zv

�

D �1C a�1 � pv
�@ �u.a/ c..Ea/�1/

@zv

�

D �1C a�1 � E�0..Ea/�1/:

We deduce that E�0.Ea/ D �1C a � E�0..Ea/�1/ D �1C a � . E�0/t .Ea/. �

Theorem 4.6. We have E�0 D E�.

Proof. Let Ea 2 E� . We choose an immersion ˛W Œ0; 1�! † with only �nitely many

transverse double points such that P̨ .0/ D P̨ .1/ D E�, and the unit tangent vector

�eld of ˛ represents Ea. We can also assume that, in a neighbourhood of �, the

curve ˛ has the following local picture:

E�

u v˛

�u �v

Then E�.Ea/ is given by formula (3.2).
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In order to compute E�0.Ea/, we need more notations: let ˛v be the loop in U †

based at Ev obtained by “pushing” away from �u the base point of ˛ along E�v .

(Here Ev and E�v are de�ned as in the de�nition of the map c.) A loop ˛u in U †

based at Eu is de�ned similarly:

Eu

˛u

E�

E�u

E�v

E�

Ev

˛v

Observe that �u.a/ 2 �u � PB2.†/ is represented by the loop ˛v in † n ¹uº and,

similarly, �v.a/ 2 �v � PB2.†/ is represented by the loop ˛u in † n ¹vº. Thus,

as an element of PB2.†/, �u.a�1/ c.Ea/ �v.a�1/ is represented by the 2-strand pure

braid
N̨u "v

.˛v/C ˛v

"u N̨v

where .˛v/C˛v is the 2-strand pure braid whose strand v is ˛v and whose strand u

is the parallel of ˛v obtained by pushing along the unit tangent vector �eld of ˛v .

The above pure braid is isotopic to the 2-strand string-link

N̨u "v

.˛v/C "v

ıu ˛v

"u N̨v

whose second “slice” ıu ˛v is obtained from "u ˛v by several surgeries along

simple claspers: speci�cally, there is one clasper for every double point of ˛v .
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The string-link

ıu ˛v

"u N̨v

de�nes a loop in † n ¹vº based at u and, using the observation at the beginning of

the proof of Lemma 4.1, we see that this loop represents the following product of

conjugates of Zv WD Nu�zv�u in the group �1.† n ¹vº; u/:

Y

p2P˛

Kp .Zv/"p.˛/ K�1
p 2 �1.† n ¹vº; u/

Here the product is over the set P˛ of double points of ˛ (which is ordered along

the positive direction of ˛ starting from �), the notation "p.˛/ is the same as in

formula (3.2) and Kp is a certain element of �1.† n ¹vº; u/ which is mapped to

Nu�˛�p p̨��u 2 �1.†; u/ by the canonical projection. Observe next that, as loops

in † n ¹vº based at u, .˛v/C is homotopic to ˛uZv; therefore the loop of † n ¹vº

based at u
N̨u "v

.˛v/C "v

represents ˛uZv.˛u/�1 2 �1.† n ¹vº; u/. We deduce that, as an element of �v,

the braid �u.a�1/ c.Ea/ �v.a�1/ is equal to

� Y

p2P˛

kp .zv/"p.˛/ k�1
p

�
.�v.a/ zv �v.a�1//

where, for all p 2 P˛, kp 2 �v has the property to be sent to ˛�p p̨� 2 � under

pv . Hence, by application of Lemma 2.1, we obtain

E�0.Ea/ D pv
�@ �u.a�1/ c.Ea/ �v.a�1/

@zv

�
D
X

p2P˛

"p.˛/ .˛�p p̨�/C a D E�.Ea/: �

Example 4.7. Consider the homotopy class Ea 2 E� of the small framed loop based

at E�

†

	

E�

(4.9)

(which generates the fundamental group of the �ber of U †! †). Then c.Ea/ D zv
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and a D 1, so that we have

E�0.Ea/ D pv
�@ �u.a�1/ c.Ea/ �v.a�1/

@zv

�
D pv

�@zv

@zv

�
D 1 D E�.Ea/;

as expected from Theorem 4.6.

4.4. Remarks. 1. The facts that E�0 2 QDer.�0/ and . E�0/t C E�0 D q�1;0 easily

imply that �0 C .�0/t D ��1. Thus we have recovered by our three-dimensional

methods all the fundamental properties of � D �0 and E� D E�0 that have been stated

in Section 3.

2. It is proved in [34] that the skew-symmetrized version �s of � induces a

“quasi-Poisson double bracket” in the sense of Van den Bergh [44]. In particular,

�s satis�es a kind of “non-commutative version” of the Jacobi identity: it would

be interesting to reprove this identity using the three-dimensional methods of this

section.

5. Special expansions

In this section, the ground ring is a commutative �eld K of characteristic zero and

† is a disk with �nitely-many punctures numbered from 1 to p. We formulate

the notion of “special expansion” which is implicit in [3, 1], and we explain its

relevance for formal descriptions of the homotopy intersection pairing.

5.1. Unframed special expansions. Set � WD �1.†; �/ where � 2 @†, let � 2 �

be the homotopy class of the oriented curve @† and, for any i 2 ¹1; : : : ; pº, let
L�i be the conjugacy class in � that is de�ned by a small counter-clockwise loop

around the i-th puncture. Let H WD H1.†IK/, let zi 2 H denote the homology

class of L�i and set z WD z1 C � � � C zp. We denote by T .H/ the tensor algebra

over H and by T ..H// the degree-completion of T .H/. The usual Hopf algebra

structure of T .H/ extends to a complete Hopf algebra structure on T ..H// whose

coproduct y�, counit O" and antipode yS are de�ned by

y�.k/ WD k y̋ 1C 1 y̋ k; O".k/ WD 0; yS.k/ WD �k; for all k 2 H:

A special expansion of � is a map � W� ! T ..H// with the following proper-

ties:

(i) for all x; y 2 � , �.xy/ D �.x/ �.y/;

(ii) for each i 2 ¹1; : : : ; pº, and given a representative �i 2 � of L�i , there exists a

primitive element ui 2 T ..H// such that �.�i / D exp.ui / exp.zi / exp.�ui /;

(iii) �.�/ D exp.z/.
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Let 1KŒ�� denote the completion of KŒ�� with respect to the I -adic �ltration (3.7).

Conditions (i) and (ii) imply that � induces an isomorphism of complete Hopf

algebras O� W1KŒ��! T ..H// which, at the level of graded Hopf algebras, gives the

canonical isomorphism (1.3).

Using the fact that � is freely generated by some representatives �1; : : : ; �p of
L�1; : : : ; L�p, and by proceeding by successive �nite-degree approximations, it is not

di�cult to construct instances of special expansions. This kind of expansions of

the free group � appears implicitly in [3] and more explicitly in [1], in relation

with “special automorphisms” and “special derivations” of free Lie algebras.

5.2. Framed special expansions. Set E� WD �1.U †; E� / where E� is the unit

vector tangent to @† at �. The bundle projection U †! † has a section de�ned

by a unit vector �eld on the disk closure of † (which is unique, up to homotopy).

This section induces a canonical group homomorphism sW� ! E� at the level of

fundamental groups: let wW E� ! Z be the unique group homomorphism such that

Ex D ±w.Ex/s.x/; for all Ex 2 E�

where x 2 � denotes the projection of Ex and ±�1 2 E� denotes the generator (4.9)

of the fundamental group of the �ber of U †! †.

Consider the algebra KŒŒC �� of formal power series in the indeterminate C :

we declare that deg.C / WD 1 and we consider the degree-�ltration on KŒŒC ��; then

KŒŒC �� has the structure of a complete Hopf algebra with coproduct y�, counit O"

and antipode yS de�ned by

y�.C / WD C y̋ 1C 1 y̋ C; O".C / WD 0; yS.C / WD �C

respectively. The complete tensor product T ..H// y̋ KŒŒC �� of T ..H// and KŒŒC ��

has a natural structure of complete Hopf algebra.

A special expansion of E� is a map E� W E� ! T ..H// y̋ KŒŒC �� with the following

properties:

(i) for all Ex; Ey 2 E� , E�.Ex Ey/ D E�.Ex/ E�. Ey/;

(ii) for each i 2 ¹1; : : : ; pº, and given an element E�i 2 E� which maps to L�i

under the canonical maps E� ! � ! L� , there exists a primitive element

ui 2 T ..H// such that E�.E�i / D .exp.ui / exp.zi / exp.�ui // y̋ exp
�

w.E�i /
2

C
�
;

(ii0) for all k 2 Z, E�.±k/ D 1 y̋ exp
�

k
2
C
�
;

(iii) E�.EN� / D exp.�z/ y̋ 1.
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In condition (iii), EN� 2 E� is the homotopy class of the unit vector �eld along

the curve @† which has index 1 with respect to the tangent vector �eld of this

oriented curve. (In other words, we have EN� D s.��1/.) Let 1KŒE�� denote the

completion of KŒE�� with respect to the I -adic �ltration. The conditions (i),

(ii) and (ii0) imply that E� induces an isomorphism of complete Hopf algebras
OE� W1KŒE��! T ..H// y̋ KŒŒC �� which, at the level of graded Hopf algebras, gives

the canonical isomorphism that is provided by the following lemma.

Lemma 5.1. Let KŒC � be the polynomial algebra with indeterminate C of de-
gree 1. There is a unique isomorphism of graded Hopf algebras between Gr KŒE��

and T .H/˝KŒC �, de�ned in degree 1 by .Ex � 1/ 7! Œx�˝ 1C 1˝ w.Ex/
2

C for any
Ex 2 E� projecting to x 2 � .

Proof. The unicity is obvious since the graded algebra Gr KŒE�� is generated

by its degree 1 part. To prove the existence, consider the group isomorphism

E� ! � � F.±/ de�ned by Ex 7! .x; ±w.Ex//. This induces a graded Hopf algebra

isomorphism

Gr KŒE��
'
�! Gr.KŒ� � F.±/�/ ' Gr.KŒ��˝KŒF.±/�/

' Gr.KŒ��/˝Gr.KŒF.±/�/:

Since Gr KŒ�� ' T .H/ by (1.3) and Gr KŒF.±/� ' KŒC � by the map .± � 1/ 7!

C=2, we obtain an isomorphism between Gr KŒE�� and T .H/˝KŒC �. The values

of this isomorphism on the degree 1 generators .Ex � 1/ are easily computed. �

In fact, unframed special expansions are in one-to-one correspondence with

framed special expansions. Indeed, for any special expansion � of � , it is easily

veri�ed that the map
E.�/sW E� �! T ..H// y̋ KŒŒC ��

de�ned by

E.�/s.Ex/ WD �.x/ y̋ exp
�w.Ex/

2
C
�
; for all Ex 2 E�;

is a special expansion of E� . Conversely, any special expansion E� of E� induces

a special expansion p�.E� / of � as follows. Consider the complete Hopf algebra

map

p WD id y̋ O"WT ..H// y̋ KŒŒC �� �! T ..H//I

we have

p.E�.Ex±k// D p.E�.Ex/ E�.±k// D p.E�.Ex// for all Ex 2 E�; k 2 ZI
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therefore the composition pı E� induces a map p�.E� /W� ! T ..H// which is clearly

a special expansion. It is also clear that the above two constructions are inverse

one to the other:

¹special expansions of �º  ! ¹special expansions of E�º;

� 7�! .E�/s;

p�.E� /  �7 E�:

(5.1)

5.3. Formal description of Turaev’s intersection pairing. Let ˇ be the bilin-

ear operation in H de�ned by zi ˇ zj WD ıij zi for all i; j 2 ¹1; : : : ; pº. It extends

uniquely to a bilinear operationˇ in T .H/ de�ned by .xˇ 1/ D .1ˇx/ WD 0 for

any x 2 T .H/ and by

.h1 � � �hm ˇ k1 � � �kn/ WD h1 � � �hm�1 .hm ˇ k1/ k2 � � �kn

for any integers m; n � 1 and for any h1; : : : ; hm; k1; : : : ; kn 2 H . This is a

.�1/-�ltered Fox pairing in T .H/, which induces a �ltered Fox pairing

.�ˇ�/WT ..H//� T ..H// �! T ..H//

in the complete Hopf algebra T ..H//. Moreover, the formal power series s.X/ 2

QŒŒX�� de�ned by

s.X/ WD �
1

2
C

1

X
�

1

2
coth.X=2/

D
1

X
C

1

e�X � 1

D �
1

2
�
X

k�1

B2k

.2k/Š
X2k�1 D �

1

2
�

X

12
C

X3

720
�

X5

30240
C � � �

(5.2)

evaluated at �z D �z1 � � � � � zp 2 H induces an inner Fox pairing �s.�z/

in T ..H//.

Theorem 5.2. For any special expansion � of � , we have the commutative
diagram

1KŒ�� �1KŒ��

O�� O� '

��

O� // 1KŒ��

O�'

��
T ..H// � T ..H//

.� ˇ �/C�s.�z/

// T ..H//

(5.3)
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Theorem 5.2 was obtained in the unpublished draft [35]. The proof, which is

postponed to Appendix A, is based on the formal description of the pairing � in the

case of a compact connected oriented surface with one boundary component [33].

We also give in Section 8 a very di�erent proof of Theorem 5.2, but assuming that

� is the special expansion arising from the Kontsevich integral.

5.4. Remarks. 1. Recall from Section 3.1 that the bracket induced by the Fox

pairing � is the Goldman bracket h�;�iG. Then it can be deduced from Theo-

rem 5.2 that the following diagram is commutative for any special expansion � :

bK L� �bK L�

O�� O� '

��

h�;�iy
G // bK L�

O�'

��
{T ..H//� {T ..H//

h�;�iy
N

// {T ..H//

(5.4)

Here {T ..H// is the degree-completion of {T .H/ D T .H/=ŒT .H/; T .H/�, and

h�;�iyN is the completion of the bilinear map

h�;�iNW {T .H/� {T .H/ �! {T .H/

de�ned by

hh1 � � �hm; k1 � � �kniN

D �
mX

iD1

nX

j D1

kj C1 � � �knk1 � � �kj �1 .kjˇhi / hiC1 � � �hmh1 � � �hi�1

C
mX

iD1

nX

j D1

hiC1 � � �hmh1 � � �hi�1 .hiˇkj / kj C1 � � �knk1 � � �kj �1

for all integers m; n � 1 and all h1; : : : ; hm; k1; : : : ; kn 2 H . It turns out that

h�;�iN is the necklace Lie bracket [8, 15] associated to a star-shaped quiver

consisting of one “central” vertex connected by p edges to p “peripheral” vertices.

2. The formal description (5.4) of the Goldman bracket of a punctured disk has

also been obtained by Kawazumi and Kuno, as announced in the survey paper [26].

They consider there the general case of a compact connected oriented surface with

several boundary components.
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6. The special expansion de�ned by the Kontsevich integral

In this section, the ground ring is a commutative �eld K of characteristic zero

and † is a disk with �nitely-many punctures numbered from 1 to p. Following

mainly [17] and [1], we explain how to construct a special expansion �Z from the

Kontsevich integral Z.

6.1. Some spaces of Jacobi diagrams. The reader is refered to the paper [4]

and to the textbook [38] for an introduction to Jacobi diagrams. For any integer

n � 1, letA."1 � � � "n/ be the space spanned by Jacobi diagrams on the 1-manifold

consisting of n copies of the oriented interval ", modulo the AS, IHX and STU

relations. Recall that A."1 � � � "n/ is a graded Hopf algebra, whose degree is

half the total number of vertices; in the sequel, we use the same notation for the

degree-completion of A."1 � � � "n/. For any (possibly equal) i; j 2 ¹1; : : : ; nº, let

tij WD

1 i j n
� � � � � � � � �

be the Jacobi diagram with only one edge (a chord) connecting "i to "j . If

n D p C 1, we give a special role to the rightmost copy of " which we label with

� (instead of p C 1): let Ap;� be the closed subspace of A."1 � � � "p "�/ spanned

by Jacobi diagrams whose all connected components touch "�. Recall from

Section 5.1 that H D H1.†IK/ is generated by the homology classes z1; : : : ; zp

of some small counter-clockwise loops L�1; : : : ; L�p around the punctures.

Lemma 6.1. Consider the homomorphism of complete algebras

T ..H// y̋ KŒŒC ���!Ap;� (6.1)

that maps 1 y̋ C to the diagram t�� and zi y̋ 1 to the diagram ti� for all i 2

¹1; : : : ; pº. Then the homomorphism (6.1) is injective and preserves the Hopf
algebra structures.

Proof. The complete algebra T ..H// y̋KŒŒC �� is generated by 1 y̋C and z1 y̋ 1; : : : ;

zp y̋ 1. All these elements are primitive and are mapped by (6.1) to primitive el-

ements of A."1 � � � "p "�/. Therefore the algebra homomorphism (6.1) preserves

the coproducts, counits and antipodes.
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We now prove the injectivity of (6.1). Following Bar-Natan [5], we consider

the “homotopic reduction” A
h
p;� of Ap;�: speci�cally, we set Ah

p;� WD Ap;�=Hp;�

where Hp;� is the closed subspace generated by Jacobi diagrams (without con-

nected components unattached to "�) showing at least one connected component

with at least one trivalent vertex and two univalent vertices on "�. Note that the

space A
h
p;� inherits an algebra structure from Ap;�. Let

�WT ..H// y̋ KŒŒC �� �! A
h
p;�

be the algebra map obtained by composing (6.1) with the canonical projection

Ap;� ! A
h
p;�. To prove the lemma, it su�ces to prove that � is an isomorphism.

Let A.¹1; : : : ; pº;"�/ be the space spanned by Jacobi diagrams on "� with

some univalent vertices colored by ¹1; : : : ; pº, modulo the AS, IHX and STU re-

lations; let A0
p;� be the closed subspace of A.¹1; : : : ; pº;"�/ spanned by diagrams

without connected components unattached to "�, and let H0
p;� be the closed sub-

space spanned by diagrams of this kind and showing at least one connected com-

ponent with at least one trivalent vertex and two univalent vertices on "�. The

space A
0
p;� is a complete algebra, whose multiplication is simply de�ned by con-

catenation along the oriented interval "�, and H
0
p;� is an ideal of A0

p;�: therefore

the quotient A
0h
p;� WD A

0
p;�=H0

p;� is an algebra. Let

�0WT ..H// y̋ KŒŒC �� �! A
0h
p;�

be the complete algebra homomorphism that maps 1 y̋ C to the isolated chord t��

and zi y̋ 1 to the diagram

�

i

for all i 2 ¹1; : : : ; pº. The PBW-type isomorphism (see [4])

�pWA.¹1; : : : ; pº;"�/
'
�! A."1 � � � "p"�/

maps isomorphically A
0
p;� onto Ap;�, and H

0
p;� onto Hp;�. It easily follows from

the STU relation along the intervals "1; : : : ;"p that the following diagram is

commutative:

A
0h
p;�

�p

'
// Ah

p;�

T ..H// y̋ KŒŒC ��

�0

OO

�

88qqqqqqqqqqq

Therefore we are reduced to prove that �0 is an isomorphism.
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Let A.¹1; : : : ; p; �º/ be the space spanned by Jacobi diagrams whose univalent

vertices are colored by ¹1; : : : ; p; �º, modulo the AS and IHX relations; let A00
p;� be

the closed subspace of A.¹1; : : : ; p; �º/ spanned by diagrams without connected

components uncolored by �, and let H00
p;� be the closed subspace spanned by

diagrams of this kind and showing at least one connected component which is

looped or has at least one trivalent vertex and two univalent vertices colored by �.

According to [5, Theorem 1], the PBW-type isomorphism

��WA.¹1; : : : ; p; �º/
'
�! A.¹1; : : : ; pº;"�/

maps H00
p;� onto H

0
p;�, so that it induces an isomorphism from A

00h
p;� WD A

00
p;�=H00

p;�

to A
0h
p;�. Consider now the following diagram:

A
0h
p;� A

00h
p;�

��

'
oo

T ..H// y̋ KŒŒC ��

�0

OO

S..L.H/// y̋ KŒŒC ��
� y̋ id

'
oo

'

OO

Here L.H/ is the free Lie algebra generated by the space H , S..L.H/// is the

complete symmetric algebra generated by the spaceL.H/ and � denotes the usual

PBW isomorphism. The right vertical isomorphism in this diagram identi�es

powers of C with disjoint union of chords
� �

; and it identi�es Lie words in

z1; : : : ; zp with binary trees which are rooted at � and whose leaves are colored

by ¹1; : : : ; pº. It follows from the STU relation along "� that the above diagram

is commutative. We conclude that �0 is an isomorphism. �

Lemma 6.1 produces a canonical isomorphism of algebras

T ..H// y̋ KŒŒC �� �! A
•
p;�;

where A
•
p;� is the subalgebra of Ap;� generated by t��; t1�; : : : ; tp�. Let FI denote

the Framing Independence relation on Ap;� which sets to zero any Jacobi diagram

with an isolated chord on the same interval ". Then Lemma 6.1 implies that the

homomorphism of complete graded algebras

T ..H//�!Ap;�= FI (6.2)

that maps zi to ti� for all i 2 ¹1; : : : ; pº, is an isomorphism onto A
•
p;�= FI.
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6.2. Constructions with the Kontsevich integral. We now consider the combi-

natorial version of the Kontsevich integral Z. The reader is refered to the articles

[7, 30, 31, 20], or to the textbook [38] for an introduction to this invariant. In

the next paragraph, we only highlight the main features of Z, and we �x some

conventions on the way how Z is constructed from a Drinfeld associator.

Recall that the Kontsevich integral Z is a topological invariant of framed

oriented tangles in the ball D2 � Œ0; 1�, whose boundary points are located at the

“bottom” D2 � ¹0º or at the “top” D2 � ¹1º. These boundary points should be

parenthesized at each extremity: tangles with this kind of structure are called non-
associative tangles in [7] and q-tangles in [30, 31]. Parenthesized framed tangles

constitute a monoidal category whose objects are non-associative words in the two

letters “C=�”, whose composition of morphisms is de�ned by vertical stacking

T U WD
U

T

and whose tensor product of morphisms is de�ned by horizontal juxtaposition

T ˝ U WD T U :

The Kontsevich integral Z is a tensor-preserving functor from the category of

parenthesized framed tangles to the category of Jacobi diagrams on abstract

oriented 1-manifolds, modulo the AS, IHX and STU relations. Actually, we will

only need the restriction of Z to the category of parenthesized framed braids

(whose objects are non-associative words in the single letter “C”). In this case, Z

is determined by the following properties:

(i) the operation of doubling one strand in a parenthesized framed braid corre-

sponds under Z to the duplication � of Jacobi diagrams (which should not

be confused with the coproduct map);

(ii) Z takes the following values on the elementary framed braids:

Z

 .CC/

.CC/

!
D exp

�
=2
�

;

Z

 .CC/

.CC/

!
D exp

�
� =2

�
;
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Z

 .C/

.C/

!
D exp

�
=2
�
;

Z

 .C/

.C/

!
D exp

�
� =2

�
I

(iii) a Drinfeld associator ˆ 2 A."1"2"3/ is �xed and

Z

 .C.CC//

..CC/C/

!
D ˆ:

To be more speci�c about (iii), we assume here that ˆ is horizontal, i.e: ˆ is the

exponential of an in�nite Lie series in the elements t12; t23 2 A."1"2"3/.

The Kontsevich integral produces special expansions in the following way.

Recall the notations of Sections 5.1 and 5.2. We identify E� D �1.U †; E� / with

the framed 1-strand braid group in † or, equivalently, with the group of framed

.pC1/-strand pure braids in the disk that become trivial if the last strand is deleted;

then the Kontsevich integral restricts to a multiplicative map

ZW E� �! Ap;�:

Here, and unless otherwise speci�ed in this sequel, we equip any braid in the
disk with the leftmost parenthesizing .� � � ..CC/C/ � � �C/. In the unframed case,

we identify � D �1.†; �/ with the 1-strand braid group in † or, equivalently,

with the group PBpC1 of unframed .p C 1/-strand pure braids in the disk that

become trivial if the last string is deleted; then the Kontsevich integral restricts to

a multiplicative map

ZW� �! Ap;�= FI :

Proposition 6.2. The maps E�Z W E� ! T ..H// y̋ KŒŒC �� and �Z W� ! T ..H//

de�ned by

E�
Z //

E�Z %%▲
▲

▲
▲

▲
▲ A

•
p;�

(6.1)�1'
��

T ..H// y̋ KŒŒC ��

and �
Z //

�Z ""❋
❋

❋
❋

❋ A
•
p;�= FI

(6.2)�1'

��
T ..H//

are special expansions, which correspond one to the other by the bijection (5.1).
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Proof. First of all, to give sense to the de�nition of the map �Z , we have to justify

that ZW� ! Ap;�= FI takes values in the subalgebra A
•
p;�= FI. (This will also

imply that ZW E� ! Ap;� takes values in the subalgebra A
•
p;�, so that the map

E�Z is well-de�ned too.) On this purpose, we consider for any integer n � 1 the

Drinfeld–Kohno Lie algebraPBn of in�nitesimal n-strand pure braids [27, 11, 12]:

by de�nition, PBn is the Lie algebra generated by the symbols tij D tj i for any

distinct i; j 2 ¹1; : : : ; nº subject to the relations

Œtij ; tkl � D 0; Œtij C tik; tjk� D 0

for any pairwise-disjoint i; j; k; l 2 ¹1; : : : ; nº; recall that PBn is canonically

isomorphic to the graded Lie algebra associated to the lower central series of the

n-strand pure braid group PBn. It is well-known that the short exact sequence of

groups

1 �! �1.Dn/ �! PBnC1 �! PBn �! 1

where the fundamental group �1.Dn/ of a disk with n punctures Dn is mapped to

the subgroup of .nC 1/-strand pure braids that become trivial after forgetting the

last strand, induces a short exact sequence of Lie algebras

0 �! Ln �! PBnC1 �! PBn �! 0 (6.3)

where the n generators of the free Lie algebraLn are mapped to t1;nC1; : : : ; tn;nC1 2

PBnC1. By induction on n � 1, we deduce from (6.3) and from the injectivity of

the homomorphism (6.2) that the algebra map

U.PBn/ �! A."1 � � � "n/= FI; tij 7�! tij

is injective: its image A
•."1 � � � "n/= FI is the subalgebra of A."1 � � � "n/= FI

generated by the diagrams tij for all distinct i; j 2 ¹1; : : : ; nº. (This injectivity is

well known: see [6, Corollary 4.4] or [17, Remark 16.2].) Then it follows from (6.3)

for n WD p that we have a short exact sequence of Lie algebras

0 �! PrimA
•
p;�= FI �! PrimA

•."1 � � � "pC1/= FI

�! PrimA
•."1 � � � "p/= FI �! 0;

(6.4)

where Prim.�/ denotes the primitive part of a Hopf algebra. We now come back

to the Kontsevich integral Z: the horizontality of ˆ implies that the restriction of

Z to PBpC1 takes values in A
•."1 � � � "pC1/= FI. For any x 2 � , log Z.x/ 2

PrimA
•."1 � � � "pC1/= FI becomes trivial if the strand "pC1D"� is deleted

from Jacobi diagrams: we deduce that log Z.x/ belongs to PrimA
•
p;�= FI or,

equivalently, that Z.x/ belongs to A
•
p;�= FI.
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We now prove that E�Z veri�es the four conditions (i), (ii), (ii0), and (iii) of a

framed special expansion. Since ZW E� ! A
•
p;� is multiplicative and since (6.1)

is an algebra homomorphism, E�Z satis�es (i). We show (ii0): for any k 2 Z,

±k 2 E� regarded as a .pC1/-strand framed pure braid is trivial except that its last

strand has framing number k; therefore Z.±k/ D exp
�

k
2
t��

�
which transforms to

1 y̋ exp.k
2
C / by (6.1). We show (iii): EN� 2 E� regarded as a .pC 1/-strand framed

pure braid is obtained from the 2-strand framed pure braid

 WD

1 2

(6.5)

by doubling .p � 1/ times the �rst strand; therefore

Z.EN�/ D �"1 7!"1���"p ;"2 7!"�.Z.//

D �"1 7!"1���"p ;"2 7!"�.exp.�t12//

D exp.�t1� � � � � � tp�/

which transforms to exp.�z/ y̋ 1 by (6.1). It remains to show (ii): let i 2 ¹1; : : : ; pº

and consider the following framed .p C 1/-strand braids:

� � � � � �

� � �� � �˛i WD

ˇ�1
i
WD

ˇi WD � � � � � �

1 i p

The product E�i WD ˇi˛iˇ
�1
i is a framed pure braid which can be regarded as an

element of E� and then represents L�i . Let lpC1 be the leftmost parenthesizing

.� � � ..CC/C/ � � �C/ of length .p C 1/ and let l 0
pC1 be the parenthesizing that is

obtained from lp by transforming the i-th letterC to .CC/. Let .ˇi /
� be the braid

ˇi with parenthesizing l 0
pC1 at the top and lpC1 at the bottom, and let .˛i /

�
� be the
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braid ˛i with parenthesizing l 0
pC1 at the top and bottom. Then

Z.E�i / D Z..ˇi /
�/ Z..˛i /

�
�/ Z..ˇi /

�/�1

D .Z..ˇi /
�/�i /.�

�1
i Z..˛i /

�
�/�i /.Z..ˇi /

�/�i /
�1

where �i is the empty Jacobi diagram on the abstract oriented 1-manifold

� � � � � �

1 i p

:

Thus we have decomposed Z.E�i / as a conjugate of group-like elements of

A."1 � � � "p"�/, and we now consider this decomposition in more details.

On the one hand, we have

��1
i Z..˛i /

�
�/�i D ��1

i .eti;iC1/�i D eti� I

on the other hand, Z..ˇi /
�/�i belongs to A

•."1 � � � "p"�/ and is transformed to

the empty Jacobi diagram if the interval "� is deleted: it follows from (6.4) that

Z..ˇi /
�/�i belongs toA

•
p;�. Therefore, Z..ˇi /

�/�i is mapped by the inverse of the

isomorphism (6.1) to a group-like element Ui of T ..H// y̋ KŒŒC ��. We conclude

that E�Z.E�i / D Ui exp.zi/U
�1
i
y̋ 1, which proves (ii) since we have w.E�i/ D 0 for

the above choice of the representative E�i of L�i .

Finally, the map p�.E�Z/W� ! T ..H// derived from the special expansion E�Z

of E� is clearly equal to the map �Z . Consequently, �Z is a special expansion

of � . �

6.3. Remarks. 1) The unframed special expansion �Z given by Proposition 6.2

appears implicitly in [17] and explicitly in [1].

2) Regard � as a subgroup of the group PBpC1 of unframed .p C 1/-strand

pure braids in the disk. Proposition 6.2 implies that the I -adic �ltration of KŒ��

coincides with the �ltration inherited from the I -adic �ltration of KŒPBpC1�.

7. Formal description of Turaev’s self-intersection map

In this section, the ground ring is a commutative �eld K of characteristic zero and

† is a disk with �nitely-many punctures numbered from 1 to p. Set � WD �1.†; �/

and E� WD �1.†; E� / where � 2 @† and E� denotes the unit vector tangent to @† at

the point �.
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Recall the operation ˇ in H which has been introduced in Section 5.3. It is

easily veri�ed that the .�1/-�ltered linear map �WT ..H// y̋ KŒŒC �� ! T ..H//

de�ned by

�.k1 � � �km ˝ C n/ WD

8
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂:

X

1�i�m�1

k1 � � �ki�1 .kiˇkiC1/ kiC2 � � �km

if n D 0 and m � 2;

0 if n D 0 and m 2 ¹0; 1º;

�2k1 � � �km if n D 1;

0 if n > 1;

is a quasi-derivation ruled by the Fox pairing .�ˇ�/. Let s.X/ 2 QŒŒX�� be

the series de�ned by (5.2), and recall from Section 2.3 that any pair of ele-

ments e1; e2 2 T ..H// such that e1 C e2 D s.�z/ de�nes a quasi-derivation

qe1;e2
WT ..H// y̋ KŒŒC ��! T ..H// ruled by the inner Fox pairing �s.�z/: speci�-

cally, we have

qe1;e2
.a˝ C n/ D

´
.".a/ � a/ e1 C e2 .".a/ � a/ if n D 0;

0 if n > 0;

for all a 2 T ..H//, n 2 N0.

We can now state our formal description of the homotopy self-intersection map

E�. We consider here the special expansions �Z WKŒ��! T ..H// and E�Z WKŒE��!

T ..H// y̋ KŒŒC �� induced by the Kontsevich integral Z (see Proposition 6.2).

Recall that the construction of Z depends on the choice of an associator ˆ, which

is assumed to be horizontal.

Theorem 7.1. There exists a series �.X/ 2 KŒŒX�� depending explicitly on ˆ

such that

�.�X/ � �.X/ � 1=2 D s.X/

and the following diagram is commutative:

1KŒE��

OE�Z
'

��

OE� // 1KŒ��

O�Z'

��
T ..H// y̋ KŒŒC ��

�Cq
// T ..H//

where q WD q�1=4C�.z/ ; �1=4��.�z/.
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Corollary 7.2. If the associator ˆ is even, then the following diagram is commu-
tative:

1KŒE��

OE�Z
'

��

OE� // 1KŒ��

O�Z
'

��
T ..H// y̋ KŒŒC ��

�Cq
// T ..H//

where q WD qs.�z/=2 ; s.�z/=2.

We shall derive from Theorem 7.1 a formal description of the Turaev cobracket

ıT. To state this result, recall from Section 2.3 the following notations:

{T .H/ D T .H/=ŒT .H/; T .H/�

and

j {T .H/j D T .H/=.ŒT .H/; T .H/�CK1/:

Let

ıSW {T .H/ �! {T .H/˝ {T .H/

be the linear map de�ned by

ıS.1/ WD 0; ıS.k/ WD 0; for any k 2 H ,

and by

ıS.k1 � � �km/ WD
X

1�i<j �m

kiC1 � � �kj �1 ^ k1 � � �ki�1 .kiˇkj / kj C1 � � �km

�
X

1�i<j �m

.kjˇki / kiC1 � � �kj �1 ^ k1 � � �ki�1kj C1 � � �km

for any integer m � 2 and for all k1; : : : ; km 2 H , where we use the notation

x ^ y WD x ˝ y � y ˝ x 2 T .H/˝ T .H/; for all x; y 2 T .H/:

We refer to this map as the Schedler cobracket since it is the Lie cobracket

associated by Schedler to a star-shaped quiver consisting of one “central” vertex

connected by p edges to p “peripheral” vertices [41]. The map ıS also induces a

linear map

ıSW j {T .H/j �! j {T .H/j ˝ j {T .H/j

de�ned by

ıS.jkj/ WD 0 for any k 2 H
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and

ıS.jk1 � � �kmj/ D
X

1�i<j �m

jkiC1 � � �kj �1j ^ jk1 � � �ki�1 .kiˇkj / kj C1 � � �kmj

�
X

1�i<j �m

j.kjˇki / kiC1 � � �kj �1j ^ jk1 � � �ki�1kj C1 � � �kmj

for any integer m � 2 and for all k1; : : : ; km 2 H , where j�jW {T .H/ ! j {T .H/j

denotes the canonical projection. Since ıS shifts degrees by .�1/, it induces a

.�1/-�ltered linear map

OıSW j {T ..H//j �! j {T ..H//j y̋ j {T ..H//j

where j {T ..H//j denotes the degree-completion of j {T .H/j. Let 1jK L� j denote the

completion of jK L�j ' KŒ��=.ŒKŒ��;KŒ��� C K1/ with respect to the �ltration

that it inherits from KŒ��.

Corollary 7.3. For any associator ˆ, the following diagram is commutative:

1jK L�j

O�Z '

��

OıT // 1jK L�j y̋1jK L�j

O�Z
y̋ O�Z'

��

j {T ..H//j
OıS

// j {T ..H//j y̋ j {T ..H//j

8. Proof of the formal descriptions

In this section, the ground ring is a commutative �eld K of characteristic zero

and † is a disk with �nitely-many punctures numbered from 1 to p. We prove

the results that have been stated in Section 7. Before that, we introduce some

diagrammatic operators and we illustrate their e�ciency by giving a second proof

of Theorem 5.2 (when the special expansion under consideration is induced by

the Kontsevich integral).

8.1. Some diagrammatic operators. We use the same notations as in Sec-

tion 4.2. In particular, recall that we have a free product decomposition

�v D �v.�/ � F.zv/

where � D �1.†; �/ and �v D �1.† n ¹vº; �/, which induces a projection

pvW�v ! �v.�/ ' � . The goal of this subsection is to give a diagrammatic
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description of the composition

KŒ�v�
@

@zv // KŒ�v�
pv

// KŒ��:

On this purpose, we regard the unframed pure braid group on 2 strands in † as

the group of unframed .p C 2/-strand pure braids in the disk that become trivial

if the last two strings are deleted. Thus, by restriction of the Kontsevich integral,

we obtain a multiplicative map

ZWPB2.†/ �! Ap;uv= FI

where Ap;uv denotes the closed subspace of A."1 � � � "p"u"v/ spanned by

Jacobi diagrams whose all connected components touch "u or "v , and FI is

the “Framing Independence” relation. Here, and unless otherwise speci�ed in

the sequel, any .p C 2/-strand pure braid in the disk arising from PB2.†/ is
equipped with the parenthesizing .lp.CC// where lp is the leftmost parenthesizing

.� � � ..CC/C/ � � �C/ of lenght p.

We also need some additional notations. We denote by

"u;vWAp;uv= FI �! K

the map that “deletes” the two strands "u and "v, and by

"uWAp;uv= FI �! Ap;�= FI

the map that only “deletes” "u and renames � the label v. Let Pu be the closed sub-

space of Ap;uv= FI spanned by Jacobi diagrams whose all connected components

touch "u, and let P •
u be the subalgebra ofAp;uv= FI generated by tuv; t1u; : : : ; tpu:

clearly P •
u � Pu. We shall also need the subalgebra P •

u;v of Ap;uv= FI generated

by commutators of the form

Œti1j1
; Œti2j2

; � � � Œtin�1jn�1
; tinjn

� � � � ��

for all n 2 N0 and i1; : : : ; in; j1; : : : ; jn 2 ¹1; : : : ; p; u; vº, where ik ¤ jk and

¹ik ; jkº \ ¹u; vº ¤ ¿ for any k 2 ¹1; : : : ; nº, and where at least one of the pairs

¹i1; j1º, . . . , ¹in; jnº is equal to ¹u; vº. Finally, for any diagram y 2 Ap;uv= FI,

we set

y� WD

� � �

� � �
u vp1

y :

The above notations relative to the points u and v have obvious analogues when

the roles of u and v are reversed. Clearly P •
u;v D P •

v;u and y� 2 P •
u;v for all

y 2 P •
u;v .
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Lemma 8.1. There is a unique .�1/-�ltered linear map

DvWP •
u �! A

•
p;�= FI

(6.2)
' T ..H//

such that the following diagram is commutative:

KŒ�v�
@

@zv //

Z

��

KŒ�v�
pv

// KŒ��

Z

��
P •

u
Dv

// A•
p;�= FI

(8.1)

Moreover, we have the following properties:

Dv.xy/ D Dv.x/ "u;v.y/C "v.x/ Dv.y/; for all x; y 2 P •
u I (8.2)

P •
u;v � P •

u and Dv.y�/ D ySDv.y/; for all y 2 P •
u;vI (8.3)

Dv.tuv/ D �1 and Dv.tiu/ D �zi�; for all i 2 ¹1; : : : ; pº; (8.4)

where � 2 T ..H// is a constant (depending on ˆ) such that

� � yS.�/ D 1=2C s.�z/:

Proof. The group �v is the fundamental group of the disk with p C 1 punctures.

Thus, by using the same arguments as in Proposition 6.2, we obtain that the

restriction to �v of the Kontsevich integral ZWPB2.†/! Ap;uv= FI takes values in

P •
u , and that the resulting linear map ZWKŒ�v�! P •

u induces an isomorphism

of complete algebras

ZW 1KŒ�v� �! P •
u : (8.5)

Here 1KŒ�v� denotes the completion of KŒ�v� with respect to its I -adic �ltration,

which is also the �ltration inherited from the I -adic �ltration of KŒPBpC2� (see

Remark 6.3.2). Besides, observe the following fact: for any integer m � 1, @
@zv

maps the m-th term of the I -adic �ltration of KŒ�v� to its .m � 1/-st term, which

implies that the linear map pv @
@zv WKŒ�v� ! KŒ�� is .�1/-�ltered. In particular,

it induces a .�1/-�ltered linear map pv @
@zv W1KŒ�v� !1KŒ��. Then we de�ne the

map Dv by the following composition

1KŒ�v�
pv @

@zv // 1KŒ��

Z'

��
P •

u
Dv

//❴❴❴❴❴❴

Z�1 '

OO

A
•
p;�= FI :
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This proves the existence of the map Dv in the commutative square (8.1), and the

unicity is clear: since KŒ�v� is dense in 1KŒ�v�, the image of KŒ�v� by Z is dense

in P •
u .

To prove property (8.2), let x; y 2 P •
u . We set

x0 WD Z�1.x/ 2 1KŒ�v �

and

y0 WD Z�1.y/ 2 1KŒ�v �:

Then

Dv.xy/ D Dv.Z.x0/ Z.y0//
(8.1)
D Zpv

�@x0y0

@zv

�

D Zpv
� @x0

@zv
O".y0/C x0 @y0

@zv

�

(8.1)
D O".y0/ Dv.x/CZ.pv.x0// Dv.y/

D "u;v.y/ Dv.x/C "v.x/ Dv.y/:

We prove the �rst part of property (8.3). Firstly, we show that

ZWPB2.†/ �! Ap;uv= FI

maps �u \ �v to P •
u;v . Let ˇ 2 �u \ �v � PB2.†/. Since ˇ 2 �v , we have

Z.ˇ/ 2 P •
u so that log Z.ˇ/ is a series of commutators of the form

Œti1u; Œti2u; � � � Œtin�1u; tinu� � � � ��

where n 2 N0 and i1; : : : ; in 2 ¹1; : : : ; p; vº; by distinguishing those commutators

that involve a tuv from those commutators that only involve t1u; : : : ; tpu, we can

decompose log Z.ˇ/ as a sum of two terms .log Z.ˇ//0 and .log Z.ˇ//00. Since

ˇ 2 �u, we obtain

0 D "v log Z.ˇ/ D "v..log Z.ˇ//00/

and it follows that .log Z.ˇ//00 D 0: in particular log Z.ˇ/ belongs to P •
u;v , so

that Z.ˇ/ belongs to P •
u;v . Thus, the Kontsevich integral ZWPB2.†/! Ap;uv= FI

induces a �ltration-preserving homomorphism

ZW5KŒ�u \ �v��!P •
u;v: (8.6)
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Here 5KŒ�u \ �v� denotes the completion of KŒ�u \ �v� with respect to the �l-

tration inherited from the I -adic �ltration of KŒPBpC2� (which does not coincide

with the I -adic �ltration of KŒ�u \ �v�) or, equivalently, it is the completion with

respect to the �ltration inherited from the I -adic �ltration ofKŒ�v�. Next we show

that (8.6) is surjective, which will imply that P •
u;v � P •

u . Consider the following

.p C 2/-strand pure braid for any elements i; j 2 ¹1; : : : ; p; u; vº:

�ij WD

1 i j p u v

� � � � � � � � �

and note that Z.�ij / D 1C tij C .deg > 1/. Therefore, we have

Z.Œ�i1j1
; Œ�i2j2

; � � � Œ�in�1jn�1
; �injn

� � � � ��/

D 1C Œti1j1
; Œti2j2

; � � � Œtin�1jn�1
; tinjn

� � � � ��C .deg > n/

for any n 2 N0 and i1; : : : ; in; j1; : : : ; jn 2 ¹1; : : : ; p; u; vº where ik ¤ jk

and ¹ik; jkº \ ¹u; vº ¤ ¿ for all k 2 ¹1; : : : ; nº; if we further assume that

at least one of the pairs ¹i1; j1º, . . . , ¹in; jnº is equal to ¹u; vº, then the pure

braid Œ�i1j1
; Œ�i2j2

; � � � Œ�in�1jn�1
; �injn

� � � � �� 2 PB2.†/ becomes trivial if any of

the strands u or v is deleted, which implies that it belongs to �u \ �v . This fact

implies that the �ltered map (8.6) is surjective at the graded level, which implies

its surjectivity.

We now prove the second part of property (8.3). Since KŒ�u \�v� is dense in
5KŒ�u \ �v� and (8.6) is surjective, it is enough to prove the identity of (8.3) for

y WD Z.y0/ 2 P •
u;v where y0 is an arbitrary element of �u \�v � PB2.†/. Then,

using Lemma 4.1, we obtain

Zpv
�@�y0��1

@zv

�
D Z

�
pv

@y0

@zv

�
D ySZ

�
pv @y0

@zv

�
(8.1)
D ySDvZ.y0/ D ySDv.y/:

Besides we have

Zpv
�@�y0��1

@zv

�
(8.1)
D DvZ.�y0��1/

D Dv.etuv=2 Z.y0/ e�tuv=2 /

D Dv.etuv=2Z.y0/�e�tuv=2/
(8.2)
D Dv.etuv=2/CDv.Z.y0/�e�tuv=2/

(8.2)
D Dv.etuv=2/CDv.Z.y0/�/CDv.e�tuv=2/

(8.2)
D Dv.Z.y0/�/ D Dv.y�/:

We deduce that ySDv.y/ D Dv.y�/ as required.
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We now prove the �rst identity of (8.4). To compute Dv.tuv/, we consider

T WD e�tuv 2 P •
u . Then

Dv.tuv/ D Dv.� log.1C .T � 1///

D �Dv
�X

r�1

.�1/rC1

r
.T � 1/r

�

D
X

r�1

.�1/r

r
Dv..T � 1/r/I

for any r � 2, we have

Dv..T � 1/r/ D Dv..T � 1/r�1.T � 1//
(8.2)
D 0

and we have

Dv.T � 1/ D Dv.T / D DvZ.zv/
(8.1)
D Zpv

�@zv

@zv

�
D 1:

It follows that

Dv.tuv/ D �1: (8.7)

We now prove the second identity of (8.4). Let x 2 � and consider �v.x/ 2

�v � PB2.†/. We have

Z.�v.x// D '�1 Z.�v.x/�
�/ ' (8.8)

where �v.x/�
� is the pure braid �v.x/ equipped with the parenthesizing ..lpC/C/

instead of .lp.CC// at the top and bottom, and where ' 2 Ap;uv= FI is constructed

from the associator ˆ 2 A."1"2"3/ by duplicating .p � 1/ times the �rst string:

' WD �"1 7!"1���"p ; "2 7!"u; "3 7!"v
.ˆ/ 2 Ap;uv= FI: (8.9)

Since ˆ is assumed to be horizontal, we have ' 2 P •
u;v. It follows from (8.8) that

DvZ.�v.x// D Dv.'�1 Z.�v.x/�
�/ '/

(8.2)
D Dv.'�1/CDv.Z.�v.x/�

�/ '/
(8.2)
D Dv.'�1/CDvZ.�v.x/�

�/CZ.x/ Dv.'/
(8.2)
D DvZ.�v.x/�

�/C .Z.x/ � 1/ Dv.'/:

Besides, we have

DvZ.�v.x//
(8.1)
D Zpv @�v.x/

@zv
D 0 and Z.�v.x/�

�/ D Z.x/u"v



Formal descriptions of Turaev’s loop operations 95

where Z.x/u "v means that Z.x/ 2 Ap;�= FI is transformed to an element of

Ap;uv= FI by labelling u the interval "� and by juxtaposing a disjoint interval "v .

We deduce that

Dv.Z.x/u"v/ D .1� Z.x// Dv.'/; for all x 2 �:

Since the image of KŒ�� by Z is dense in A
•
p;�= FI ' T ..H//, it follows that

Dv.ru"v/ D .".r/� r/Dv.'/; for all r 2 A
•
p;�= FI :

In particular, we obtain

Dv.tiu/ D �zi Dv.'/ for all i 2 ¹1; : : : ; pº: (8.10)

In the sequel, we set � WD Dv.'/ and it remains to prove that � � yS.�/ D

1=2 C s.�z/. Denote by � 2 �v the homotopy class of @.† n ¹vº/ and let

t�u WD t1u C � � � C tpu: we have

Zpv
� @�

@zv

�
D Zpv

�@�v. N�/zv

@zv

�
D Z. N�/ D e�z:

Using the fact that Dv.etuv=2/ D �1=2 which follows from (8.7), decomposing

� in the form �.��1��/��1, and observing that ��1�� is obtained from the pure

braid (6.5) by doubling p times its �rst strand, we obtain

DvZ.�/ D Dv.etuv=2 '�1e�t�v�tuv ' e�tuv=2 /

D Dv.etuv=2.'�1/�e�t�u�tuv'�e�tuv=2/

(8.2)
D Dv.etuv=2/CDv..'�1/�e�t�u�tuv '�e�tuv=2/

(8.2)
D �1=2CDv..'�1/�/CDv.e�t�u�tuv '�e�tuv=2/

(8.2)
D �1=2�Dv.'�/CDv.e�t�u�tuv /C e�zDv.'�e�tuv=2/

(8.2)
D �1=2�Dv.'�/CDv.e�t�u�tuv /

Ce�zDv.'�/C e�zDv.e�tuv=2/

D �1=2�Dv.'�/CDv.e�t�u�tuv /C e�zDv.'�/C e�z=2

(8.3)
D Dv.e�t�u�tuv/C .e�z � 1/=2C .e�z � 1/ yS.�/:

Using (8.1), we deduce that

e�z=2C 1=2 D Dv.e�t�u�tuv /C .e�z � 1/ yS.�/:
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We now compute

Dv.e�t�u�tuv / D
X

k�0

1

kŠ
Dv..�t�u � tuv/k/

(8.2)
D

X

k�1

1

kŠ
.�z/k�1Dv.�t�u � tuv/

(8.7)
D

e�z � 1

�z
.Dv.�t�u/C 1/

(8.10)
D .1� e�z/ � C

1 � e�z

z

and it follows that

.e�z � 1/=2C 1 D .1� e�z/ � C
1 � e�z

z
C .e�z � 1/ yS.�/

or, equivalently, 1=2C s.�z/ D � � yS.�/: �

We now give a diagrammatic description of the composition

KŒ�u�
@

@zu // KŒ�u�
pu

// KŒ��

which is similar to Lemma 8.1.

Lemma 8.2. There is a unique .�1/-�ltered linear map

DuWP •
v �! A

•
p;�= FI

(6.2)
' T ..H//

such that the following diagram is commutative:

KŒ�u�
@

@zu //

Z

��

KŒ�u�
pu

// KŒ��

Z

��
P •

v
Du

// A•
p;�= FI

(8.11)

Moreover, we have the following properties:

Du.xy/ D Du.x/ "u;v.y/C "u.x/ Du.y/; for all x; y 2 P •
v I (8.12)

P •
u;v � P •

v and Du.y/ D ySDv.y/; for all y 2 P •
u;vI (8.13)

Du.tuv/ D �1 and Du.tiv/ D �zi .1=2C �/; for all i 2 ¹1; : : : ; pº; (8.14)

where � 2 T ..H// is the same constant as in Lemma 8.1.
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Proof. The existence and unicity of the map Du, as well as its property (8.12),

are proved as we did for the map Dv in Lemma 8.1.

We now prove property (8.13). The inclusion P •
u;v � P •

v is proved in the same

way as we proved that P •
u;v � P •

u in Lemma 8.1. We saw during the proof of this

lemma that the Kontsevich integral restricts to a surjective �ltration-preserving

map

ZW5KŒ�u \ �v��!P •
u;v:

Therefore, it is enough to prove the identity (8.13) for y WD Z.y0/ 2 P •
u;v where

y0 is an arbitrary element of �u \ �v � PB2.†/. Using Lemma 4.1, we obtain

Du.y/ D DuZ.y0/
(8.11)
D Zpu

� @y0

@zu

�

D Z
�
pv
� @y0

@zv

��

D ySZpv
� @y0

@zv

�
(8.1)
D ySDvZ.y0/ D ySDv.y/:

We now prove (8.14). The fact that Du.tuv/ D �1 follows from (8.13)

and (8.4). It remains to compute Du.tiv/ for any i 2 ¹1; : : : ; pº. Let x 2 � and

consider its image �u.x/ 2 �u. Since �u.x/ D ��v.x/��1 2 PB2.†/, we obtain

Z.�u.x// D etuv=2 '�1Z.�v.x/�
�/' e�tuv=2

D etuv=2.'�1/�.Z.�v.x/�
�//�'�e�tuv=2;

where �v.x/�
� is the pure braid �v.x/ 2 �v � PB2.†/ computed with the paren-

thesizing ..lpC/C/ instead of the parenthesizing .lp.CC//, and where ' 2 P •
u;v

is constructed from the associator ˆ 2 A."1"2"3/ as we have explained in the

proof of Lemma 8.1. Besides, we have

DuZ.�u.x//
(8.11)
D Zpu

�@�u.x/

@zu

�
D 0;

and we also have

Z.�v.x/�
�/ D Z.x/u"v;

meaning that Z.x/ 2 Ap;�= FI is transformed to an element of Ap;uv= FI by

labelling u the interval "� and by juxtaposing a disjoint interval "v. It follows

that

0 D Du.etuv=2.'�1/�.Z.x/u"v/�'�e�tuv=2/; for all x 2 �;

which implies that

0 D Du.etuv=2.'�1/�.ru "v/�'�e�tuv=2/; for all r 2 A
•
p;�= FI :
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In particular, we obtain

0 D Du.etuv=2.'�1/� tiv '�e�tuv=2/; for all i 2 ¹1; : : : ; pº: (8.15)

We now develop this identity using (8.12):

0 D Du.etuv=2.'�1/� tiv '�e�tuv=2/

D Du.tiv '�e�tuv=2/

D Du.tiv/C zi Du.'�e�tuv=2/

D Du.tiv/C zi Du.'�/C zi Du.e�tuv=2/
(8.13)
D Du.tiv/C zi

ySDv.'�/C zi
ySDv.e�tuv=2/

(8.3)
D

(8.4)
Du.tiv/C zi Dv.'/C

1

2
zi D Du.tiv/C zi� C

1

2
zi

where � WD Dv.'/ as in the proof of Lemma 8.1. We conclude that Du.tiv/ D

�zi .1=2C �/. �

8.2. Another proof of Theorem 5.2. In this subsection, we prove Theorem 5.2

in the case where the special expansion � under consideration is the expansion �Z

induced by the Kontsevich integral Z.

Let E be the bilinear map de�ned by the following composition:

1KŒ�� �1KŒ��
O� // 1KŒ��

Z'

��
.A•

p;�= FI/ � .A•
p;�= FI/

E
//❴❴❴❴❴❴

Z�1�Z�1 '

OO

A
•
p;�= FI

Thus E is a �ltered Fox pairing in the Hopf algebra A
•
p;�= FI, which we identify

with the Hopf algebra T ..H// via the isomorphism (6.2). For any x; y 2 � , we

deduce from Theorem 4.3 that

E.Z�1.x/; Z�1.y//

D Z�.x; y/

D Zpv
�@ �u.y�1/�v.x/�u.y/

@zv

�

(8.1)
D DvZ.�u.y�1/�v.x/�u.y//

D Dv.Z.�u.y�1// Z.�v.x// Z.�u.y///

D Dv
�
etuv=2 '�1.Z.y/�1

u "v/' e�tuv=2 '�1.Z.x/u"v/'

etuv=2 '�1.Z.y/u"v/' e�tuv=2
�

D Dv
�
etuv=2.'�/�1."u Z.y/�1

v /'�e�tuv=2 '�1.Z.x/u "v/'

etuv=2.'�/�1."u Z.y/v/'�e�tuv=2
�
;
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where Z.x/u"v denotes the element of Ap;uv= FI obtained from Z.x/ 2 Ap;�= FI

by changing the label � to the label u and by juxtaposing a disjoint interval "v ,

and where the notations Z.y/˙1
u "v; "u Z.y/˙1

v have similar meanings. Since

Z.KŒ��/ is dense in A
•
p;�= FI, we deduce that the pairing E is given by

E.a; b/ D Dv
�
etuv=2.'�/�1."u .S.b0//v/'�e�tuv=2 '�1.au"v/'

etuv=2.'�/�1."u .b00/v/'�e�tuv=2
�

for any a; b 2 A
•
p;�= FI. In particular, we have for any i; j 2 ¹1; : : : ; pº

E.ti�; tj �/

D Dv
�
� etuv=2.'�/�1tjv'�e�tuv=2 '�1 tiu' etuv=2.'�/�1 1 '�e�tuv=2

C etuv=2.'�/�1 1 '�e�tuv=2 '�1 tiu' etuv=2.'�/�1 tjv '�e�tuv=2
�

D Dv
�
� etuv=2.'�/�1tjv'�e�tuv=2 '�1 tiu'

C '�1 tiu' etuv=2.'�/�1 tjv '�e�tuv=2
�
:

The de�nition (8.9) of ' from the horizontal associator ˆ implies that

` WD log.'/ 2 Ap;uv= FI

is a series of Lie words in t1u; : : : ; tpu; tuv showing at least one occurence of tuv:

therefore

Ui WD '�1 tiu' � tiu D e�`tiue` � tiu D exp.�Œ`;��/.tiu/ � tiu

belongs to P •
u;v; by the same argument,

Vj WD etuv=2.'�/�1tjv'�e�tuv=2 � tjv

belongs to P •
u;v . Thus we obtain

E.ti�; tj �/ D Dv.�.tjv C Vj / .tiu C Ui /C .tiu C Ui /.tjv C Vj //

D Dv.Œtiu; tjv�C ŒUi ; tjv�C Œtiu; Vj �C ŒUi ; Vj �/:

Since Ui 2 P •
u;v, we have ŒUi ; tjv� 2 P •

u;v and, similarly, since Vj 2 P •
u;v,

we have Œtiu; Vj � 2 P •
u;v; since P •

u;v is a subalgebra of Ap;uv= FI, we also have

ŒUi ; Vj � 2 P •
u;v; the STU relation implies that Œtiu; tjv� D ıij Œtiv; tuv� and, in

particular, Œtiu; tjv� 2 P •
u;v . We now compute the value of Dv on each of those
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four elements of P •
u;v. Since "v.Vj / D "u;v.Vj / D "v.Ui / D "u;v.Ui / D 0,

we have

Dv.ŒUi ; Vj �/
(8.2)
D 0I

since "u;v.Vj / D "v.Vj / D "u;v.tiu/ D 0, we have

Dv.Œtiu; Vj �/
(8.2)
D ziD

v.Vj /
(8.13)
D zi

ySDu.Vj /

D zi
ySDu.�tjv C etuv=2.'�/�1tjv'�e�tuv=2/

(8.12)
D �zi

ySDu.tjv/C zi
ySDu.tjv'�e�tuv=2/

(8.12)
D zi

yS.zj Du.'�e�tuv=2//

D �zi
ySDu.'�e�tuv=2/ zj

(8.13)
D �zi Dv.'�e�tuv=2/ zj

(8.2)
D �zi .D

v.'�/CDv.e�tuv=2//zj
(8.4)

D
(8.3)
�zi . yS.�/C 1=2/zj I

since "u;v.Ui / D "u.Ui / D "u;v.tjv/ D 0, we have

Dv.ŒUi ; tjv�/
(8.13)
D ySDu.ŒUi ; tjv�/

(8.12)
D �yS.zj Du.Ui //

D ySDu.Ui / zj

(8.13)
D Dv.Ui / zj

D Dv.�tiu C '�1tiu'/ zj

(8.2)
D �Dv.tiu/ zj CDv.tiu'/ zj

(8.2)
D ziD

v.'/zj D zi�zj I

�nally, we have

Dv.Œtiu; tjv�/ D ıij Dv.Œtiv; tuv�/
(8.13)
D ıij

ySDu.Œtiv; tuv�/

(8.12)
D ıij

yS.ziD
u.tuv//

(8.14)
D ıij zi D .ziˇzj /:

We deduce that

E.ti�; tj �/ D .ziˇzj /C zi.� � yS.�/ � 1=2/zj D .ziˇzj /C zi s.�z/ zj :

Since the complete algebra T ..H// ' A
•
p;�= FI is generated by the zi D ti� for

all i 2 ¹1; : : : ; pº, we conclude that the Fox pairings E and .�ˇ�/ C �s.�z/

coincide.
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8.3. Proof of Theorem 7.1. Let N WA•
p;� ! A

•
p;�= FI be the map de�ned by the

following composition:

1KŒE��
OE� // 1KŒ��

Z'

��
A

•
p;� N

//❴❴❴❴❴❴

Z�1 '

OO

A
•
p;�= FI

(8.16)

In this subsection, A
•
p;� is identi�ed with T ..H// y̋ KŒŒC �� via the isomor-

phism (6.1), and A
•
p;�= FI is identi�ed with T ..H// via the isomorphism (6.2).

By (5.3), the Fox pairing � translates into the Fox pairing .�ˇ�/C �s.�z/

through the special expansion �Z . Therefore, the map N is a quasi-derivation

ruled by .�ˇ�/C �s.�z/. We shall compute the values of N on the generators

t�� D C and ti� D zi (for all i 2 ¹1; : : : ; pº) of the complete algebra A
•
p;� '

T ..H// y̋ KŒŒC ��.

First we compute N.t��/. Since N is a quasi-derivation and t�� is mapped to

zero under the projection pWA•
p;� ! A

•
p;�= FI, we have

N.�t��=2/ D N.e�t��=2/ D NZ.±�1/
(8.16)
D Z E�.±�1/ D Z.1/ D 1:

We deduce that

N.t��/ D �2 D �.C / D �.C /C q�1=4C� ; �1=4� yS.�/
.C /: (8.17)

The computation of N.ti�/ for an arbitrary element i 2 ¹1; : : : ; pº needs some

preliminaries. For any Ex 2 E� , we obtain using Theorem 4.6 that

Z E�.Ex/ D Zpv
�@ �u.x�1/ c.Ex/

@zv

�

(8.1)
D DvZ.�u.x�1/ c.Ex//

D Dv.Z.�u.x�1// Z.c.Ex///

D Dv.etuv=2 '�1Z.�v.x�1/�
�/' e�tuv=2 Z.c.Ex///

D Dv.etuv=2.'�1/�.Z.�v.x�1/�
�//�'�e�tuv=2 Z.c.Ex///

D Dv.etuv=2.'�1/�..X�1/u"v/�'�e�tuv=2 �"� 7!"u"v
. EX//;

where we have denoted

X WD Z.x/ 2 Ap;�= FI and EX WD Z.Ex/ 2 Ap;�;

and where .X�1/u"v is the element of Ap;uv= FI obtained from X�1 by labelling
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u the interval "� and by juxtaposing a disjoint interval "v . Thus we have obtained

NZ.Ex/ D Dv.etuv=2.'�1/� ."u .X�1/v/ '�e�tuv=2 �"� 7!"u"v
. EX// (8.18)

for all Ex 2 E� . Since the image of KŒE�� by Z is dense in A
•
p;�, we deduce that

N.Er/ D Dv.etuv=2.'�1/� ."u .S.Er 0//v/ '�e�tuv=2 �"� 7!"u"v
.Er 00//; (8.19)

for any Er 2 A
•
p;�, where r is the projection of Er in A

•
p;�= FI, �.Er/ D Er 0 ˝ Er 00

denotes the coproduct in A
•
p;�, the projection of Er 0 in A

•
p;�= FI is still denoted

by Er 0, and S denotes the antipode of A•
p;�= FI. In particular, we obtain

N.ti�/ D Dv
�
etuv=2.'�1/�."u .S.ti�//v/ '�e�tuv=2 �"� 7!"u"v

.1/

C etuv=2.'�1/� ."u .S.1//v/ '�e�tuv=2 �"� 7!"u"v
.ti�/

�

D Dv.�etuv=2.'�1/� tiv '�e�tuv=2 C�"� 7!"u"v
.ti�//

D Dv.�etuv=2.'�1/� tiv '�e�tuv=2 C tiu C tiv/

D Dv.�etuv=2.'�1/� tiv '�e�tuv=2 C tiv„ ƒ‚ …
2 P •

u;v

/CDv.tiu/

(8.13)
D ySDu.�etuv=2.'�1/� tiv '�e�tuv=2 C tiv/CDv.tiu/

(8.15)
D ySDu.tiv/CDv.tiu/

(8.14)
D

(8.4)

yS.�zi.1=2C �// � zi� D .1=2C yS.�//zi � zi�:

We deduce that

N.ti�/ D q
�;�1=2� yS.�/

.zi / D �.zi /C q�1=4C� ; �1=4� yS.�/
.zi /; (8.20)

for all i 2 ¹1; : : : ; pº.

Since N and �Cq�1=4C� ; �1=4� yS.�/
are both quasi-derivations ruled by the Fox

pairing .�ˇ�/C�s.�z/, and since the complete algebra A•
p;� ' T ..H// y̋ KŒŒC ��

is generated by C and H , we conclude thanks to (8.17) and (8.20) that

N D � C q�1=4C� ; �1=4� yS.�/
:

To conclude the proof of Theorem 7.1, we still need to study in more detail the

element � D Dv.'/ 2 T ..H//. Based on this purpose, we set

` WD log.'/ 2 Ap;uv= FI :

Note that ` is obtained from log.ˆ/ 2 A."1"2"3/ in the same way as ' is

obtained from ˆ, i.e: by duplicating .p � 1/ times the �rst string (see the proof
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of Lemma 8.1). If the interval "3 is deleted, then ˆ becomes 1 2 A."1"2/ so that

log.ˆ/ becomes 0 2 A."1"2/, which implies that "v.`/ D "u;v.`/ D 0. Therefore

� D Dv.exp.`// D
X

k�1

1

kŠ
Dv.`k/

(8.2)
D

X

k�1

1

kŠ
."v.`k�1/ Dv.`/CDv.`k�1/ "u;v.`// D Dv.`/:

We set a WD t12 and b WD t23. Recall that log.ˆ/ is a Lie series in a; b and

that ˆ satis�es a “pentagon” equation and two “hexagon” equations (see [38], for

instance): the pentagon implies that the linear part of log.ˆ/ is trivial, while the

hexagon force its quadratic part to be equal to �Œa; b�=24. Therefore, by isolating

the b-linear part of log.ˆ/, we obtain

log.ˆ/ D �
1

24
Œa; b�C

X

i�2

qi .ada/i.b/C
X

n�3

X

j 2Jn

wj .a; b/ 2 A."1"2"3/ (8.21)

where ada WD Œa;��, q2; q3; : : : are elements of K, J3; J4; : : : are �nite sets and,

for all n � 3 and j 2 Jn, wj .a; b/ is a Lie word in a; b of length n containing at

least two copies of b. (Note that the scalars q2; q3; : : : in this decomposition are

unique.) Setting now a WD t1u C � � � C tpu and b WD tuv , we deduce that

` D �
1

24
Œa; b�C

X

i�2

qi .ada/i .b/C
X

n�3

X

j 2Jn

wj .a; b/ 2 Ap;uv= FI : (8.22)

Lemma 8.3. For any integer n � 3 and any j 2 Jn, we have Dv.wj .a; b// D 0.

Proof. The Lie word wj .a; b/ can be written in the form Œb; m� or in the form

Œa; m� where m is a certain Lie word in a; b of length at least 2 and, in the second

case, we also require that m contains at least two copies of b. In the �rst case, we

have

Dv.Œb; m�/
(8.2)
D "v.b/„ƒ‚…

D0

Dv.m/CDv.b/ "u;v.m/ � "v.m/ Dv.b/ �Dv.m/ "u;v.b/„ƒ‚…
D0

and, since m is Lie word in a; b of length at least 2, we also have "v.m/ D

"u;v.m/ D 0 so that Dv.Œb; m�/ D 0. In the second case, we have

Dv.Œa; m�/
(8.2)
D "v.a/ Dv.m/CDv.a/ "u;v.m/„ ƒ‚ …

D0

� "v.m/„ƒ‚…
D0

Dv.a/ �Dv.m/ "u;v.a/„ ƒ‚ …
D0

D zDv.m/

and, by an induction on the length of m, we conclude that Dv.Œa; m�/ D 0 as

well. �
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Lemma 8.4. For any integer i � 1, we have Dv..ada/i .b// D �zi .

Proof. For any integer i � 1, we have

Dv..ada/i.b// D Dv.Œa; .ada/i�1.b/�/

(8.2)
D "v.a/ Dv..ada/i�1.b//CDv.a/ "u;v..ada/i�1.b//„ ƒ‚ …

D0

� "v..ada/i�1.b//„ ƒ‚ …
D0

Dv.a/ �Dv..ada/i�1.b// "u;v.a/„ ƒ‚ …
D0

D zDv..ada/i�1.b//:

In particular, for i D 1, we obtain Dv.ada.b// D zDv.b/ which is equal to �z

by (8.4). Thus the lemma is proved by an induction on i � 1. �

By applying the above two lemmas to (8.22), we obtain that � 2 T ..H// is the

evaluation at z 2 H of the formal power series

�.X/ WD
1

24
X �

X

i�2

qiX
i 2 KŒŒX��: (8.23)

This provides an explicit formula for � in terms of the coe�cients q2; q3; q4; : : :

appearing in the expression (8.21) of the Drinfeld associator ˆ. Since �� yS.�/ D

1=2C s.�z/ by Lemma 8.1, the series �.X/ satis�es

�.�X/ � �.X/ � 1=2 D s.X/: (8.24)

8.4. Proof of Corollary 7.2. Assume now that the Drinfeld associator ˆ is even.

Then the expression (8.21) only shows some Lie words in a; b of even length:

consequently, the sum in (8.23) is a sum over all odd integers i � 3. We deduce

that �.�X/ D ��.X/ and the equation (8.24) implies that

�.X/ D
1

4
C

1

2
s.�X/:

Thus Corollary 7.2 follows from Theorem 7.1.

8.5. Proof of Corollary 7.3. Recall that j � jWKŒ�� ! Kj L� j is the canoni-

cal projection KŒ�� ! K L� composed with j � jWK L� ! Kj L�j. Similarly, let

j � jWT .H/ ! j{T .H/j be the composition of the canonical projections

T .H/ ! {T .H/ and j� jW {T .H/ ! j {T .H/j: by completion, we obtain a map
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j�jWT ..H// ! j{T ..H//j. Consider an x 2 Kj L� j and let y 2 KŒE�� be such that

jp.y/j D x. Then,

.�Z ˝ �Z/ıT.x/ D .�Z ˝ �Z/ıT.jp.y/j/

(3.6)
D .�Z ˝ �Z/.j�j ˝ j�j/ı E�.y/

D .j�j ˝ j�j/.�Z ˝ �Z/ı E�.y/

D .j�j ˝ j�j/ı�.E�Z.y//C .j�j ˝ j�j/ıq.E�Z.y//;

where the last identity follows from Theorem 7.1 and we have set

q WD q�1=4C�.z/ ; �1=4��.�z/:

We claim that

.j�j y̋ j�j/ ıq D 0WT ..H// y̋ KŒŒC �� �! j {T ..H//j y̋ j {T ..H//j (8.25)

and

.j�j y̋ j�j/ ı� D OıS j�jpWT ..H// y̋ KŒŒC �� �! j {T ..H//j y̋ j {T ..H//j: (8.26)

By the previous computation, these two claims imply that

.�Z ˝ �Z/ıT.x/ D OıS.jp E�Z.y/j/ D OıS.�Z.x//; for all x 2 Kj L�j:

Since Kj L�j ' jK L�j is dense in 1jK L� j, this will conclude the proof of Corollary 7.3.

We �rst prove claim (8.25). Using Lemma 2.5, we obtain

ıq.x y̋ C n/

D

´
0 if n > 0;

x. yS.e0/ y̋ e00 C e00 y̋ yS.e0// � . yS.e0/ y̋ e00 C e00 y̋ yS.e0//x if n D 0;

for any x 2 T ..H// and n 2 N0, where

e WD s.�z/ D �1=2C z=12 � z3=720C � � �:

For any odd integer r � 1, we have

.S ˝ idC id˝S/�.zr/ D

rX

iD0

�
r

i

�
.S ˝ idC id˝S/.zi ˝ zr�i/

D

rX

iD0

�
r

i

�
..�1/izi ˝ zr�i C .�1/r�izi ˝ zr�i / D 0
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which proves that

yS.e0/ y̋ e00 C e00 y̋ yS.e0/D �
1

2
.1˝ 1/:

It follows that .j�j y̋ j�j/ ıq D 0.

Finally, we prove claim (8.26). Using (2.3) and (2.4), we obtain

ı�.x y̋ C n/ D x0 yS..�.x00 y̋ C n//0/ ^ .�.x00 y̋ C n//00;

for all x 2 T ..H//, n 2 N0. This quantity is clearly trivial if n > 1, and it is equal

to �2 ^ x if n D 1. We are going to show that it is equal to OıS.x/ if n D 0. This

will imply that

.j�j y̋ j�j/ı�.x y̋ C n/ D .j�j y̋ j�j/ OıS.p.x y̋ C n// D OıS.jp.x y̋ C n/j/;

for all x 2 T ..H// and n 2 N0, which will prove that .j�j y̋ j�j/ı� D OıSj�jp and

will conclude the proof of Corollary 7.3. To compute ı�.x y̋ 1/, we can assume

without loss of generality that x D x1 � � �xm where x1; : : : ; xm 2 H . We will use

the following notations: for any subset J of Œ1; m� WD ¹1; : : : ; mº, we denote by

xJ the ordered product of the xj ’s for all j 2 J , we denote J� WD J n ¹max.J /º

and, for any j 2 J�, we set s.j / WD min.J n .J \ Œ1; j �//, L.j / WD J \ Œ1; j Œ and

U.j / WD J\�s.j /; m�. Then

ı�.x ˝ 1/ D x0S..�.x00 ˝ 1//0/ ^ .�.x00 ˝ 1//00

D
X

I;J �Œ1;m�

ItJ DŒ1;m�

xI S..�.xJ ˝ 1//0/ ^ .�.xJ ˝ 1//00

D
X

I;J �Œ1;m�

ItJ DŒ1;m�

X

j 2J�

xI S..xL.j / .xjˇxs.j // xU.j //
0/

^ .xL.j / .xjˇxs.j // xU.j //
00

D
X

I;J �Œ1;m�

ItJ DŒ1;m�

X

j 2J�

X

P;Q�J n¹j;s.j /º

P tQDJ n¹j;s.j /º

.xI S.xP \L.j / .xjˇxs.j // xP \U.j ///

^ .xQ\L.j / xQ\U.j //

C
X

I;J �Œ1;m�

ItJ DŒ1;m�

X

j 2J�

X

P;Q�J n¹j;s.j /º

P tQDJ n¹j;s.j /º

.xI S.xP \L.j / xP \U.j ///

^ .xQ\L.j / .xjˇxs.j // xQ\U.j //:



Formal descriptions of Turaev’s loop operations 107

These triple sums can be rearranged as follows:

ı�.x ˝ 1/ D
X

1�j <l�m

X

I;P;Q�Œ1;m�n¹j;lº

ItP tQDŒ1;m�n¹j;lº

I�Œj C1;l�1�

.xI S.xP \Œ1;j Œ .xjˇxl / xP \�l;m�//

^ .xQ\Œ1;j Œ xQ\�l;m�/

C
X

1�j <l�m

X

I;P;Q�Œ1;m�n¹j;lº

ItP tQDŒ1;m�n¹j;lº

I�Œj C1;l�1�

.xI S.xP \Œ1;j Œ xP \�l;m�//

^ .xQ\Œ1;j Œ .xjˇxl / xQ\�l;m�/

D
X

1�j <l�m

X

I 0;P 0;Q0�Œ1;j �1�

I 0tP 0tQ0DŒ1;j �1�

X

I 00;P 00;Q00�ŒlC1;m�

I 00tP 00tQ00DŒlC1;m�

.xI 0xŒj C1;l�1�xI 00S.xP 0 .xjˇxl / xP 00// ^ .xQ0 xQ00/

C
X

1�j <l�m

X

I 0;P 0;Q0�Œ1;j �1�

I 0tP 0tQ0DŒ1;j �1�

X

I 00;P 00;Q00�ŒlC1;m�

I 00tP 00tQ00DŒlC1;m�

.xI 0xŒj C1;l�1�xI 00S.xP 0 xP 00// ^ .xQ0 .xjˇxl / xQ00/

D �
X

1�j <l�m

X

I 0;P 0;Q0�Œ1;j �1�

I 0tP 0tQ0DŒ1;j �1�

X

I 00;P 00;Q00�ŒlC1;m�

I 00tP 00tQ00DŒlC1;m�

.xI 0xŒj C1;l�1�xI 00S.xP 00/.xjˇxl /S.xP 0// ^ .xQ0 xQ00/

C
X

1�j <l�m

X

I 0;P 0;Q0�Œ1;j �1�

I 0tP 0tQ0DŒ1;j �1�

X

I 00;P 00;Q00�ŒlC1;m�

I 00tP 00tQ00DŒlC1;m�

.xI 0xŒj C1;l�1�xI 00S.xP 00/S.xP 0//

^ .xQ0 .xjˇxl / xQ00/
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D �
X

1�j <l�m

X

I 0;P 0;Q0�Œ1;j �1�

I 0tP 0tQ0DŒ1;j �1�

X

Q00�ŒlC1;m�

.xI 0xŒj C1;l�1�".xŒlC1;m�nQ00 /.xjˇxl/ S.xP 0//

^ .xQ0 xQ00/

C
X

1�j <l�m

X

I 0;P 0;Q0�Œ1;j �1�

I 0tP 0tQ0DŒ1;j �1�

X

Q00�ŒlC1;m�

.xI 0xŒj C1;l�1�".xŒlC1;m�nQ00 /S.xP 0//

^ .xQ0 .xjˇxl / xQ00/

D �
X

1�j <l�m

X

I 0;P 0;Q0�Œ1;j �1�

I 0tP 0tQ0DŒ1;j �1�

.xI 0xŒj C1;l�1�.xjˇxl/ S.xP 0// ^ .xQ0 xŒlC1;m�/

C
X

1�j <l�m

X

I 0;P 0;Q0�Œ1;j �1�

I 0tP 0tQ0DŒ1;j �1�

.xI 0xŒj C1;l�1�S.xP 0// ^ .xQ0 .xjˇxl / xŒlC1;m�/

D �
X

1�j <l�m

X

I 0;P 0;Q0�Œ1;j �1�

I 0tP 0tQ0DŒ1;j �1�

.xŒj C1;l�1�.xjˇxl / S.xP 0/xI 0/ ^ .xQ0 xŒlC1;m�/

C
X

1�j <l�m

X

I 0;P 0;Q0�Œ1;j �1�

I 0tP 0tQ0DŒ1;j �1�

.xŒj C1;l�1�S.xP 0/xI 0/ ^ .xQ0 .xjˇxl / xŒlC1;m�/

D �
X

1�j <l�m

X

Q0�Œ1;j �1�

.xŒj C1;l�1�.xjˇxl / ".xŒ1;j �1�nQ0// ^ .xQ0 xŒlC1;m�/

C
X

1�j <l�m

X

Q0�Œ1;j �1�

.xŒj C1;l�1�".xŒ1;j �1�nQ0 // ^ .xQ0 .xjˇxl / xŒlC1;m�/

D �
X

1�j <l�m

.xŒj C1;l�1�.xjˇxl / / ^ .xŒ1;j �1� xŒlC1;m�/

C
X

1�j <l�m

xŒj C1;l�1� ^ .xŒ1;j �1� .xjˇxl / xŒlC1;m�/

D ıS.x1 � � �xm/

D ıS.x/:
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8.6. Remarks. 1) Let ˆ be an arbitrary associator whose logarithm is written in

the form (8.21). It follows from (8.23) that

�.X/ � �.�X/ D
1

12
X �

X

j �1

2q2j C1 X2j C1:

Besides, we have

�.X/ � �.�X/
(8.24)
D �s.X/ � 1=2

(5.2)
D

X

k�1

B2k

.2k/Š
X2k�1:

Thus we obtain the following identity, relating some coe�cients of ˆ to Bernoulli

numbers:

q2j C1 D �
B2j C2

2 .2j C 2/Š
2 Q � K; for all j � 1: (8.27)

2) The identity (8.27) also follows from a result of Enriquez [13, Corollary 0.4],

which generalizes a result of Drinfeld for the KZ associator [12, Equation (2.15)]

and is also contained in an unpublished work of Deligne and Terasoma. As a

matter of fact, the series �.X/ 2 KŒŒX�� is essentially Enriquez’s �-function.

To be more speci�c, let KhhA; Bii be the complete associative algebra freely

generated by A and B , and let .�/op be the unique anti-homomorphism of algebras

de�ned by Aop WD A and Bop WD B . Then, for any “associator” ‰ 2 KhhA; Bii of

“parameter” � 2 K n ¹0º in the sense of [13],

ˆ WD ‰op
� t12

�
;
t23

�

�
2 A."1"2"3/

is an “associator” with our conventions. Recall that the “�-function” of ‰ is a

series

�‰.u/ D exp
�
�
X

n�2

�‰.n/
un

n

�
2 KŒŒu��

where .�‰.n//n�2 is a sequence of elements ofK satisfying �‰.n/ D ��nBn=.2 nŠ/

for n even. By comparing the expression (8.21) of ˆ to the de�nitions of [13], it

can be veri�ed that

�‰.nC 1/ D .��/nC1qn; for all n � 2:

Appendix A. Formal description of Turaev’s intersection pairing

This appendix, which was a part of [35], is aimed at proving Theorem 5.2. In this

appendix, the ground ring is a commutative �eld K of characteristic zero.
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A.1. Symplectic expansions. We recall from [32] the notion of “symplectic

expansion.” Let †C be a compact connected oriented surface of genus p � 1

with one boundary component, and set �C WD �1.†C; �/ where � 2 @†C. Let

H C WD H1.†CIK/, denote by T .H C/ the tensor algebra over H C and denote by

T ..H C// the degree-completion of T .H C/.

A symplectic expansion of �C is a map �CW�C ! T ..H C// with the following

properties:

(i) for all x; y 2 �C, �C.xy/ D �C.x/ �C.y/;

(ii) for all x 2 �C, �C.x/ is group-like;

(iii) for all x 2 �C, �C.x/ D 1 C Œx� C .deg � 2/ where Œx� 2 H C '

.�C=Œ�C; �C�/˝Z K;

(iv) �C.�/ D exp.�!/.

In condition (iv), � 2 �C is the homotopy class of the oriented curve @†C,

while ! 2 ƒ2H C is the degree 2 element of T .H C/ corresponding to the

homology intersection form ! 2 ƒ2 Hom.H C;K/ through the isomorphism

H C ! Hom.H C;K/; x 7! !.x;�/. Because � is a free group, it is not di�cult to

construct a symplectic expansion of � by proceeding by successive �nite-degree

approximations. See [32, Lemma 2.16].

Let2KŒ�C� denote the completion ofKŒ�C� with respect to the I -adic �ltration.

The conditions (i), (ii) and (iii) imply that �C induces an isomorphism of complete

Hopf algebras

O�CW2KŒ�C�
'
�! T ..H C//

which, at the level of graded Hopf algebras, gives the canonical isomorphism (1.3).

A.2. Formal description of Turaev’s intersection pairing in the symplectic

case. We use the same notations as in Section A.1, and recall from [33] how sym-

plectic expansions provide an algebraic description of the homotopy intersection

pairing �C of the surface †C.

Consider the operation
!
Ý in T .H C/ de�ned by .x

!
Ý 1/ D .1

!
Ý x/ WD 0 for

any x 2 T .H C/ and by

.h1 � � �hm

!
Ý k1 � � �kn/ WD !.hm; k1/ h1 � � �hm�1k2 � � �kn

for any integers m; n � 1 and for any h1; : : : ; hm; k1; : : : ; kn 2 H C. This operation

extends to a �ltered Fox pairing

.�
!
Ý �/WT ..H C// � T ..H C// �! T ..H C//
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in the complete Hopf algebra T ..H C//. Moreover, the formal power series s.X/ 2

QŒŒX�� de�ned by (5.2) can be evaluated at ! to get an element s.!/ 2 T ..H C//, so

that we can also consider the inner Fox pairing �s.!/ in T ..H C//. Then, according

to [33, Theorem 10.4], the diagram

2KŒ�C� �2KŒ�C�

O�C� O�C '

��

O�C
// 2KŒ�C�

O�C'

��
T ..H C// � T ..H C//

.�
!
Ý �/C�s.!/

// T ..H C//

(A.1)

is commutative for any symplectic expansion �C of �C. This implies a prior result

of Kawazumi and Kuno, which provides a formal description of the Goldman

bracket h�;�iG for the surface †C [24] .

A.3. From special expansions to symplectic expansions. Let † be a disk with

�nitely many punctures numbered from 1 to p. We set � WD �1.†; �/ where

� 2 @† and, for any i 2 ¹1; : : : ; pº, let L�i be the conjugacy class in � that is de�ned

by a small counter-clockwise loop around the i-th puncture. Let H WD H1.†IK/

and set zi WD Œ L�i � 2 H for all i 2 ¹1; : : : ; pº. Recall the notion of “special

expansion” � W� ! T ..H// given in Section 5.1.

Lemma A.1. Let †ı � † be a disk with p holes onto which † deformation
retracts, and let †C be the compact connected oriented surface of genus p with
one boundary component that is obtained from †ı by gluing a one-hole torus
to each boundary component not containing �. Let �C WD �1.†C; �/ and
H C WD H1.†CIK/. Then, for any special expansion � of � , there exists a
symplectic expansion �C of �C such that the following diagram is commutative:

�

�

��

� // T ..H//

I

��
�C

�C
// T ..H C//

(A.2)

Here � is the group homomorphism induced by the inclusion † ' †ı � †C,
and I is the complete algebra homomorphism mapping �zi 2 H to the homology
intersection form of the i-th one-hole torus, which we regard as a degree 2 element
of T ..H C//.
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Proof. Consider the basis .�1; : : : ; �p/ of � given by the following closed oriented

curves in †ı:

�1 �p

�
�

� � �

	

Note that �i is a representative of L�i for all i 2 ¹1; : : : ; pº. Consider also the basis

.˛; ˇ/ of the fundamental group of the one-hole torus represented by the following

closed oriented curves:

	

ˇ

˛

By repeating this picture p times in †C, we obtain a basis .˛1; ˇ1; : : : ; p̨; p̌/ of

�C such that �.�i / D Œ.˛i /
�1; ˇi � for any i 2 ¹1; : : : ; pº. We set ai WD Œ˛i � 2 H C

and bi WD Œˇi � 2 H C.

We choose a symplectic expansion � 0WF.˛; ˇ/ ! Khha; bii of the one-hole

torus, where a and b denote the homology classes of ˛ and ˇ respectively. Thus,

we have

� 0.˛/ D exp.aC c/ and � 0.ˇ/ D exp.b C d/ (A.3)

where c; d are series of Lie words in a; b of length greater than 1, and

� 0.Œ˛�1; ˇ�/ D exp.�Œa; b�/: (A.4)

By condition (ii) of a special expansion, there exists for each i 2 ¹1; : : : ; pº a

primitive element ui 2 T ..H// such that

�.�i / D exp.ui / exp.zi / exp.�ui /: (A.5)

Then there is a unique multiplicative map �CW�C ! T ..H C// such that

´
�C.˛i / D exp.I.ui // � 0.˛/ja 7!ai ;b 7!bi

exp.�I.ui //;

�C.ˇi / D exp.I.ui // � 0.ˇ/ja 7!ai ;b 7!bi
exp.�I.ui //;
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for all i 2 ¹1; : : : ; pº. Note that

�C�.�i / D �C.Œ.˛i /
�1; ˇi �/

D �C.˛�1
i / �C.ˇi / �C.˛i / �C.ˇ�1

i /

D exp.I.ui // � 0.Œ˛�1; ˇ�/ja 7!ai ;b 7!bi
exp.�I.ui //

(A.4)
D exp.I.ui // exp.�Œai ; bi �/ exp.�I.ui //

D exp.I.ui // exp.I.zi // exp.�I.ui //
(A.5)
D I�.�i /

which shows the commutativity of the diagram (A.2). That �C satis�es the

conditions (ii) and (iii) of a symplectic expansion follows easily from (A.3). The

condition (iv) of a symplectic expansion follows from the condition (iii) of a

special expansion:

�C.�/ D �C.�.�//
(A.2)
D I�.�/ D I exp.z/ D exp I.z/ D exp.�!/: �

A.4. Proof of Theorem 5.2. We use the same notations as in Section A.3. Let

� W� ! T ..H// be a special expansion: we consider the surface †C and the

symplectic expansion �CW�C ! T ..H C// provided by Lemma A.1.

Denote by �C the homotopy intersection pairing of †C, and let O�C be the Fox

pairing in 2KŒ�C� obtained from �C by completion. Clearly, the diagram

1KŒ�� �1KŒ��
O� //

O��O�
��

1KŒ��

O�
��

2KŒ�C� �2KŒ�C�
O�C

// 2KŒ�C�

(A.6)

is commutative. Moreover, for any i; j 2 ¹1; : : : ; pº,

I.zi /
!
Ý I.zj / D Œai ; bi �

!
Ý Œaj ; bj �

D ıij ..aibi /
!
Ý .aibi /C .biai /

!
Ý .biai //

D ıij .�aibi C biai / D ıij I.zi / D I.ziˇzj /

which implies that .�
!
Ý �/ı.I�I / D I ı.�ˇ�/. Using the fact that I.�z/ D !,

we deduce that the following diagram is commutative:

T ..H//� T ..H//
.� ˇ �/C�s.�z/ //

I�I

��

T ..H//

I

��
T ..H C// � T ..H C//

.�
!
Ý �/C�s.!/

// T ..H C//

(A.7)
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Now, for any x; y 21KŒ��, we have

I O� O�.x; y/
(A.2)

D O�CO� O�.x; y/

(A.6)
D O�C O�C.O�.x/; O�.y//

(A.1)
D . O�CO�.x//

!
Ý . O�CO�.y//C �s.!/. O�

CO�.x/; O�CO�.y//

(A.2)
D .I O�.x//

!
Ý .I O�.y//C �s.!/.I O�.x/; I O�.y//

(A.7)
D I. O�.x/ˇ O�.y/C �s.�z/. O�.x/; O�.y///:

Since the map I WT ..H// ! T ..H C// is injective, we conclude that the dia-

gram (5.3) is commutative.
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