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Non ambiguous structures on 3-manifolds

and quantum symmetry defects

Stéphane Baseilhac and Riccardo Benedetti

Abstract. The state sums de�ning the quantum hyperbolic invariants (QHI) of hyperbolic

oriented cusped 3-manifolds can be split in a “symmetrization” factor and a “reduced”

state sum. We show that these factors are invariants on their own, that we call “symmetry

defects” and “reduced QHI,” provided the manifolds are endowed with an additional “non

ambiguous structure,” a new type of combinatorial structure that we introduce in this paper.

A suitably normalized version of the symmetry defects applies to compact 3-manifolds

endowed with PSL2.C/-characters, beyond the case of cusped manifolds. Given a manifold

M with non empty boundary, we provide a partial “holographic” description of the non-

ambiguous structures in terms of the intrinsic geometric topology of @M . Special instances

of non ambiguous structures can be de�ned by means of taut triangulations, and the

symmetry defects have a particularly nice behaviour on such “taut structures.” Natural

examples of taut structures are carried by any mapping torus with punctured �bre of

negative Euler characteristic, or by sutured manifold hierarchies. For a cusped hyperbolic

3-manifold M which �bres over S1, we address the question of determining whether the

�brations over a same �bered face of the Thurston ball de�ne the same taut structure. We

describe a few examples in detail. In particular, they show that the symmetry defects or

the reduced QHI can distinguish taut structures associated to di�erent �brations of M . To

support the guess that all this is an instance of a general behaviour of state sum invariants of

3-manifolds based on some theory of 6j -symbols, �nally we describe similar results about

reduced Turaev–Viro invariants.
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1. Introduction

A �rst aim of this paper is to produce re�nements of the quantum hyperbolic

invariants (QHI) of hyperbolic oriented cusped 3-manifolds (de�ned in [8], ex-

tending [5, 6]). But our thesis is that such re�nements are instances of a sort of

“universal” phenomenon concerning the quantum invariants of 3-manifolds based

on some theory of 6j -symbols and de�ned by means of state sums over trian-

gulations. At least this holds for every example to our knowledge (for instance

the family of generalized Turaev–Viro invariants based on the 6j -symbols of any

unimodular category, constructed in [31]). The arguments of the new, re�ned, in-

variants, that we call reduced invariants, are the same as those of the unre�ned

ones, but they apply to 3-manifolds equipped with an additional non ambiguous

structure, a new type of combinatorial structure on compact oriented 3-manifolds

that we introduce and investigate, pointing out in particular a strong relationship

with the theory of taut triangulations.

Let us describe qualitatively the universal phenomenon mentioned above.

� There is a “background theory,” usually given by a category of �nite dimen-

sional representations of a Hopf algebra; the “6j -symbols” of the theory can

be organized at �rst to produce a kind of “basic tensor,” that is, a linear iso-

morphism

BWV3 ˝ V1 �! V2 ˝ V0
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carried by any oriented 3-simplex equipped with a further “decoration,”

say d , dictated by the background theory. Usually the Vj are complex

vector spaces of the same dimension. A 3-simplex is a tetrahedron � with

ordered vertices v0; v1; v2; v3; this can be encoded by a system b of edge

orientations (called a (local) branching) such that there are j -incoming

edges at the vertex vj . The 2-faces Fj of .�; b/ are ordered accordingly with

the opposite vertices vj , and the space Vj is associated to the face Fj . This is

the basic way the branching is used to associate the tensor B D B.�; b; d/ to

.�; b/. But depending on the background theory, there are further subtler

uses concerning the decoration d . For example, in quantum hyperbolic

theory an ingredient of the decoration is a triple of shape parameters, which

are scalars in C n ¹0; 1º, associated to the triple of couples of opposite edges.

These naturally occur with a cyclic ordering depending on the orientation of

�. The branching b is used to select one linear ordering compatible with the

cyclic one.

� Given a triangulation T of some compact oriented 3-manifold M , we give

each oriented tetrahedron � of T a branching and a decoration, so that the

system formed by such local data veri�es certain global constraints (also

dictated by the background theory). For example, for what concerns the

local branchings we could require that the edge orientations of the tetrahedra

match under the 2-face pairings in T , to produce a global branching b of T .

This is equivalent to promote T to be a �-complex (a generalized simplicial

complex), a kind of object familiar in algebraic topology (see [21]). But

it turns out that this is too demanding. On another hand, every oriented

3-simplex .�; b/ carries a weaker structure, that is, a system of transverse

co-orientations of its 2-faces such that two co-orientations are incoming and

two are outgoing. We call it the local pre-branching .�; !b/ induced by the

branching b. We say that a system Qb of local branchings of the tetrahedra

of T is a weak branching if their 2-face co-orientations match under the

2-face pairings, and we call such a system ! Qb
of co-orientations a global

pre-branching of T . Pre-branchings occur, for instance, in the de�nition of

taut triangulations [26]. But one eventually realizes that the notion of pre-

branching is also the most fundamental global enhancement of 3-manifold

triangulations in order to deal with quantum state sums (for any background

theory). Given a weakly branched triangulation .T; Qb/ endowed with a global

decoration, say D, we get a tensor network by associating the above basic

tensor B.�; b; d/ to every decorated 3-simplex .�; b; d/ of .T; Qb;D/. The

state sum B.T; Qb;D/ is by de�nition the total contraction of this tensor

network. We call it a reduced (or basic) state sum of the theory.
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� In order to obtain invariants of the 3-manifold M (possibly equipped with

additional structures, as it happens in quantum hyperbolic theory) by means

of such state sums, we have to mod out the arbitrary choices we have made, in

particular the choice of the weak branching Qb. This gives rise to a more or less

delicate procedure of symmetrization of the basic tensors, producing tensors

of the same type, say S.�; b; d/, such that the corresponding state sums

(ie. tensor network total contraction) S.T; Qb;D/ have the required invariance

properties.

� One might wonder anyway whether the reduced state sums B.T; Qb;D/ de�ne

some kind of 3-dimensional invariant. For example it holds that, keeping the

decoration D �xed, the value of B.T; Qb;D/ depends only on the underlying

pre-branching ! Qb
, not on Qb itself. Moreover, the state sums verify a highly

non trivial system of functional identities which apparently is formally the

same for every background theory; this system corresponds to a restricted

system of “moves” on pre-branched triangulations, called non ambiguous

transits. Then the notion of non ambiguous structure on M arises as an

equivalence class of pre-branched triangulations ofM up to non ambiguous

transits.

In order to substantiate our thesis, in the present paper we spell out the case of

the quantum hyperbolic state sums, and in the Appendix, the most fundamental

prototype of this business, the Turaev–Viro state sums [32].

Having in mind this strong motivation (at least in our opinion), the theory of

non ambiguous structures can be introduced and developed by itself, without any

reference to any speci�c 6j -symbols theory. It is remarkable nevertheless that

in doing it, some issues of the quantum hyperbolic machinery emerge. We will

develop two instances of non ambiguous structures; the most important is based

on ideal triangulations of 3-manifolds that are the interior of compact connected

oriented 3-manifolds M with non empty boundary (Sections 2 to 6); the other is

based on relative “distinguished triangulations” .T;H/ of .M;L/, where M is a

compact closed oriented 3-manifold and L is a non empty link in M (Section 7).

In the rest of this introduction we describe more features of the non ambiguous

structures (Sections 1.1 and 1.2) and our results about reduced quantum hyperbolic

invariants (Section 1.3).

1.1. On ideal non ambiguous structures. After some generalities on 3-man-

ifold triangulations and the di�erent notions of “branchings” (Section 2), the

combinatorial de�nition of ideal non ambiguous structures is given in Section 3.
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We prefer to consider an ideal triangulation T of Int.M/ as a triangulation of the

compact space yM obtained by adding a point at in�nity at each end of Int.M/,

requiring that the set of vertices of T coincides with the set of these added

points. These “naked” ideal triangulations are considered up to the equivalence

relation generated by the well known 2 $ 3 (MP) and 0 $ 2 (lune) moves.

Dealing with ideal pre-branched triangulations .T; !/, there are natural notions

of pb-transits that enhance the above naked moves. Roughly speaking, a pb-

transit .T; !/ ! .T 0; !0/ is “non ambiguous” if both the transit and its inverse

.T; !/ .T 0; !0/ are the unique pb-enhancements of the underlying naked move

with the given initial con�guration. Once the combinatorial de�nition has been

established, our e�ort is to point out some intrinsic geometric topological content

and natural families of (ideal) non ambiguous structures.

In Section 4 we remark that the non ambiguous structures on M have an

intrinsic cohomological content, strictly related to the theory of charges and

“cohomological weights” which play an important role in the de�nition of the

QHI for hyperbolic cusped manifolds.

In Section 5 we develop a partial, though rather illuminating, “holographic”

approach to the non ambiguous structures on M , based on a suitably de�ned

restriction of the 3D structures on @M . In particular, we discover that these 2D

structures carry certain singular combings on @M (de�ned in intrinsic geometric

topological terms) that are eventually invariants of the 3D structures. We propose

a conjectural holographic classi�cation of ideal non ambiguous structures in

Conjecture 5.10.

When @M is a collection of tori, as for hyperbolic cusped 3-manifolds, we

easily realize that the (possibly empty) set of taut pre-branched ideal triangulations

.T; !/ of yM in the sense of [26] is closed with respect to the non ambiguous

transits. We call taut structures the corresponding non ambiguous structures. If

M is realized as a mapping torus M ( being an automorphism of a punctured

surface † with �.†/ < 0, considered up to isotopy), or more generally if M

carries a sutured manifold hierarchy Z (which exists for example when M is a

hyperbolic cusped manifold), then one �nds in [26] a procedure to construct taut

triangulations .T; !/ of yM which depend on M or Z and also on other arbitrary

choices. For example in the case of M these choices are an ideal triangulation

of a �ber, say R, of the natural �brationM ! S1, and a sequence of elementary

diagonal exchanges (“�ips”) that connects R with  .R/; with these data one

constructs a so called taut “layered” ideal triangulation of yM . One eventually

realizes that these further choices are immaterial up to non ambiguous transits,

and that we have the following result (see Section 6). Let us call “Thurston ball

of M” the unit ball of the Thurston norm on H2.M; @M IR/.
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Theorem 1.1. (1) Every mapping torusM with punctured �bre of negative Euler

characteristic carries a natural taut structure s , represented by any layered

triangulation, constructed by means of any ideal triangulation of a �ber.

(2) Assume thatM �bers over S1. Then, any two �brations ofM such that the

corresponding mapping tori M and M� satisfy s� D s lie in the cone over a

same face of the Thurston ball of M . Moreover, mapping tori corresponding to

�brations lying on a same ray from the origin of H2.M; @M IR/ satisfy s� D s .

(3) More generally, every compact oriented 3-manifold M with non empty

boundary equipped with a sutured manifold hierarchy Z carries a natural taut

structure sZ .

In the simpler case when M �bres over S1, it can happen that di�erent (non

multiple) �brations carry the same non ambiguous structure. An interesting case

is provided by the following Theorem which easily follows from a result of Agol

[1, 2]. For completeness we will discuss the proof in Section 6.

Theorem 1.2. To every couple .W;F/, whereW is a complete hyperbolic 3-man-

ifold of �nite volume that �bres over S1 and F is a �bred face of the Thurston ball

ofW , one can associate in a canonical way a couple .M;F 0/, whereM is cusped

manifold (obtained by removing a suitable link from W ) and F 0 is a �bred face

of the Thurston ball of M , such that all �brations M of M in the cone over F 0

de�ne the same taut structure. Hence the taut structure sF 0 WD s is well de�ned.

In general, for any oriented 3-manifold M bounded by tori and which �bers

over S1, Theorem 1.1 (2) implies that for every �bred faceF of the Thurston ball of

M , there is a well de�ned map sF which associate to any rational point p 2 Int.F/

the taut structure

sF .p/ WD s 

where  is the monodromy of any �bration ofM in the ray spanned by p. A very

attractive and probably demanding problem is to study this map in general. For

example, we can ask the following question.

Questions 1.3. Is sF always constant? Otherwise, is Im.sF/ always �nite?

1.2. On relative non ambiguous structures. Dealing with not necessarily ideal

triangulations of yM , for example whenM is closed, we must complete the naked

triangulation moves with the so called 0 $ 2 bubble move, which modi�es the
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number of vertices (see Section 7). Looking at the associated pb-transits we re-

alize that none is “non ambiguous” in a strict sense. We need some further in-

put to select one. We can do it in the framework of relative distinguished trian-

gulations .T;H/ of .M;L/, quali�ed by the fact that H is a Hamiltonian sub-

complex of the 1-skeleton of T isotopic to the link L. These are considered up

to relative “distinguished” versions of the naked moves (bubble move included).

This kind of triangulation has been already used to de�ne QHI for pairs .M;L/.

In Section 7 we develop the relative non ambiguous structures somewhat in par-

allel to what we have done in the case of ideal triangulations. In particular we

will introduce the notion of relative taut structure and indicate some procedures

to construct examples.

Let us ouline now some speci�c features of the reduced quantum hyperbolic

invariants.

1.3. On reduced quantum hyperbolic invariants. Although the QHI can be

de�ned in more general situations (see [6]), in this paper we focus on two main

instances of compact oriented 3-manifolds: cusped manifolds M such that the

non empty boundary is made by tori and the interior has a �nite volume complete

hyperbolic structure (see [5, 6, 8]); pairs .M;L/, where M is closed, L is a non

empty link in M , and M is equipped with a PSL2.C/-character (see [4, 5, 7]).

In such situations, for every odd integerN � 3 the QHI ofM or .M;L/ at levelN

is a complex number de�ned up to multiplication by 2N th-roots of unity. Let us

assume for a while thatM is a cusped manifold. Then its QHI depend on a choice

of conjugacy class � of representations of �1.M/ in PSL.2;C/, and two pairs of

so called bulk and boundary weights h WD .hf ; hc/ and k WD .kf ; kc/, given by

cohomology classes

.hf ; hc/ 2 H 1.M IZ=2Z/2; .kf ; kc/ 2 H 1.@M IC/�H 1.@M IZ/ (1)

satisfying certain natural compatibility conditions. In particular, i�.hc/ D kc

mod.2/, where the map i W @M ! M is the inclusion; kf encodes a sort of

logarithm of the class in H 1.@M IC=2�iZ/ (with additive coe�cients) de�ned

by the restriction of � on @M . Also, we assume that when Int(M ) has one cusp,

� varies in the irreducible component X of the variety of PSL.2;C/-characters

of M containing the character of the discrete faithful holonomy �hyp; if there are

several cusps,X has to be replaced by its so called eigenvalue subvariety (see [25]

for this notion).
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Remark 1.4. In [8] we treated only the case of one-cusped manifolds because in

this case we could develop a rigidity argument for systems of shape parameters

w with holonomies in X , based on a result of N. Dun�eld in [17] (see below for

the notion of shape parameters). This result has been extended in [25] to the case

of an arbitrary number of cusps, and we can adapt the rigidity argument of [8] to

this setup as well by using the eigenvalue variety mentioned above instead of X .

If a reader prefers to dispose of a detailed reference like [8], she/he can restrict to

one-cusped manifolds, without substantially e�ecting the discussion of the present

paper.

For every odd integer N � 3, the QHI HN .M; �; h; k/ is computed by state

sums HN .T / over so called QH triangulations T D .T; Qb; w; f; c/, which are

ideal weakly branched triangulations T of yM “decorated” with a heavy apparatus

D D .w; f; c/ of combinatorial structures encoding � and .h; k/. In factw encodes

a system of shape parameters on the abstract tetrahedra � of T verifying the

Thurston compatibility condition around every edge of T (that is, w determines

a point in the gluing variety carried by the triangulation T ); f and c are integer

valued labellings of the couples of opposite edges of every�, called �attening and

charge respectively, which contribute to determine a system w of N -th roots of

the shape parameters w (verifying suitable local and global constraints, at every

� and around every edge of T ).

Referring to the universal phenomenon depicted at the beginning of this in-

troduction, in the present situation all spaces Vj D C
N , the basic tensors have

an explicit matrix form, are called basic matrix dilogarithms, and are denoted by

LN .�; b; d/. They are derived from the 6j -symbols of the cyclic representations

of a Borel subalgebra of Uq.sl2/ (q being a N -th root of 1), that were �rst com-

puted in the seminal Kashaev’s paper [24]. The “symmetrized” tensors have the

same type, are called matrix dilogarithms, and are denoted by RN .�; b; d/. It is a

speci�c feature of the quantum hyperbolic setting that every symmetrized tensor

is equal to the corresponding basic one up to a scalar factor, that is

RN .�; b; d/ WD ˛N .�; b; d/LN .�; b; d/ (2)

where ˛N .�/ is a scalar called the local symmetrization factor of .�; b; d/

(see Section 8); hence the state sums can be factorized as

HN .T / WD ˛N .T /Hred
N .T / (3)

where

˛N .T / WD
Y

�2T .3/

˛N .�; b; d/ (4)
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is called the global symmetrization factor, while Hred
N .T / is the reduced state

sum, which involves only the basic matrix dilogarithms. Note that in general

(for instance in the case of Turaev–Viro state sums considered in the appendix)

there is not such a simple factorization.

Remarks 1.5. (1) The de�nition of the QHI by means of weakly branched tri-

angulations is an achievement of [8]. In our previous papers we used more de-

manding branched triangulations. Given a weakly branched triangulation .T; Qb/
the 2-face pairings which produce T from its set of “abstract tetrahedra” are en-

coded by labellings of the 2-faces F of T by colors s.F / 2 Z=3 (we will show

it in practice in the examples of Section 9.2 and 9.3). Besides the matrix diloga-

rithms RN .�; b; d/, the tensor network whose total contraction de�nes the state

sum HN .T / includes “face” tensorsQs.F /,Q being an automorphism of CN with

an explicit matrix form. If Qb is a genuine branching, such face tensors are imma-

terial (all colors s.F / D 0). So, keeping the same notation for the basic matrix

dilogarithms, we stipulate that for a general Qb they incorporate the face tensors,

in the sense that we add to the decoration d of .�; b/ the Z=3-colors of the two

2-faces with outgoing transverse co-orientation, with respect to the associated pre-

branching !b, and contract LN .�; b; d/ with the face tensors associated to these

2-faces.

(2) We stress that QH triangulations over ideal triangulations T of yM make

sense and may exist beyond the case of cusped manifolds, that is, assuming just

that M has a non empty boundary made by tori. Also in this general case, a

QH triangulation T D .T; Qb; w; f; c/ encodes a PSL.2;C/-valued character � of

�1.M/, and a system of weights h WD .hf ; hc/ and k WD .kf ; kc/. There are no a

priori restrictions on �. Hence (reduced) state sums and symmetrization factors

are de�ned as well.

In Section 8 we prove the following results. All terms are de�ned precisely in

Section 8.6.

Theorem 1.6. Let T D .T; Qb; w; f; c/ be a QH triangulation encoding a tuple

.M; �; h; k/, where M is any compact connected oriented 3-manifold with non

empty boundary made by tori (according to Remark 1.5 (2) above). Denote by !

the pre-branching underlying .T; Qb/.
(1) The value of ˛N .T / does not depend on the choice of Qb among the weak

branchings compatible with !, and it does not depend on the choice of c

among the charges encoding .hc ; kc/ up to multiplication by 4-th roots of 1.

On another hand, in general it varies with the �attening f by a 4N -th root

of 1.



758 S. Baseilhac and R. Benedetti

(2) Let T and T 0 be two QH triangulations such that the underlying pre-

branchings ! and !0 represent a same non ambiguous structure on M . If

T and T 0 are connected by a sequence of QH transits lifting a sequence of

non-ambiguous transits between .T; !/ and .T 0; !0/, then ˛N .T / D ˛N .T 0/.

(3) The conclusions of (1) and (2) hold true up to multiplication by 4N -th roots

of 1 by replacing ˛N with the reduced state sums Hred
N . Moreover, Hred

N .T /

does not depend on the choice of bulk weight h D .hf ; hc/, and as a function

of kf and kc it depends only on kf � �ikc mod.�iN /.

De�nition 1.7. We call the above class � WD kf � �ikc 2 H 1.@M IC=�iNZ/ a

fused weight.

Let us restrict now to cusped manifolds M . Recall that if M has a single

cusp we denote by X the irreducible component of the variety of PSL.2;C/-

characters of M containing the character of the discrete faithful holonomy �hyp.

If there are several cusps, we consider instead the eigenvalue subvariety of X

(see Remark 1.4). Fix a further notation: for any integer n, denote by �n the

group of n-th roots of 1 acting on C by multiplication. Then we will deduce from

Theorem 1.6 (again all terms are de�ned in Section 8.6) the following result.

Corollary 1.8. (1) For every non ambiguous structure s onM , the value of ˛N .T /

on any rich QH triangulation T encoding .M; �; h; k/ and s does not depend on

the choice of T and .hc ; hf ; kf / up to multiplication by 4N -th roots of 1. Also, the

reduced state sums Hred
N .T / do not depend on the choice of T and .hc ; hf /, and

both de�ne invariants ˛N .M; �; kcI s/ and Hred
N .M; �; �I s/, where � WD kf ��ikc

is the fused weight as above.

(2) Assume thatM has only one cusp. Then there exists a determined .Z=NZ/2-

covering space zXN of X such that, by �xing s and kc , and varying � in X and �

among the fused weights compatible with �, ˛N .M; �; kcI s/ de�nes a function

on X that lifts to a rational function ˛kc ;sW zXN ! C=�4N , and Hred
N .M; �; �I s/

de�nes a rational function H
red;s
N W zXN ! C=�4N . Similar results hold true when

M has several cusps by replacing X with the eigenvalue variety.

We call ˛N .M; �; kcI s/ and Hred
N .M; �; �I s/ the symmetry defects and reduced

QHI respectively. They have the same ability to distinguish di�erent non ambigu-

ous structures s, by the formula (3) and the fact that the (unreduced) QHI do not

depend on s. The symmetry defects involve only products of simple scalars, and so

they are much simpler to compute than the reduced QHI. This is useful in studying

non ambiguous structures.



Non ambiguous structures and quantum symmetry defects 759

Remark 1.9. There should be strong connections, that deserve to be fully under-

stood in future investigations, between the reduced QHI of �bred cusped manifolds

and the intertwiners of local representations of the quantum Teichmüller spaces,

introduced in [9].

Beside the symmetrization factors ˛N .T /, it is also meaningful to con-

sider normalized symmetrization factors associated to a pair of “base” c-weights

.h0c ; k
0
c /. They are de�ned by

˛N;c0
.T / WD ˛N .T /=˛N .Tc0

/ (5)

where Tc0
is obtained from T by replacing the charge c (encoding the weights

.hc ; kc/) with any charge c0, encoding a weight .h0c ; k
0
c /. By Theorem 1.6 (2)

we have clearly ˛N;c0
.T / D ˛N;c0

.T 0/. On another hand, ˛N;c0
.T / has better

invariance properties with respect to .w; f; c/, so that Theorem 1.6 (1) becomes

the following theorem.

Theorem 1.10. The value of ˛N;c0
.T / does not depend on the choice of Qb among

the weak branchings compatible with !, and it does not depend on the choice of

tuple .w; c; f / and charge c0 encoding .�; h; k/ and .h0c ; k
0
c / up to multiplication

by 4-th roots of 1. Moreover, as a function of .�; h; k/ and .h0c ; k
0
c / it depends only

on kf and kc � k0c .

Then we will get the following generalization of Corollary 1.8. Note that its

range goes beyond the case of cusped manifolds, according to Remark 1.5 (2).

Corollary 1.11. LetM be an arbitrary compact oriented 3-manifold M such that

@M is a collection of tori and � can be represented on the gluing variety of an

ideal triangulation of yM . Let .h0c ; k
0
c / and s be any c-weights and non ambiguous

structure on M . Then, for any weights .h; k/ of .M; �/, the value of ˛N;c0
.T /

is independent of the choice of c0 among the charges encoding .h0c ; k
0
c /, and

independent of the choice of T among the QH triangulations encoding .M; �; h; k/

and s, up to multiplication by 4-th roots of 1. As a function of �, .h; k/ and

.h0c ; k
0
c / it depends only on kf and kc � k0c , and hence de�nes an invariant

˛N;k0
c
.M; kf ; kcI s/. If M is a cusped manifold, it extends to a rational function

˛kc �k0
c ;sWH1.@M IC�/! C=�4.

We call ˛N;k0
c
.M; kf ; kcI s/ a normalized symmetry defect. Perhaps its residual

ambiguity by 4-th roots of 1 is not sharp, but this is not the point of the paper; a

similar issue was solved for the QHI sign ambiguity in [8], Section 8.
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Clearly ˛N;k0
c
.M; kc; kf I s/ D 1 whenever kc D k0c . A “universal” natu-

ral choice can be k0c D 0. Another natural choice is possible for taut struc-

tures. Every taut triangulation .T; !/ carries a “tautological” charge c0. The very

de�nition of ˛N .T / implies that ˛N;c0
.T / D ˛N .T / for any QH triangulation

T D .T; Qb; w; f; c/ such that .T; ! Qb
/ is a taut triangulation and c0 is the charge

tautologically carried by .T; !b/. Then Corollary 1.11 implies the following result.

Corollary 1.12. For any taut structure s the symmetry defect ˛N .M; �; kcI s/
depends only on the restriction of � to @M and lifts to an invariant˛N .M; kf ; kcI s/
depending on kf and well-de�ned up to multiplication by 4-th roots of 1. It is

de�ned for any M and � as in Corollary 1.11, and satis�es ˛N .M; kf ; kcI s/ D
˛N;k0

c
.M; kf ; kcI s/where k0c is the boundary c-weight tautologically carried by s.

In a sense this nice behaviour of the symmetry defect indicates that taut

structures are the most natural non ambiguous structures.

A few words about the proofs of these results. We adopt again a kind

of “holographic” approach (see Section 1.1). Roughly, every QH triangulation

T D .T; Qb; w; f; c/ of M induces a “2D QH triangulation” @T of @M where we

can compute a scalar ˛0N .@T / such that ˛N .T /
4 D ˛0N .@T /. The proof of Theo-

rem 1.6 (1) deals with ˛0N .@T /; it turns out that, at a �xedw, ˛0N .@T / depends only

on the boundary weight kc up to multiplication by N -th roots of 1. Moreover, un-

der the normalization (5), the same argument shows that at a �xed kf , ˛0N;c0
.@T /

does not depend on the choice ofw and f (with no ambiguity). This implies easily

Theorem 1.10 and Corollary 1.12. The conclusions of Corollary 1.12 are not true

in general for the (non normalized) symmetry defect of arbitrary non ambiguous

structures, as can be seen by explicit computations (eg. whenM is the sister of the

�gure eight knot complement, see Section 9). The �rst claim of Theorem 1.6 (3)

follows immediately from (1), (2), and the factorization formula (3); the second

claim is easy. In order to deduce Corollary 1.8 we combine Theorem 1.6 with a

rigidity argument about the shape parameters w, that we had already used in the

invariance proof of the QHI in [5, 8]. It is based on a result of N. Dun�eld [17],

extended in [25] as mentioned in Remark 1.4. On another hand, we will see that

Corollary 1.11 follows almost immediately from the statement analogous to Theo-

rem 1.6 (2) for the normalized symmetrization factors, with no need of any rigidity

argument.

On relative reduced QHI. The symmetry defects and reduced QHI of pair

.M;L/ equipped with relative non ambiguous structures are treated in Section 8.7.
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In the case of pairs .M;L/, the (unreduced) QHI depend on a arbitrary conjugacy

class � of representations of �1.M/ in PSL.2;C/, and the weights h and k reduce

to the “bulk” weights hf and hc . Di�erently from the case of cusped manifolds, we

will see that in general the non normalized symmetry defects (hence the reduced

QHI) are ill-de�ned, while the normalized ones are well de�ned but trivial. For

relative taut structures the reduced QHI are well de�ned but are not able to

distinguish them.

Proposition 1.13. (1) For every relative non ambiguous structure s, every nor-

malized symmetry defect ˛N;k0
c
.M;L; �; hI s/ D 1, up to multiplication by a 4th

root of 1.

(2) For every relative taut structure s, the reduced invariantsHred
N .M;L;�;hIs/

are well de�ned and do not depend on the choice of h and s.

Again this holds true because the normalized defects are functions of boundary

data on the spherical links of the vertices of the triangulation.

Remark 1.14. Point (2) of Theorem 1.6 suggests another possible notion of non

ambiguous structure. While the “ordinary” one that we use is de�ned via non

ambiguous transits of triangulations just endowed with a pre-branching, we can

consider QH transits of QH triangulations which enhance non ambiguous pre-

branching transits. Let us denote by sQH such a kind of “QH” non ambiguous

structure. Note that it dominates an ordinary non ambiguous structure s, and

incorporates some triple .�; h; k/, but di�erent sQH ’s can incorporate the same

s. Then, via point (2) of Theorem 1.6, it is almost immediate that we can de�ned

invariants ˛N .M; s
QH / and Hred

N .M; sQH /. However, this de�nition is not so

interesting for the following reasons.

(1) In the case of cusped manifolds, the invariants ˛N .M; s
QH / factorize through

the invariants ˛N .M; �; kcI s/ which are much stronger.

(2) Also in the case of pairs .M;L/ the invariants ˛N .M;L; s
QH / are well de-

�ned. However, it happens that in�nitely many QH-non ambiguous struc-

tures sQH , distinguished by the respective invariants ˛N .M;L; s
QH /, dom-

inate the same basic s and incorporate the same tuple .M;L; �; h; k/ (see

Section 8.7).

(3) The ordinary non ambiguous structures s should support the “universal phe-

nomenon” depicted at the beginning of this Introduction.
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In Section 9 we analyse several examples in details. We consider at �rst the triv-

ial bundle over S1 with �ber a torus with one puncture; there is one taut structure

associated to the in�nite family of multiples of this �bration, and we show that the

symmetry defects are constant on QH triangulations which are layered for these

�brations (as it must be). Then we describe several examples of non-ambiguous

structures (in particular some taut ones) on some simple cusped manifolds: the

�gure-eight knot complement, its sister, and the Whitehead link complement. In

each case we show that the non-ambiguous structures are distinguished by the

symmetry defects, and for the Whitehead link complement, the symmetry defects

distinguish taut structures associated to �brations lying over non opposite faces of

the Thurston ball. So, they would separate these faces if, for instance, the map sF

discussed above were constant over them.

1.4. On reduced Turaev–Viro invariants. In the Appendix we quickly verify

our thesis for the most fundamental prototype of 3-dimensional state sums, the

Turaev–Viro ones [32]. As an application we indicate a procedure to construct

reduced TV invariants of �bred knots in S3.

Acknowledgments. We had very useful discussions with I. Agol, N. Dun�eld,

S. Schleimer, and H. Segerman on the matter discussed in Section 6.1. We also

thank the referees, whose suggestions allowed us to improve the exposition of our

results.

2. Generalities on triangulations

We will work on a given compact connected oriented smooth 3-manifold M .

We denote by yM the space obtained by collapsing to one point each boundary

component. Equivalently, yM is obtained by compactifying the interior Int.M/ D
M n@M ofM by adding one point “at in�nity” at each end. HenceM ¤ yM if and

only if @M ¤ ; and in such a case the non manifold points of yM are the points

of yM n Int.M/ corresponding to the non spherical components of @M . We use

triangulations T of yM which are not necessarily regular, that is, self and multiple

adjacencies of tetrahedra are allowed, and such that the set V of vertices contains
yM n Int.M/. A triangulation is ideal if M ¤ yM and

V D yM n Int.M/:
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The cell decomposition obtained by removing the vertices from an ideal triangula-

tion of yM is also called an “ideal triangulation” of Int.M/. Every triangulation of
yM is realized by smooth cells in Int.M/ and is considered up to isotopy. It is often

convenient to consider a triangulation of yM as a collection of oriented tetrahedra

�1; : : : ; �s equipped with a complete system� of pairings of their 2-faces via ori-

entation reversing a�ne isomorphisms, and a piecewise smooth homeomorphism

between the oriented quotient space

T WD
s

a

iD1

�i= �

and yM , preserving the orientations. Then we will distinguish between the “ab-

stract” j -faces, j D 0; 1; 2; 3, of the disjoint union
`s
iD1�i , and the j -faces of T

after the 2-face pairings. In particular we denote by E.¹�iº/ and E.T / the set of

edges of
`s
iD1�i and T respectively, and we write E ! e to mean that an edge

E 2 E.¹�iº/ is identi�ed to e 2 E.T / under the 2-face pairings. The 2-faces of

each tetrahedron �i have the boundary orientation de�ned by the rule “�rst the

outgoing normal.” We will also consider triangulations of a closed surface S with

the analogous properties.

On branchings. We consider here with more details the notions already men-

tioned in the Introduction. A pre-branched triangulation .T; !/ of yM is a triangu-

lation T equipped with a pre-branching !; this assigns a transverse orientation to

each 2-face of T (also called a co-orientation), in such a way that for every abstract

tetrahedron � of T two co-orientations are ingoing and two are outgoing. As M

is oriented, a pre-branching can be equivalently expressed as a system of “dual”

orientations of the 2-faces of T . A (local) pre-branching on� is illustrated in Fig-

ure 1; it shows the tetrahedron embedded in R
3 and endowed with the orientation

induced from the standard orientation of R3. The pre-branching is determined by

stipulating that the two 2-faces above (resp. below) the plane of the picture are

those with outgoing (resp. ingoing) co-orientations. This speci�es two diagonal

edges and four square edges. Every square edge is oriented as the common bound-

ary edge of two 2-faces with opposite co-orientations. So the square edges form

an oriented quadrilateral. Using the orientation of �, one can also distinguish

among the square edges two pairs of opposite edges, called A-edges and B-edges

respectively. The orientation of the diagonal edges is not determined. Note that

the total inversion of the co-orientations preserves the pair of diagonal edges as

well as the colors A, B of the square edges.
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Figure 1

A tetrahedron � becomes a 3-simplex by ordering its vertices. This is equiv-

alent to a system b of orientations of the edges, called a (local) branching, such

that the vertex vj has j incoming edges (j 2 ¹0; : : : ; 3º). The 2-faces of .�; b/

are ordered as the opposite vertices, and b induces a branching bF on each 2-face

F . The branchings b and bF de�ne orientations on � and F respectively, the b-

and bF -orientations, de�ned by the vertex orderings up to even permutations. If

� is already oriented, then the b-orientation may coincide or not with the given

orientation. We encode this by a sign, �b 2 ¹�1;C1º. The boundary orientation

and the bF -orientation agree on exactly two 2-faces. Hence b induces a (local)

pre-branching !b. On another hand, given a pre-branching ! on � there are ex-

actly four branchings b such that !b D !. They can be obtained by choosing an

A- (resp. B-) edge, reversing its orientation, and completing the resulting orien-

tations on the square edges to a branching b (this can be done in a single way; see

Figure 2). Note that �b D 1 (resp. �b D �1) if and only if one chooses an A (resp.

B) square edge, and this square edge is eventually Œv0; v3�. The diagonal edges are

Œv0; v2� and Œv1; v3�.

A weakly-branched triangulation .T; Qb/, with abstract tetrahedra ¹�j º, con-

sists of a system ¹bj º of local branchings of the �j such that the 2-face co-

orientations of the induced pre-branched tetrahedra .�j ; !bj
/ match under the

2-face pairings to form a (global) pre-branched triangulation .T; !/. We write

! D ! Qb
.

A branched triangulation .T; b/, with abstract tetrahedra ¹�j º, consists of a

system of branched tetrahedra ¹.�j ; bj /º such that the edge bj -orientations match

under the 2-face pairings.

Let us recall a few facts (see [8] or [13] for more details).

� Every triangulation T of yM carries pre-branchings !;

� For every pre-branching ! there is weak branching Qb on T such that ! D ! Qb
.
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� A branching is a weak-branching of a special kind. Endowing T with a

branching is equivalent to promote T to a �-complex in the sense of [21].

In general there are naked triangulations which do not carry any branching.

But for every M there are branched (possibly ideal) triangulations .T; b/

of yM .

Figure 2. Branched tetrahedra inducing the same pre-branched tetrahedron.

3. Non ambiguous ideal structures

In this Section we restrict to ideal triangulations of a given yM (hence @M ¤ ;).
These naked ideal triangulations are considered up to the equivalence relation

generated by isotopy relative to the set of vertices V , the 2$ 3 (also called MP)

move, and the 0 $ 2 (also called lune) move. These moves are embedded, and

keep V �xed pointwise. We call this equivalence relation the (naked) ideal transit

equivalence. It is a fundamental, well known fact (due to Matveev, Pachner, and

Piergallini) that the quotient set of naked ideal triangulations up to ideal transit

equivalence consists of one point. In presence of additional structures on T ,

we consider enhanced versions of the transit equivalence. In what follows we

will often confuse two possible meanings of a triangulation move: as a local

modi�cation on a portion of a given triangulation, or as an “abstract” modi�cation

pattern that can be implemented to modify any global triangulation containing the

pattern. Then, when we say that a (possibly enhanced) move preserves a certain

property, we mean that this holds true whenever we implement the move on any

triangulation verifying that property.
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On 2 $ 3 (MP) transits. Let T ! T 0 be a 2$ 3 triangulation move between

naked ideal triangulations of yM . The “positive” 2! 3move is shown in Figure 3

(the branching shown in the picture will be used later). Given pre-branchings !

on T and !0 on T 0, we say that .T; !/! .T 0; !0/ is a pre-branching transit if for

every 2-face F which is common to T and T 0 the ! and !0 co-orientations of F

coincide.

Figure 3

Assume that we are given a pre-branched triangulation .T; !/ of yM . Consider

a naked 2! 3move T ! T 0. Denote by e0 the edge of T 0 produced by the move,

and by .�1; !1/, .�2; !2/ the two (abstract) pre-branched tetrahedra of .T; !/

involved in the move, having a common 2-face in T ; recall that their edges are

either diagonal edges, or square edges colored byA orB . Then, a quick inspection

shows that T ! T 0 supports always some pre-branching transit .T; !/! .T 0; !0/,

and that one of the following exclusive possibilities is eventually realized.

� (NA-transit) The pre-branched tetrahedra .�j ; !j /, j D 1; 2, have ex-

actly one square edge e in common on the shared 2-face. Necessarily, e

is monochromatic, in the sense that the two (abstract) square edges identi-

�ed along e have the same color. In such a situation, T ! T 0 supports a

unique pre-branching transit .T; !/ ! .T 0; !0/; we call it a non ambiguous

MP transit. Among the three abstract edges identi�ed along e0, two are di-

agonal edges, and the color of the square edge depends on the color of the

monochromatic edge e.
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� (A-transit) The pre-branched tetrahedra .�j ; !j / have two square edges e; e0

in common on the shared 2-face. Necessarily, both are not monochromatic.

In such a situation T ! T 0 supports exactly two pre-branching transits

.T; !/! .T 0; !0
1/; .T

0; !0
2/. In both cases, all the abstract edges of .T 0; !0

j /

identi�ed along e0 are square edges, and e0 is not monochromatic. The

two transits are distinguished by the prevailing color at e0. We call them

ambiguous MP transits.

Concerning the negative 2 3 transits, we introduce the following de�nitions.

� A negative 2  3 pre-branching transit .T; !/  .T 0; !0/ is by de�nition

non ambiguous if it is the inverse of a positive non ambiguous transit.

� Given a pre-branching !0 on T 0, a negative naked 2 3move T  T 0 does

not support any pre-branching transit if and only if all abstract edges around

e0 are square edges and e0 is monochromatic. In this case we say that .T 0; !0/

gives rise to a stop.

On 0 $ 2 (lune) transits. The positive naked lune move is shown in Figure 4.

Figure 4

Let .T; w/ and .T 0; !0/ be two pre-branched triangulations of yM such that the

naked triangulations T and T 0 are related by a positive lune move T ! T 0. The

move applies at the union of two (abstract) 2-faces F1, F2 of T with a common

edge, and produces a 3-ball B triangulated by two tetrahedra glued along two

2-faces in T 0 with a common edge e0. The boundary of B is triangulated by two



768 S. Baseilhac and R. Benedetti

copies of F1 [ F2 glued along their quadrilateral common boundary. We say that

.T; !/! .T 0; !0/ is a pre-branching transit if for every 2-faceF which is common

to T and T 0, the ! and !0 co-orientations of F coincide, and if the restriction of

!0 on the boundary of B consists of two copies of the restriction of ! to F1 [ F2.
For a negative lune move, the latter condition is replaced by: the restriction of !0

on the boundary of B consists of two copies of a same pair of co-orientations on

F1 [ F2.
It is easy to check that for every pre-branched triangulation .T; !/, every

positive lune move T ! T 0 supports a pre-branching transit, and that one of

the following exclusive possibilities is eventually realized.

� (NA-lune transit) The !-co-orientations of F1 and F2 are compatible, that

is, they de�ne a global co-orientation ofF1[F2. Necessarily, the two abstract

edges of .T 0; !0/ identi�ed along e0 are diagonal edges. In such a situation,

T ! T 0 supports a unique pre-branching transit .T; !/ ! .T 0; !0/; we call

it a non ambiguous lune transit.

� (A-lune transit) The !-co-orientations of F1 and F2 are “opposite.” Then

T ! T 0 supports exactly two pre-branching transits .T; !/ ! .T 0; !0
1/,

.T 0; !0
2/, and in both cases the two edges identi�ed along e0 are square edges

and e0 is not monochromatic. We call them ambiguous lune transits.

Concerning the negative lune transits we introduce the following de�nitions.

� A negative pre-branching lune transit .T; !/ .T 0; !0/ is by de�nition non

ambiguous if it is the inverse of a positive non ambiguous transit.

� Given a pre-branching !0 on T 0, a negative naked lune move T  T 0 does

not support any pre-branching transit if and only if the two edges identi�ed

along e0 are square edges, e0 is monochromatic, and the two tetrahedra have

no common diagonal edge. Again, in this case we say that .T 0; !0/ gives rise

to a stop.

De�nition 3.1. The non ambiguous ideal pb-transit equivalence on the set of

ideal pre-branched triangulations of yM is generated by isotopy relative to the set

of vertices V , the non ambiguous 2 $ 3 (MP) and the non ambiguous 0 $ 2

(lune) pre-branching transits. We denote by NAid.M/ the quotient set. We call a

coset in NAid.M/ a non ambiguous structure on M .

Clearly, by allowing arbitrary ideal pre-branching transits, we get the general

ideal pb-transit equivalence, with quotient set PBid.M/, which is in fact a quo-

tient of NAid.M/.
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Remark 3.2. The total inversion of a global pre-branching, that is, the simultane-

ous reversal of all the 2-face co-orientations, induces an involution on NAid.M/.

We set the question whether this involution is di�erent from the identity. Anyway

it is immaterial with respect to most future developments, so that one could incor-

porate the total inversion among the generators of the non ambiguous pb-transit

equivalence.

As we have de�ned the notion of non ambiguous structure purely in terms of

pre-branching, we see that the latter is the fundamental triangulation enhancement

underlying our discussion. However, it is useful (and necessary when we deal with

the quantum hyperbolic state sums) to treat the pre-branchings also in terms of

other enhanced transits.

The (non ambiguous) ideal pb-transit equivalence can be somewhat tautolog-

ically rephrased in terms of weak branchings. By de�nition, a (non ambiguous)

ideal wb-transit .T; Qb/ $ .T 0; Qb0/ is such that it dominates a (non ambiguous)

pb-transit .T; ! Qb
/ $ .T 0; ! Qb0

/, and moreover Qb and Qb0 coincide on the common

tetrahedra of T and T 0. Consider on the set of weakly branched ideal triangula-

tions of yM the equivalence relation generated by the wb-transits, imposing fur-

thermore that .T; Qb/ � .T; Qb0/ if ! Qb
D ! Qb0

. It is then obvious that the correspon-

dence Qb ! ! Qb
induces a bijection between the quotient set, say WBid.M/, and

PBid.M/. By restricting to non ambiguous transits, we get a way to treat NAid

in terms of weak branchings.

A naked ideal move T ! T 0 supports a b-transit .T; b/ ! .T 0; b0/, for

some branchings b and b0, if at every common edge e of T and T 0, the b- and

b0-orientations coincide. It is immediate that every b-transit dominates a pb-

transit .T; !b/! .T 0; !b0/ of the underlying pre-branchings.

De�nition 3.3. An ideal b-transit .T; b/ ! .T 0; b0/ is non ambiguous if the

associated pb-transit is non ambiguous.

This de�nition is coherent with the above discussion if we consider a branching

as a special kind of weak branching. On the other hand, we stress that it is not the

immediate de�nition of non ambiguous b-transit one would wonder. It is actually

stronger. Let us say that a positive ideal b-transit .T; b/ ! .T 0; b0/ is forced if it

is the unique b-transit that enhances the naked move T ! T 0 starting with .T; b/.

Lemma 3.4. (1) If .T; b/! .T; b0/ is non ambiguous, then it is forced.

(2) If .T; b/! .T; b0/ is not forced, then there are exactly two b-enhancements

.T; b/! .T 0; b1/ and .T; b/! .T 0; b2/which dominate the respective ambiguous

pb-transits .T; !b/! .T 0; !b1
/ and .T; !b/! .T 0; !b2

/.
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(3) Given a negative naked ideal move T  T 0, a branching b0 on T 0 gives

rise to a stop (ie. there is no b-enhancement starting with .T 0; b0/) if and only if

.T 0; !b0/ gives rise to a stop of pb-transits.

(4) There are instances of forced positive ideal b-transits .T; b/ ! .T 0; b0/

which nevertheless are ambiguous.

The proof of (1)–(3) is easy by direct inspection. As for (4), a 2! 3 example

is given by the following con�guration: let .�1; b1/ and .�2; b2/ be the two

(abstract) branched tetrahedra of T involved in the move. Denote by v1 and v2

the vertices of �1 and �2 respectively which are opposite to the common 2-face.

Then the branching is such that v1 is a source while v2 is a pit. There are similar

lune move examples.

Two remarkable non ambiguous b-transits. In Figure 3 we show a non am-

biguous b-transit which dominates a non ambiguous 2! 3 pre-branching transit

.T; !/ ! .T 0; !0/ such that the common square edge of the two tetrahedra of

.T; !/ is A-monochromatic. This b-transit has the nice property that all branched

tetrahedra are positively b-oriented (�b D 1); when the common square edge of

the two tetrahedra of .T; !/ isB-monochromatic, there is a similar non ambiguous

b-transit where the �ve tetrahedra are negatively b-oriented (�b D �1).

A weak branching on T can be a genuine branching on some portion of T .

In particular an ideal wb-transit .T; Qb/ ! .T 0; Qb0/ is said locally branched if

the restriction of Qb or Qb0 to the portions of T and T 0 involved in the move is a

branching. In such a case the discussion about the non ambiguous wb-transits is

(locally) confused with the one in terms of b-transits. With this notion, we can

elaborate a little bit on the above bijection WBid.M/! PBid.M/ induced by the

correspondence Qb ! ! Qb
, which is useful in the following form (for example it has

been used in [13], Proposition 3.4, and in [8]).

Lemma 3.5. The equivalence relation that realizes WBid.M/ (hence PBid.M/)

is generated by the local tetrahedral moves which change the local branching on

any tetrahedron of .T; Qb/ by preserving the induced pre-branching, and the locally

branched idealwb-transits. Moreover, via tetrahedral moves we can realize every

locally branched con�guration compatible with a given pb-transit. By restricting

to locally branched non ambiguous transits, we have a similar realization of

NAid.M/.
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4. Charges and taut structures

In this section we point out the cohomological content and remarkable specializa-

tions of the non ambiguous structures. An issue is to stress the compatibility of

the notions of transit which arise in di�erent contexts.

Let us recall the notion of charge (called Z-charge hereafter) which plays an

important role in QH geometry. Given a naked (not necessarily ideal) triangulation

T of yM , a Z-charge c assigns to every edge E of every abstract tetrahedron � of

T a color c.E/ 2 Z, in such a way that opposite edges have the same color and

the following local and global conditions are satis�ed.

(i) For every � the sum of the three colors is equal to 1.

(ii) Every edge e of T has total charge C.e/ D 2, where C.e/ is the sum of the

colors c.E/ of the abstract edges which are identi�ed along e (ie. E ! e).

If c is a charge, then �c is often called a Z-angle system on T .

One de�nes similarly the notion of Z=2-charge  by taking colors in Z=2 and

considering the above conditions with coe�cients in Z=2.

De�nition 4.1. A Z=2-charge (resp. Z-charge) is locally taut if for every �, one

color is 1 and the others are 0. It is Z=2-taut (resp. Z-taut) if moreover for every

edge e of T , there are at least two (resp. exactly two) 1-colors “around” e, that

is, 1-colored abstract edges E such that E ! e (N.B. a locally taut Z-charge is

automatically Z-taut).

If c is a taut Z-charge, then �c is also called a taut Z-angle system.

As above, we will often write that some con�guration of abstract edges takes

place “around” an edge e of T when it is realized by the abstract edges E such

that E ! e.

De�nition 4.2. A pre-branched triangulation .T; !/ is taut (see [26]) if for every

edge e of T there are exactly two diagonal edges around e. Let us call it Z=2-taut

if around every edge there are abstract diagonal edges (then they are at least two).

Let .T; !/ be a pre-branched triangulation of yM . For every abstract edge E,

set !.E/ D 1 if E is a diagonal edge, and !.E/ D 0 if it is a square edge; here

0; 1 belong to either Z=2 or Z in accordance with the context.

The following results (together with those about taut triangulations in Sec-

tion 6) express conditions under which the various kinds of charges de�ned above

exist, and their relations with pre-branched and taut triangulations.
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Proposition 4.3. (1) Let .T; !/ be a pre-branched triangulation of yM . Then !

is a locally taut Z=2-charge. Conversely, every locally taut Z=2-charge  on a

triangulation T of yM lifts to a locally taut Z=2-charge � on a pre-branched

triangulation .T �; !�/ of a double coveringM� !M , such that � D !� .

(2) If .T; !/ is a Z=2-taut (resp. taut) triangulation, then ! is a taut Z=2-

charge (resp. Z-charge).

(3) If a triangulation T of yM admits a taut Z=2-charge, then M ¤ yM , T

is an ideal triangulation, and @M has no spherical component. If moreover all

the components of @M are tori, then the charge is the reduction mod.2/ of a taut

Z-charge.

(4) A triangulation T of yM admits a Z-charge if and only if yM ¤ M , every

boundary component of M is a torus, and T is an ideal triangulation.

Proof. The �rst claim in (1) follows easily from an analysis of the boundary

con�gurations in the star of each vertex; we postpone this to Section 5.1. As for the

second claim, every locally taut Z=2-charge  on T determines on every abstract

tetrahedron � of T a local pre-branching which is unique up to total inversion.

Then  D ! for some ! if and only if we can choose a compatible family

of such local pre-branchings. The obstruction is a 1-cohomology class mod.2/

which vanishes up to passing to a double covering. Point (2) follows immediately

from the de�nitions. The direct implications in (3) and (4) use a Gauss-Bonnet

argument (see also Section 5.2 below). Namely, given a taut Z=2-charge on T , the

boundary of a small open star of a vertex v of T is a triangulated surface Sv whose

number t of triangles is equal to the number of germs of 1-colored abstract edges

ending at v, which is bigger than twice the number s of vertices of Sv. Hence

t � 2s D �2�.Sv/ � 0, which shows that v is a singular point of yM and T is

an ideal triangulation. For a Z-charge we have t D 2s. The converse implication

of (4) is much harder, and proved by applying the arguments of W. Neumann’s

“�attening” theory ([28], see also [8], Section 4.3). �

There is a natural notion of transit .T; c/! .T 0; c0/ between twoZ-charged tri-

angulations of yM , which is widely used in the theory of QHI: one requires that c0

coincides with c on every common abstract tetrahedron of T and T 0, and moreover,

considering the restrictions of c and c0 to the polyhedron supporting the move, one

requires that the local charge condition is veri�ed on every abstract tetrahedron,

the global one is veri�ed around every internal edge, and at every boundary edge

the value of the total charge is preserved. One de�nes similarly the notion of

transit between Z=2-charged triangulations. By dealing with Z=2-charges we can
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use arbitrary triangulations, hence we should include also the bubble transits (see

Section 7); for Z-charges, by Proposition 4.3, it is necessary to restrict to ideal

triangulations and to consider only ideal transits. For simplicity, let us restrict to

the ideal setting. As in De�nition 3.1, one can consider the quotient sets of Z=2-

or Z-charged ideal triangulations under the equivalence relations generated by the

relevant charge transits. Let us denote them by

cid.M;Z=2/; cid.M;Z/ (6)

respectively. These quotient sets have a clear intrinsic topological meaning.

Proposition 4.4. (1) The set cid.M;Z=2/, encodes H 1.M IZ=2/: for every ideal

triangulation T of yM and every class ˛ 2 H 1.M IZ=2/, there is a Z=2-charge

on T which realizes ˛, and any two Z=2-charged triangulations of yM realizing a

same class ˛ are equivalent under Z=2-charge transits.

(2) The set cid.M;Z/ encodes

Wc.M/ WD ¹.h; k/ 2 H 1.M IZ=2Z/ �H 1.@M IZ/ j k D i�.h/ mod.2/º

where i W @M !M is the inclusion. That is, for every ideal triangulation T of yM
and every ˛ 2 Wc.M/ there is a Z-charge on T which represents ˛, and any two

Z-charged triangulations of yM realizing a same ˛ are equivalent under Z-charge

transits.

Proof. These results are extracted from the theory of cohomological weights

developed in [5, 8], largely elaborating on W. Neumann’s “�attening” theory [28].

How a relevant charge encodes a class in H 1.M IZ=2/ or Wc.M/ can be found

in [8], Proposition 4.8, as well as the fact that every cohomology class can be

encoded in this way. Let us remind such an encoding. Represent any non zero class

inH1.@M IZ/ by normal loops, that is, a disjoint union of oriented essential simple

closed curves in @M , transverse to the edges of the triangulation @T induced by T

on @M , and such that no curve enters and exits a triangle by a same edge (the

triangulation @T is considered in detail in Section 5.1). The intersection of a

normal loop, say C , with a triangle F of @T consists of a disjoint union of arcs,

each of which turns around a vertex of F ; if F is a cusp section of the tetrahedron

� of T , for every vertex v of F we denote by Ev the edge of � containing v.

We write C ! Ev to mean that some subarcs of C turn around v. We count them

algebraically, by using the orientation of C : if there are sC (resp. s�) such subarcs

whose orientation is compatible with (resp. opposite to) the orientation of @M as

viewed from v, then we set ind.C; v/ WD sC � s�. For every Z-charge c on T ,
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one de�nes the cohomology class .c/ 2 H 1.@M IZ/ by (C is a normal loop

on @M )

.c/.ŒC �/ WD
X

C!Ev

ind.C; v/c.Ev/:

Another class  0
2.c/ 2 H 1.M IZ=2Z/ is de�ned similarly, by using normal loops

in T and taking the sum mod.2/ of the charges of the edges facing the loops.

We have .c/ D i�. 0
2.c// mod.2/. The pair ..c/;  0

2.c// 2 Wc.M/ is the class

associated to the Z-charge c.

Let us consider now the Z-charges on an ideal triangulation T as integral

vectors with entries indexed by the abstract edges of T . Then the claims about the

transits are consequences of two results: the di�erence between two Z-charges c1

and c2 on T having equal class ˛ in Wc.M/ is an integral linear combination of

determined integral vectors d.e/ associated to the edges e of T (this follows from

the exact sequence (43) in [8], where c1�c2 represents a class in Ker. 0;  0
2/ D 0 2

H , the zero class of H being represented in Im.ˇ/ by such linear combinations);

if c is a Z-charge on T and T ! T 0 a positive 2 ! 3 move, the a�ne space

of Z-charges c0 produced by all possible transits of Z-charges .T; c/ ! .T 0; c0/

starting with c coincides with the space generated by the above edge vectors d.e/.

A concrete description of the vectors d.e/ is given in the proof of Proposition 8.5.

Then, by using �nite sequences of 2 ! 3 moves T ! � � � ! T starting and

ending at T , and that blow down and then up any given edge of T at a certain

intermediate step, one can change a given Z-charge on T to any other one with

same class ˛. (This argument is fully detailed in [4], Section 4.1, in the context of

the distinguished triangulations of pairs .M;L/ that we discuss in Section 7.) �

The following lemma states that the sets of taut and Z=2-taut triangulations

are closed under ideal non ambiguous transits. The next one indicates the relation

between pre-branched transits and charge transits. The proofs are easy, basically a

direct consequence of the de�nitions. Here we consider a transit as an “abstract”

pattern that can be implemented to locally modify an ideal triangulation.

Lemma 4.5. For an ideal pre-branching transit the following facts are equivalent:

(a) the transit is non ambiguous;

(b) the transit sends Z=2-taut triangulations to Z=2-taut triangulations;

(c) the transit sends taut triangulations to taut triangulations.
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Lemma 4.6. (1) Any pre-branching transit .T; !/$ .T 0; !0/ induces a transit of

locally taut Z=2-charges .T; !/$ .T 0; !0/.

(2) Any (necessarily non ambiguous) ideal transit of taut (resp. Z=2-taut)

triangulations .T; !/ $ .T 0; !0/ induces a transit of Z-taut (resp. Z=2-taut)

charges .T; !/$ .T 0; !0/.

Remark 4.7. Recall ([1, 19, 22]) that a taut triangulation .T; !/ is veering if every

edge e is either A- or B-monochromatic (the diagonal abstract edges around e

being considered as achromatic). Though the non ambiguous transits preserve

tautness, they do not preserve the property of being veering (see also Remark 5.8).

As an immediate consequence of Proposition 4.4 and lemmas 4.5 and 4.6,

the following Proposition summarizes the results of this Section.

Proposition 4.8. (1) The taut and Z=2-taut triangulations of yM respectively de-

termine well de�ned ( possibly empty) subsets �.M/ and �.M;Z=2/ of NAid.M/.

They are called respectively the set of taut structures and the set of Z=2-taut

structures on M .

(2) There are well de�ned maps

hWNAid.M/ �! H 1.M IZ=2/

(which restricts to �.M;Z=2/) and

.h; @h/W �.M/ �! H 1.M IZ=2/ �H 1.@M IZ/;

de�ned via Œ.T; !/� ! Œ!�, where Œ!� is the class de�ned by the charge tauto-

logically carried by the pre-branching, and similarly for .h; @h/.

Conditions under which �.M/ or �.M;Z=2/ ¤ ; are discussed in Section 6.

Remarks 4.9. In the present paper we are mainly interested in the role of non

ambiguous structures in the de�nition of invariant “reduced” quantum state sums.

However, the study of (ideal) variously branched triangulations up to di�erent

“transit equivalences” will be not exhausted and we are currently working on this

topic. Here we limit ourselves to a few further informations (without proofs). For

every ideal pre-branched triangulation .T; !/ of yM , the 1-skeleton, say X , of the

dual cell decomposition of yM is oriented by ! and becomes a (cellular) integral

1-cycle .X; !/ in M . It is easy to see that the correspondence .T; !/! Œ.X; !/�

well de�nes a map

hWPBid.M/ �! H1.M IZ/
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which naturally lifts to NAid.M/ via the natural projection

� WNAid.M/ �! PBid.M/:

We can add to the generators of the pb-transit equivalence a further (non local)

so called “circuit move” acting on the pre-branchings of any given T so that the

further quotient set PBid.M/= � reduces to one point (see [13, 8]). By studying

the class Œ.X; !0/ � .X; !/� when .T; !/ and .T; !0/ di�er from each other by a

circuit move, we can prove for example that ifH1.M IZ/ is in�nite, then PBid.M/

is in�nite (hence also NAid.M/).

It is also interesting to study the quotient sets Bid.M/ and BNAid.M/ of

branched ideal triangulations of yM consider up to b-transits and non-ambiguous

b-transits, respectively. For example, there is a natural “forgetting” map

�WBid.M/ �! PBid.M/

and one would like to understand its image. It is easy to see that if ˛ 2 Im.�/,

then h.˛/ D 0 2 H1.M IZ/. If H2.M IZ=2/ D 0, one realizes that this necessary

condition is also su�cient. In general this is not true.

5. Holographic approach to non ambiguous structures

Assume that @M is non empty, and let T be an ideal triangulation of yM . We are

going to show that the “restrictions” to @M of the structures we have considered on

3-dimensional triangulations T have a clear intrinsic meaning. In the same time

we will easily realize that the resulting 2-dimensional structures make sense by

themselves, even when they are not induced by 3-dimensional ones. This “free”

2-dimensional theory deserves to be studied by itself. On the other hand, the

restrictions of 3-dimensional structures present speci�c coherent, or “entangled,”

behaviours, so that the 2D information eventually leads to meaningful intrinsic

features of the 3-dimensional theory. We will see another instance of this approach

in Section 8.

5.1. From pre-branchings to boundary branchings. Every ideal triangulation

T of yM induces a cellulation of M made of truncated tetrahedra, and thus it

de�nes a triangulation @T of @M , whose triangles are the triangular faces of the

truncated tetrahedra. Every pre-branching ! on T induces a branching @! on

@T de�ned locally as in Figure 5; we realize easily that this de�nition is globally

compatible. The total inversion of ! changes @! by the branching total inversion,

which reverses all edge orientations.
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Every (abstract) branched triangle of .@T; @!/ has, as usual, a sign �@! with

respect to the boundary orientation. SinceM is oriented the pre-branching induces

an orientation and hence a sign �! on every 2-face of every abstract tetrahedron

of .T; !/. Then, we see that for every triangle � of @T , �@!.�/ coincides with the

sign �!.F / of the 2-face F of T opposite to � .

Figure 5. The boundary triangulation.

Every corner of every abstract triangle of @T corresponds to an abstract edge

E of T . Hence it inherits a color, either D if E is a diagonal edge, or A or B if E

is a A- or B-square edge. Forgetting the colors A and B , Figure 6 shows a typical

star-germ at a vertex of .@T; @!/. Clearly there is an even number of D-corners

around every vertex of @T . This proves the �rst claim of (1) of Lemma 4.3. Note

that the corner coloring depends only on the sign �@! of each branched triangle.

This is also illustrated in Figure 5.

Figure 6. Vertex star germ.
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5.2. 2D charges, train tracks and singular combings. Let .K; b/ be any

branched triangulation of a closed oriented surface S .

The notions of triangle signs and corner colorings introduced in Section 5.1

make sense as well for the two-dimensional triangulation .K; b/. Also, the notions

of locally taut or taut Z- or Z=2-charges de�ned in Section 4 can be considered

verbatim for maps c assigning a color c.V / to every corner V of every abstract

triangle of K; such a map c, called a 2D charge, satis�es the local charge condi-

tion (i) on every triangle and the global charge condition (ii) about every vertex.

Clearly, every branched triangulation .K; b/ carries a locally taut Z=2-charges

b , de�ned by labelling every D-corner with 1 and the A- and B-corners with 0.

A triangulation .K; b/ is Z=2-taut if b is so, and .K; b/ is taut if b is Z-taut.

If S D @M and K D @T for some ideal triangulation T of yM , it is evident that

every instance of 3D charge on T restricts to an equally named 2D charge on @T ,

and that taut or Z=2-taut triangulations T restrict to triangulations K quali�ed in

the same way.

Next we will point out how any .K; b/ carries further interesting derived

structures.

Euler cochains. Given a locally tautZ=2-charge  onK, we can de�ne two inte-

gral cellular 2-cochains Eu and Eu�
 on S , with respect to the cell decomposition

dual to K. Every 2-cell C is dual to one vertex v of K, so set

Eu .C / D 1 �
r.v/

2
; Eu�

 .C / D min
�

0; 1� r.v/
2

�

where r.v/ is the number of corners around v with color 1 given by  . Note that

Eu .C / 2 Z, and either Eu .C / D 1 or Eu .C / � 0; moreover, Eu D Eu�
 if

and only if  is taut. If  D b , we will denote Eu , Eu�
 by Eub, Eu�

b respectively.

Lemma 5.1. (1) The Euler-Poincaré characteristic of every component Z of S is

given by

�.Z/ D Eu.Z/ D
X

C�Z

Eu.C /:

(2) If K supports a taut Z=2-charge, then �.Z/ � 0 for every componentZ of

S . If K supports a taut Z-charge, then �.Z/ D 0 for every component Z of S ;

hence they are all tori.

(3) If  is a taut Z=2-charge on K and every component of S is a torus, then

 is the reduction mod.2/ of a taut Z-charge.
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Lemma 5.1 (1) can be proved like the “discrete Gauss-Bonnet formula” for

surfaces triangulated by means of euclidean triangles. Via Hopf’s index theorem,

it will be also a consequence of the features of the tangent combings of S de�ned

below. Note that (2) implies (3) of Proposition 4.3 (by considering @T ), and that (3)

applies in particular when K D @T and T is an ideal triangulation of yM .

Singular combings. Let S be an oriented closed surface as usual. We consider

tangent vector �elds Ev on S , possibly having isolated zeros, where they locally

look like one of the following models, distinguished from each other by the zero

indices.

(1) The gradient of ˙.x2 C y2/, the index being equal to 1.

(2) For every integer n � 1, consider the 2n-roots of unity ˛1;�˛1; : : : ; ˛n;�˛n
in C Š R

2. Let y � ajx D 0 be the equation of the straight line through j̨

and � j̨ . Then the local model is the gradient of ˙.Qn
jD1.y � ajx//. The

zero index is equal to 1 � n.

Every such a �eld Ev has a type given by the list of its zero indices. The type

satis�es the constraint given by the index theorem, so that the sum of the indices

equals �.Z/ for the restriction of the �eld on every component Z of S . It is easy

to see that every tuple of integers� 1 satisfying this constraint is actually realized

as the type of a �eld on S .

The �elds Ev are considered up to homotopy through �elds of a given type

(keeping the same notation). We denote by Comb.S/ the set of equivalence

classes, called (singular) combings. Clearly the combings are distributed by

types. We say that Ev is taut if all its zero indices are non positive; we denote

by Comb� .S/ � Comb.S/ the subset of taut combings.

Remark 5.2. The inversion of every such a singular �eld Ev $ �Ev preserves the

type and induces the identity on Comb.S/ as it is realized by the rotation by � in

every tangent plane, with respect to any auxiliary Riemann metric on the surface.

Realization via Abelian di�erentials. For simplicity, assume again that S is

connected. Give S a structure of Riemann surface. Let � be a holomorphic

Abelian di�erential on S , with quadratic di�erential �2. The horizontal measured

foliation on S de�ned by �2 has orientable leaves. By �xing an orientation and

using the �eld of oriented directions of the foliation we get a taut singular combing

on S . Every taut combing type can be obtained in this way (see [27]).
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On the structure of Comb.S/. Again for simplicity, assume that S is con-

nected.

Proposition 5.3. The set Comb.S/ has a partition by subsets indexed by the

singularity types, each subset being an a�ne space on H1.U IZ/, where U is the

complement of a system of disjoint 2-disks in S centred at the singular points.

If S is a torus, then Comb� .S/ is canonically identi�ed to H1.S IZ/.

Proof. If S is a torus, then every taut vector �eld on S is non singular. Given two

such �elds Ev1, Ev2, the primary obstruction to determine the same combing is a

class

�.Ev1 � Ev2/ 2 H1.S IZ/
such that �.Ev1 � Ev2/ D ��.Ev2 � Ev1/. As SO.2/ Š S1 and �2.S

1/ D 0,

this is in fact the complete obstruction, so that Comb� .S/ is an a�ne space on

H1.S IZ/. Moreover, every oriented simple closed curve s on S determines an

oriented foliation by parallel curves, and hence a �eld Evs . These special �elds are

all equivalent, and thus they �x a base point in Comb� .S/, which is eventually

identi�ed with H1.S IZ/.
In general, let Ev1, Ev2 be two (singular) vector �elds on S with the same type

of singularities. Up to isotopy, we can assume that the two �elds have the same

zeros and coincide near them. Then the complete obstruction to determine the

same combing is a class

�.Ev1 � Ev2/ 2 H1.U IZ/

where U is as in the statement. �

From triangulations to combings. Given a branched triangulation .K; b/ of S ,

the 1-skeleton of the cell decomposition dual to K naturally carries a structure of

co-oriented (hence oriented) train-track �b on S , by the following rule: at every

intersection point, an oriented edge of .K; b/ followed by the dual oriented branch

of .�; b/ realize the orientation of S .

Consider a regular neighbourhood U (with smooth boundary) of �b. The

closure of each component of S n U is a 2-disk DC contained in a 2-cell C of

the cell decomposition dual toK; this establishes a bijection between components

of S n U and 2-cells. Indeed U has a natural cellulation made by the “truncated

triangles” of K, and every component of @U is the “link” of one vertex ofK. The

neighborhood U carries a tangent vector �eld Evb that is traversing, in the sense

that:
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(1) every integral line of Evb is a non degenerate closed interval which intersects

transversely @U at its endpoints; generic integral lines are properly embedded

into .U; @U /;

(2) there is a �nite number of exceptional integral lines which are simply tangent

to @U at a �nite number of internal points.

Moreover, Evb is generic, that is, every exceptional integral line has just one

tangency point.

We easily realize that there is a tangency point in correspondence with eachD-

colored corner of .K; b/, and that along every component of @U the exceptional

integral lines occur with alternating orientations. Hence the �eld Evb extends to

a tangent vector �eld (we keep the same name) on S of the kind �xed above,

which has one zero of index equal to Eub.C / in the interior of each component

of S n U , whenever Eub.C / ¤ 0. The traversing �eld is uniquely determined

up to homotopy through generic traversing �elds, hence its singular completion

is uniquely de�ned up to homotopy through �elds of the given type. So .K; b/

carries a well de�ned combing. A representative of Evb can be obtained also as a

puzzle where every tile is a branched triangle equipped a classical Whitney �eld

which can be de�ned explicitely in terms of barycentric coordinates (see [20]).

All this is illustrated in Figures 7 and 8; in the �rst C indicates a germ of 2-cell C

where the �eld contributes to Eub.C /.

Figure 7. Train-tracks and combings.
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Figure 8. Whitney �elds on branched triangles.

If the locally taut Z=2-charge b on .K; b/ is taut, then the combing Evb is taut;

if moreover all the components of S are tori, then Evb is a non-singular combing.

5.3. 2D transits and intrinsic structures. We consider local moves on naked

triangulations of the surface S . These are the 2 $ 2 “diagonal exchange” move,

also called �ip, the bubble 0 $ 2 move and the 1 $ 3 move. The last one can

be obtained as a concatenation of a bubble move and a �ip, but it is convenient

to consider it by itself. Flips preserve the number of vertices while the other two

positive moves increase it by 1. As in Section 4, all these moves can be naturally

enhanced to transits of 2D charges .K; c/ $ .K 0; c0/; the rule is that c and c0

coincide on every common triangle of K and K 0, and that, by restricting them to

the subcomplex supporting the move, c and c0 satisfy the local charge condition

(i) on each abstract triangle, the global one (ii) around each internal vertex, and

the total charge at every boundary vertex is preserved. For instance, a taut transit

of 2D charges is such that the taut condition is satis�ed at the locus of the move.

So, similarly to the 3-dimensional case, we can de�ne the quotient sets

c.S;Z/; c.S;Z=2/

of Z-charged andZ=2-charged triangulations of S up to charge transits. In the two

dimensional setting, the result analogous to Proposition 4.4 (and easier to prove)

is the following proposition.

Proposition 5.4. The set c.S;Z/ encodes H 1.S IZ/, while c.S;Z=2/ encodes

H 1.S IZ=2/.
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The 2D branching transits (“b-transits” for short) .K; b/! .K 0; b0/ are de�ned

by imposing that the orientation is preserved on every common edge ofK andK 0.

We classify now the b-transits with respect to the associated combings on S . This

is reminiscent of the study of 3D branched spines [11].

Branched �ips. Given a branched triangulation .K; b/ and a naked �ipK ! K 0,

there always exists a b-transit .K; b/ ! .K 0; b0/, called branched �ip or b-�ip.

A branched �ip .K; b/! .K 0; b0/ is forced if it is the unique one supported by the

naked �ip K ! K 0 and starting with .K; b/.

The branched �ips .K; b/ ! .K 0; b0/ are distributed in the following classes,

illustrated in Figures 9 and 10. In Figure 9 we have labelled by “1” the D-colored

corners; we will do the same in the next �gures. In Figure 10 we show dual

train tracks; according to our orientation convention, they are obtained by total

inversion of the branchings shown in Figure 9. Note that the �ip classi�cation

below is invariant under total inversion.

(1) Non ambiguous, such that both .K; b/ ! .K 0; b0/ and the inverse b-�ip

.K; b/ .K 0; b0/ are forced.

(2) Forced ambiguous, such that .K; b/! .K 0; b0/ is forced but the inverse b-�ip

is not.

(3) Sliding, such that at least one among .K; b/ ! .K 0; b0/ and its inverse is

forced.

(4) Bump, such that both .K; b/! .K 0; b0/ and its inverse are not forced.

Bubble b-transits. The (positive) 2D bubble b-transits are distributed in two

classes (see Figure 11).

(1) Sliding, such that the two corners at the central new vertex after the positive

transit are D-colored.

(2) Bump, such that one central corner is A-colored, and the other is B-colored.

1 $ 3 b-transits. These are distributed in two classes (see Figure 12).

(1) Sliding, such that two corners at the central new vertex after the positive

transit are D-colored, while the other corner can be either A- or B-colored.

(2) Bump, such that no central corner is D-colored, the central vertex is not

monochromatic, and either A or B can be the prevailing color.
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Figure 9. Branched �ips.

Figure 10. Sliding and bump branched track �ips.
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Figure 11. Sliding and bump bubble transit.

Figure 12. Sliding and bump 1$ 3 transit.
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Recall the Euler 2-cochain Eu�
b de�ned in Section 5.2, and denote by Eu�

b .Z/

its evaluation on the fundamental class of a component Z of S .

Proposition 5.5. (a) Every b-transit .K; b/ ! .K 0; b0/ induces a locally taut

Z=2-charge transit .K; b/! .K 0; b0/.

(b) For every b-transit .K; b/! .K 0; b0/, the following properties are equiva-

lent:

(1) it preserves the combing on S ;

(2) Eu�
b .Z/ D Eu�

b0.Z/ on every component Z of S ;

(3) .K; b/! .K 0; b0/ is actually a taut Z=2-charge transit;

(4) it is a sliding b-transit.

Proof. As above it is convenient to represent the combings carried by a branched

triangulation by the singular completions of suitable generic traversing �elds.

By analyzing the local modi�cations of the traversing �elds supported by the

transits of train tracks in Figure 10, we easily realize that before and after a sliding

b-�ip we deal with �elds de�ned on a same neighborhood U and homotopic

through (not necessarily generic) traversing �elds. Precisely, we can construct

a generic homotopy such that just one traversing �eld is not generic, as it has just

one exceptional integral interval, which is simply tangent at two points of @U .

Then the singular completions de�ne a same combing. In the case of a positive

sliding bubble b-transit, up to homotopy the traversing �eld after the move is the

restriction of the traversing �eld before the move, and we readily realize that again

the singular completions de�ne the same combing. Similarly for a positive sliding

1! 3 b-transit. On the other hand, any positive bump b-transit introduces a new

singular point of the combing of index 1. The Proposition straighforwardly follows

from these considerations. �

Let us denote by Bs.S/ the quotient set of branched triangulations of S

up to the relation generated by isotopy and the sliding transits. Similarly let

B� .S;Z=2/ � Bs.S/ be formed by the classes represented by Z=2-taut triangula-

tions. By Proposition 5.5, the correspondence

.K; b/ 7�! Evb

induces a well de�ned map

�WBs.S/ �! Comb.S/
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which factorizes through the set Bs.S/=˙ obtained by adding to the generators of

the relation the branching inversion b ! �b. By restricting � we have also a map

�� WB�.S;Z=2/ �! Comb� .S/

which factorizes through B� .S;Z=2/=˙.

Theorem 5.6. The map �WBs.S/=˙ ! Comb.S/ is bijective. Similarly for the

restriction to B� .S;Z=2/=˙.

Proof. Refering to the proof of Proposition 5.5, the following two are the main

points.

(1) Every (taut) combing on S can be realized by the vector �eld Evb carried by

some (Z=2-taut) triangulation .K; b/ (that is, the maps � and �� are onto).

(2) Two triangulations .K; b/ and .K 0; b0/ with the same set of vertices carry

generic traversing �elds (de�ned on the same U ) which are homotopic

through (non necessarily generic) traversing �elds if and only if they are re-

lated by a �nite sequence of sliding b-�ips.

Both facts follow from simpli�ed versions of the arguments used in [11] and [12]

for the treatment of combings on 3-manifolds via branched spines. Let us indicate

the main ideas. The proof of (1) is based on Ishii’s notion of �ow spines ([23]);

a detailed proof in 3D is given in Chapter 5 of [11] in the case of closed manifolds,

and in [12] it is extended to manifolds with boundary. As for (2), one implica-

tion has been already remarked in Proposition 5.5; for the other implication, by

transversality we can assume that the homotopy is generic, that is, it contains only

a �nite number of non generic traversing �elds, each one containing one excep-

tional integral interval which is tangent at two points of @U . Then we have to

analyze how two generic traversing �elds close to a non generic one are related to

each other. Finally one realizes that the sliding b-�ips cover all possible con�gu-

rations.

Given two triangulations that carry the same combing, we can modify the

one with fewer vertices by isotopy and a �nite number of positive sliding bubble

b-transits in order that the two resulting triangulations verify the hypothesis of (2).

By using these facts, taking into account the branching inversion, the injectivity

of the maps readily follows. �
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5.4. Non negative 1-cycles and their transits. Let as usual .K; b/ be a branched

triangulation of a closed oriented surface S . The 1-skeleton K.1/ has oriented

edges. A non negative 1-cycle on .K; b/ is a simplicial Z-cycle  DP

e2K.1/ aee

such that ae � 0 for every edge e. Denote by HC.K; b/ the image of the set of

non negative cycles inH1.S IZ/. We want to point out the behaviour ofHC.K; b/

under 2D sliding transits.

Proposition 5.7. (1) If .K; b/ ! .K 0; b0/ is a non ambiguous �ip or a sliding

bubble b-transit then HC.K; b/ D HC.K 0; b0/.

(2) If .K 0; b0/ ! .K; b/ is a forced ambiguous b-�ip, then HC.K; b/ �
HC.K 0; b0/ and in general the inclusion is strict.

The proof consists in analyzing the possible local con�gurations of a non

negative cycle  of .K; b/, and to verify whether  transits in a unique way to a

non negative cycle  0 on .K 0; b0/ in the same homology class, up to the local move

suggested by Figure 13 (which preserves the homology class). The only situation

which gives rise to a stop is when .K 0; b0/ ! .K; b/ is a forced ambiguous

b-�ip, and when the relevant local portion of  0 is supported by the edge which is

�ipped to produce .K; b/. This can be expressed also in terms of dual measures

on the train track �b; we will spell it for �ips in the next Remark. So we have the

negative conclusion that HC.K; b/ is not in general a 2D sliding move invariant.

On the other hand, we will see that things go better in the 3D-�llable situation

(see Section 5.6).

Figure 13. 1-cycle move.

Remarks 5.8. Proposition 5.7 indicates an interesting di�erence between non

ambiguous and forced ambiguous �ips. We can better understand this di�erence

dually in terms of the measures carried by the train tracks �b . Recall that a measure

� on �b assigns to every edge a real non negative weight in such a way that at

every 3-valent vertex of �b , the natural “switching condition” is satis�ed. As �b
is oriented and is a spine of its regular neighbourhood U , the measures on �b
actually form a positive cone of H1.U IR/ (recall that every 1-homology class of

U is uniquely represented by a real 1-cycle on �b which assigns to every edge a

real weight and veri�es the same switching condition at vertices).
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Assume that .K; b/ is Z=2-taut and that �b carries a nowhere vanishing mea-

sure, say a plain measure. In Figure 14, top line, we see the transit of such a

measure supported by a typical non ambiguous �ip. We realize that the inequal-

ities c > d and c > b are necessarily satis�ed, and that there is a bijection of the

weights. In the middle of the bottom line we see the result of two forced ambiguous

�ips related to each other. We realize that in the middle the equality aCd D bCc
is necessarily satis�ed, and no further inequalities must be imposed. On the other

hand, on the left (resp. right) side the inequalities b > a, d > c (resp. a > b,

c > d ) are necessarily satis�ed and the transit injects the left (resp. right) side set

of weights onto a subset, sayWL (resp. WR), of the middle one. We easily see that

WL andWR form a partition of this last set. In order to reverse the transits we have

to restrict to WL and WR respectively. Hence in a sense the measure inequalities

solve the partial ambiguities.

Figure 14. Measured �ips.

There is a natural 2D notion of veering triangulation .K; b/ of S : every vertex

ofK must be either A- or B-monochromatic. Clearly, if a 3D triangulation .T; !/

of yM is veering, then .@T; @!/ is veering. We note that the non ambiguous �ips

preserve this property, while the forced ambiguous �ips and the sliding bubble

b-transits do not. As mentioned in Remark 4.7, the 3D non ambiguous transits

do not preserve the veering property; this re�ects in the fact that the associated

systems of entangled 2D transits (described in Proposition 5.9 below) involve all

kinds of sliding transits, not only non ambiguous �ips.
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5.5. The boundary maps. Let us go back to dimension three. Let .T; !/ be a

pre-branched ideal triangulation of yM , and consider the boundary branched tri-

angulation .@T; @!/ of @M . Every abstract tetrahedron of T carries four triangles

of @T . Consider any naked ideal 3D transit T ! T 0; it gives rise to a system of

2D transits on @T . More precisely,

(1) every naked positive 2 ! 3 move gives rise to three naked �ips and two

positive 1! 3 moves;

(2) every naked positive lune move gives rise to two positive 2D bubble moves;

(3) every 3D pre-branching transit induces a system of 2D branched transits,

supported by the associated system of naked moves.

Proposition 5.9. Every 3D non ambiguous ideal pb-transit gives rise to a system

of 2D sliding transits. Hence we have well de�ned maps @WNA
id.M/! Bs.@M/

and � ı @WNA
id.M/ ! Comb.@M/, which restricts to � ı @W �.M;Z=2/ !

Comb� .@M/.

Proof. The proof goes through a direct analysis of all transits. In fact, by using

Lemma 3.5, concerning the 2$ 3 non ambiguouspb-transits it is enough to study

the two ones dominated by the remarkable b-transits indicated before the statement

of Lemma 3.5. For example, refering to the positive non ambiguous transit of

Figure 15, we see that two of the associated �ips are non ambiguous, one is forced

ambiguous, and the 1 ! 3 2D transits are sliding. The other remarkable 2 ! 3

b-transit as well as the non ambiguous lune b-transits have similar behaviour. �

In this way we have obtained a geometric topological invariant for NA
id.M/

which lives on the boundary of M .

The following Conjecture (perhaps better quali�ed as a “question”) sounds

attractive and non trivial. Recall the natural projection� WNAid.M/! PBid.M/.

Conjecture 5.10. For every ideal pre-branched triangulations .T; !/ and .T 0; !0/

of yM , we have

Œ.T; !/� D Œ.T 0; !0/� 2 NAid.M/

if and only if

�.ŒT; !�/ D �.ŒT 0; !0�/ and � ı @.ŒT; !�/ D � ı @.ŒT 0; !0�/:

We are going to point out a few further invariants of non ambiguous strucures.
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Figure 15. From 3D non ambiguous towards 2D sliding transits.

5.6. Non negative 2-cycles and their boundary. Let .T; !/ be a pre-branched

ideal triangulation of yM . Consider as usual the cell decomposition of M formed

by the truncated tetrahedra of T . Every truncated 2-face of T is a hexagon with

edges alternatively on @M or in the interior ofM . Recall that every hexagonH is

oriented by !.

A non negative 2-cycle is a cellular relative 2-cycle on .M; @M/ of the form

� D P

H cHH such that every coe�cient cH � 0. The boundary @� is a non

negative 1-cycle on .@T; @!/ (see Section 5.4), which determines completely �.

Denote by HC.T; !/ � @HC.@T; @!/ the subset of H2.M; @M IZ/ �H1.@M IZ/
determined by the set of these pairs of cycles .�; @�/. The key remark is that, in

the system of boundary 2D sliding transits associated to an ideal non ambiguous

3D-transit, a boundary cycle @� never falls in the con�guration that gives rise

to a stop, as described after Proposition 5.7. Then a 2D 1-cycle transit can be

completed to a 3D 2-cycle transit.

Proposition 5.11. If .T; !/ and .T 0; !0/ represent the same non ambiguous

structure, then the semigroups HC.T; !/ � @HC.@T; @!/ and HC.T 0; !0/ �
@HC.@T 0; @!0/ are isomorphic.

Remark 5.12. When the triangulation .T; !/ is taut the union of the hexagons

has a natural structure of branched surface called the branched surface of the

taut triangulation. Its boundary is an oriented train track on @M , which is

positively transverse to the one on .@T; @!/ de�ned in Section 5.2. They determine

equivalent combings. The basic tiles of such tracks are shown in Figure 16.
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Figure 16. Transverse tracks.

5.7. Invariant coloured arc-links. Let s D Œ.T; !/� 2 NAid.M/. Every

truncated edge of T is a properly embedded simple arc � in .M; @M/ joining two

vertices of @T , say v, v0; they belong to two regions C , C 0 of @M n �@! such that

Eu@!.C / D Eu@!.C
0/. We give the arc the same label l.�/ WD Eu@!.C /. The

union of such arcs with non zero labels forms a Z-colored link L! of properly

embedded arcs in .M; @M/. If � � L! , then we can assume that v, v0 are the

singular points of a boundary combing representative Ev@! . Clearly L! D ;
if .T; !/ is taut. Let us denote by L.M; @M;Z/ the set of isotopy classes of

Z-colored links of properly embedded arcs on .M; @M/. It is immediate that the

non ambiguous transits preserve the isotopy class of L! .

Proposition 5.13. The correspondence s 7! ŒL! �, for every s D Œ.T; !/� 2
NAid.M/, well de�nes a map ƒWNAid.M/! L.M; @M;Z/.

A natural realization problem is to determine the image of the map ƒ. Imme-

diate obstructions can be derived from Lemma 5.1.

6. Taut structures

In this section we consider in detail the set of taut structures �.M/. We assume

that @M is a non empty collection of tori. The aim of this section is to prove

Theorem 1.1. Let us recall the main qualitative results of [26].

Proposition 6.1 ([26, Proposition 10 and Theorem 1]). If yM admits a taut triangu-

lation, thenM is irreducible and the boundary tori are incompressible. Moreover,

every such a manifold M which is an-annular admits taut triangulations.

Note that for hyperbolic cusped manifolds the su�cient existence conditions

of taut triangulations are satis�ed. Probably the most remarkable property of taut

triangulations is the following proposition.
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Proposition 6.2 ([26, Theorem 3]). Every compact surfaceZ properly embedded

in M and carried by a branched surface of a taut triangulation realizes the

Thurston’s norm of its homology class in H2.M; @M IZ/.

As for the existence of taut structures, we consider �rst the simpler case of a

mapping torus. Then we will describe a procedure depending on an initial choice

of sutured manifold hierarchy of M .

6.1. Manifolds �bering over S 1. Let M be a compact oriented 3-manifold

bounded by tori and which �bres over S1 with �bers of negative Euler charac-

teristic. So there is a mapping torus realization M Š .Z � Œ0; 1�/= , where Z

is an oriented compact connected surface with non empty boundary, �.Z/ < 0,

and  is an orientation preserving di�eomorphism of Z. The surface yZ has ideal

triangulations. Then, following [26] we can construct taut triangulations .T; !/ of
yM by implementing the following procedure.

� Choose an ideal triangulation S of yZ;

� Choose a �nite sequence of �ips S WD S0 ! S1 ! S2 ! � � � ! Sk WD
 .S0/ connecting S to  .S/; if some edge of S is left unchanged by the

sequence, add to it consecutively a �ip and an inverse �ip at the edge.

� Consider the four triangles involved in a �ip Sj ! SjC1 as the boundary of

a pre-branched tetrahedron .�j ; !j /, so that the two edges exchanged by the

�ip are its diagonal edges, and the co-orientations of the triangles of Sj (resp.

SjC1) are ingoing (resp. outgoing) �j . Then we get an ideal triangulation
zT of the space yZ � Œ0; 1�, with boundary triangulations S and  .S/. De�ne

.T; !/ as the projection of zT to yM D . yZ � Œ0; 1�/= .

We call layered triangulation any taut triangulation of yM obtained in this way.

The �rst two steps of the above construction contain arbitrary choices, but we are

going to see that the layered triangulations of a given mapping torus realization

of M de�ne nevertheless the same taut structure. At this point we need to recall

some fundamental results of Thurston [30] and Fried [18].

Let W be a compact connected oriented irreducible 3-manifold which �bers

overS1. Denote byBW the unit ball of the Thurston norm ofW , k�kWH 1.W IZ/!
Œ0I C1Œ. The �brations of W are in 1-to-1 correspondence with the integral

points of a union of cones over some open top dimensional faces FW of BW ,

called its �bred faces [30]. There are �ows . t / of di�eomorphisms of W

which are positively transverse to any �bration over a same �bred face (that is,

d.f ı  t .x//=dt > 0 for every x 2 W and every �bration f WW ! S1 such that

f �Œd�� is in the coneC.FW / overFW , for some open �bred face FW ). Such a �ow
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. t / determines the �bered face by the condition that the normal plane bundle of

the vector �eld d. t /=dt has Euler class

�. /t .u/ D �kuk

for all u in the cone over the open face (here we view �. /t in H 2.W; @W IZ/ Š
H1.W IZ/ as a linear functional on H 1.W IZ/). Moreover, if the interior of W

has a �nite volume complete hyperbolic structure, then every �bered face FW of

BW determines a unique isotopy class of pseudo-Anosov �ows . t / inducing a

pseudo-Anosov return map on any �ber of any �bration over FW (see Theorem 7

of [18]; the results of that paper are formulated for a closed compact W , but the

arguments work verbatim when W is a cusped manifolds).

Proposition 6.3. (1) For every realization of M as a mapping torus M WD
.Z � Œ0; 1�/= such that �.Z/ < 0, all layered triangulations of M determine

the same element s of �.M/.

(2) For any two mapping torus realizationsM andM� ofM corresponding to

�brations lying on a same ray from the origin ofH2.M; @M IR/, we have s� D s .

(3) Any two mapping torus realizations M and M� of M such that s� D s 

lie over the same �bered face of the Thurston ball of M .

Proof. (1) The Ptolemy groupoid of the set of (naked) ideal triangulations of yZ
is generated by the �ips modulo the “square” and “pentagon” relations. Then

it is enough to check how these relations modify the construction of layered

triangulations of M . One realizes easily that the square relation gives rise to a

non ambiguous lune move, and the pentagon relation gives rise to a non ambiguous

2$ 3 transit.

(2) It is well-known that any element a 2 H2.M; @M IZ/ is represented by

an oriented and properly embedded surface S in M , and that, if a D kb with

b a primitive element, then S is the union of k connected components, each

representing b (see eg. [30], Lemma 1). In particular, let a and b be the classes of

(the �bers of)M andM� , respectively. Fibers are incompressible, and moreover,

since in any �bered 3-manifold any incompressible surface in the homology class

of a �ber is isotopic to a �ber ([30], Theorem 4), the components representing b

are isotopic. Hence, given a layered triangulation T of M� , one obtains a layered

triangulation of M by gluing k copies of zT (ie. T cut along yZ) along k � 1
boundary components by the identity map, and then gluing back the ends by �.

Clearly, it is in the same non ambiguous class as T .
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(3) Let T be a layered triangulation of M . Denote by † the underlying

branched oriented surface (see Remark 5.12). The set of real 2-cycles on † 

surjects on H2.M; @M IZ/, and the subset HC.T / of non negative 2-cycles is

a piecewise linear rational cone in H2.M; @M IZ/. The interior C of HC.T /

consists of the full 2-cycles (with all positive coe�cients). We claim that it is non

empty. Indeed, any �ber Z of M is represented by a triangulated copy on † ,

that is, by a non negative 2-cycle with coe�cients 0 or 1. Then, by doing �ips (ie.

going through some tetrahedra of T ), one realizes new triangulated copies which

may have some triangles in common; all together they eventually determine a full

2-cycle, which is homologically an integer multiple of Z. Conversely, any full

2-cycle on † is dual to an integral non singular closed 1-form on M , and hence

is a �ber [30] (this follows also from the fact that the complement of a full 2-cycle

on † is a disjoint union of products). Then, any �ow . t / on M positively

transverse toZ is positively transverse to† , and hence to any surface represented

by an element ofHC.T /. Let T� be a layered triangulation ofM� . Since s D s�

we have HC.T / Š HC.T�/ (Proposition 5.11), so . t / is positively transverse

to the �bers of M� . Then, by Fried’s result M� and M must lie in the cone over

a same �bered face. �

This achieves point (1) in Theorem 1.1.

It can happen that mapping tori corresponding to di�erent �brations of M ,

even with non homeomorphic �bres, have nevertheless a common layered trian-

gulation. Hence they determine the same taut structure. By Theorem 1.2, for many

�bered cusped manifolds M this happens over the whole of some �bered faces of

the Thurston ball. We are going to discuss the proof, by following Agol’s argu-

ments [2].

Let us use again the notations introduced before Theorem 6.3. Assume that the

interior ofW has a �nite volume complete hyperbolic structure. The monodromy

of a �bration f in C.FW / is given by the isotopy class of the �rst return map

R. t /;S WS ! S , x 7!  t.x/.x/, where . t / is the pseudo-Anosov �ow associated

to FW , S is a �ber of f , and t .x/ > 0 is the smallest time such that  t.x/.x/ 2 S .

Denote by �S the (unique) pseudo-Anosov homeomorphism of S isotopic to

R. t /;S . The suspension of the singular points of �S is a link inW D S�Œ0; 1�=�S
transverse to the �bers. By varying S or the �bration f in C.FW /, one obtains

isotopic links. Hence, the cusped manifold M obtained from W by drilling out a

small regular neighborhood of these links is uniquely determined by the face FW ,

and by restricting to M the �brations f , one obtains �brations of M lying in a

determined face FM of the Thurston ball BM of M . The layered triangulations
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of M associated to a �ber Z of a �bration in the open cone C.FM / have pre-

branching co-orientations which are compatible with the �ow induced by . t /

on M .

Recall the de�nition of a veering triangulation (see Remark 4.7). The proof of

Theorem 1.2 follows from the following proposition.

Proposition 6.4. There is a unique triangulation of yM which is veering and

layered for any �bration over the face FM .

Proof. Consider a �ber S of a �bration f in C.FW / as above, and the pseudo-

Anosov homeomorphism �S WS ! S . Let .�; �/ be any measured train track on

S carrying the stable foliation Ls�S
of �S . Consider the sequence of maximal

splittings starting at .�; �/, that is, the sequence of positive forced ambiguous

�ips at edges of maximal �-weights (these are the �ips going from the left or

right picture to the middle one on the bottom of Figure 14; the sequence is unique

up to permutation of �ips of maximal �-weight). In [1], Theorem 3.5, Agol shows

that this sequence becomes periodic at some stage, up to the action of f and

rescaling of the measure �. Moreover, there is a common measured train track

in any two such sequences associated to two measured train tracks carrying Ls�S

([1], Corollary 3.4). Hence the periodic sequence of maximal splittings does not

depend on the choice of .�; �/. It gives rise to a taut ideal triangulation of the

cusped manifold M , which is layered for Z WD S n Sing.�S /, as described

before Proposition 6.3. Moreover, this triangulation is veering, and conversely,

any taut ideal triangulation which is veering and layered for some �bration is

associated to a periodic sequence of maximal splittings ([1], Proposition 4.2).

One has the same result if one uses the unstable foliation Lu�S
of �S , instead

of Ls�S
; the two layered veering triangulations for Lu�S

and Ls�S
coincide after a

pre-branching total inversion. By starting with ��1
S one obtains the same layered

veering triangulations, and taking a conjugate of �S yields a layered veering

triangulation which di�ers at most by a simplicial isomorphism. Hence, the

layered veering triangulation is uniquely determined by the �bration f . Let us

denote it Tf .

As in the proof of Theorem 6.3 (3), consider the cones Cf D Int.HC.Tf //

in H2.M; @M IZ/ associated to the �brations f 2 C.FM /. They form an open

cover of C.FM /. Consider one of these cones. Since it is rational, its boundary

contains an integral point. If this point lies in the interior of C.FM /, then it cor-

responds to some �bration g. As above, a multiple of it will be fully carried by

†f and†g , and soCf \Cg ¤ ;. IfCf ¤ Cg , an integral intersection point should
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be fully carried by the two triangulations Tf and Tg , which is impossible. Hence

the integral boundary points of Cf lie in @C.FM /, that is, Cf is the cone over FM

for every f 2 C.FM /. �

6.2. Sutured manifold hierarchies. The layered triangulations of mapping tori

can be recasted in the more general framework of sutured 3-manifolds [26]: the

initial sutured manifold .M0; 0/ is the mapping torus itself, M0 D Z � Œ0; 1�=�,

and the suture is the family of tori T .0/ formed by the boundary components

of M0 (no family of annuli A.0/); a �bre Z0 is a “styled surface” for .M0; 0/,

and we have a sutured manifold decomposition .M0; 0/!Z0
.M1; 1/ along Z0,

where

� M1 D M0 n U.Z0/ where U.Z0/ is the interior of a regular neighbourhood

of .Z0; @Z0/ in .M0; @M0/;

� the 1-decomposition of @M1 consists of the family A.1/ of annuli which

form the components of @M0 n .U.Z0/ \ @M0/, while R˙ consists of two

parallel copies of Z0 transversely oriented by the orientation of Œ0; 1�.

The construction of a layered triangulation ofM0 can be decomposed in two steps.

� De�ne the ideal region ı of .M1; 1/ as the union of the annuli A.1/. Then

use the construction of Section 6.1 to produce an ideal triangulation zT of the

space obtained from the sutured manifold .M1; 1/ by collapsing to one point

each component of the ideal region ı. The surfaces yR˙ are eventually unions

of ideal triangles.

� By means of the same procedure, �ll U.Z0/ to get a layered triangulation of

M0.

The general construction of taut ideal triangulations in [26] holds for any irre-

ducible 3-manifoldM0 such that @M0 is a non empty collection of incompressible

tori, and which admits furthermore a sutured manifold hierarchy

.M0; 0; ı0/
Z0�! .M1; 1; ı1/

Z1�! : : :
Zn�! .MnC1; nC1; ın/:

Let us recall a few main features of sutured manifold hierarchies.

(a) The suture 0 consists of the family T .0/ of boundary components of M0

(so there is no family of annuli A.0/), and ı0 D 0.
(b) Every .Mj ; j / is a taut sutured manifold with non empty boundary (in the

sense of De�nition 2.2 of [29]), such that no component of @Mj is left

untouched by the union of the family of tori T .j / and the family of annuli

A.j /.
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(c) Every ıj is an ideal region of .Mj ; j / consisting of all of T .j /, some com-

ponents of A.j /, and some “squares,” i.e. regions between two transverse

arcs in some component of A.j /, and it veri�es the following conditions:

� no component of A.j / is left untouched by ıj ;

� the spaces obtained from the surfaces R˙;j by collapsing to one point

each component of ıj admit triangulations whose vertices are among

the collapsed components;

� Mj contains no ıj -essential annulus (see page 12 of [26]).

(d) Every .Mj ; j / !Zj
.MjC1; jC1/ is the sutured manifold decomposition

along a styled proper surface Zj in .Mj ; j /, and ı1 D A.1/ [ T .1/,
ıjC1 D ıj \ .A.j / [ T .j //.

(e) H2.MnC1; @MnC1IZ/ is trivial.

Moreover the surface Z0 veri�es the following properties:

(i) every component of Z0 has negative Euler characteristic and non empty

boundary;

(ii) Z0 realizes the Thurston norm of its class in H2.M; @M IZ/;
(iii) for every component T of @M , T \ Z0 is made of essential and coherently

oriented parallel simple curves;

(iv) there is no properly embedded essential annulus in M0 disjoint from Z0.

Theorem 6.5 ([26]). If M0 is irreducible, has non empty boundary formed by

incompressible tori, and there is no properly embedded essential annuli inM , then

every non trivial element of the (necessarily non trivial) image ofH2.M0; @M0IZ/
inH1.@M0IZ/ can be represented by a surfaceZ0 verifying the properties (i)-(iv).

Moreover, every such a couple .M0; Z0/ can be included in a sutured manifold

hierarchy.

Note that the hypotheses on M0 are veri�ed if the interior of M0 carries a �nite

volume complete hyperbolic structure.

Given a sutured manifold hierarchy as above, the construction of a taut trian-

gulation of yM0 goes by induction backwards along the hierarchy. The last step is

as follows: by induction there is a taut triangulation of M1 with ideal region ı1.

ThenR� andRC, which are two parallel copies ofZ0, inherit ideal triangulations.

Fix a sequence of �ips connecting the two triangulations, and �ll in a taut triangu-

lated cylinder obtained via the same construction as for the layered triangulations.

We eventually get a taut triangulation of yM0.
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Let us call it a taut triangulation of yM0 dominated by the given hierarchy. The

hierarchy, and in particular the sequence of decomposing surfaces Z0; : : : ; Zn,

is an intrinsic structure obtained from M0. The arbitrary choices that eventually

can produce di�erent taut ideal triangulations ofM0 are of the same type already

encountered with layered triangulations.

Proposition 6.6. For every sutured manifold hierarchy emanating from M0, all

the taut triangulations of yM0 dominated by the hierarchy determine the same

element of �.M/.

This achieves point (2) in Theorem 1.1.

6.3. On Z=2-taut structures. There is simple procedure to construct manifolds

whose boundary is not necessarily made of tori, and carrying Z=2-taut triangula-

tions. Let .T; !/ be a taut triangulation of yM . Let e be an edge of T and Ne D e\M .

Then .T; !/ lifts to a Z=2-taut triangulation . zT; Q!/ of
yzM , where zM is a cyclic cov-

ering of M branched along e (if any). For example, let us place ourselves in the

situation of the beginning of Section 6.1. We say that a properly embedded arc

 in Z is essential if it can be realised as the truncature of an edge in an ideal

triangulation of yZ. Consider a layered triangulation .T; !/ of a mapping torus

M constructed by using such a triangulation. Then  is the truncature of an edge

of T and we can perform the above construction along  , obtaining a Z=2-taut

triangulation . zT; Q!/. One can prove that this de�nes a Z=2-taut structure s ; on

the so obtained manifold zM .

7. Relative non ambiguous and taut structures on pairs .M; L/

Assume thatM is closed and L is a non empty link inM . We are going to outline

a theory of relative non ambiguous structures, parallel to what we have already

done in the ideal case. In particular we will introduce a notion of relative taut

structure.

On the bubble move. Dealing with possibly non ideal naked triangulations of
yM (for instance when @M D ;), we must complete the naked transit equivalence

with the 0$ 2 bubble move which modi�es the set of vertices (see Figure 17).

A positive naked bubble move T ! T 0 applies at a 2-faceF of T , and produces

a 3-ball B triangulated by two tetrahedra glued along three 2-faces, so that the

boundary of B is triangulated by two copies of F glued along their boundary.
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Figure 17. Naked bubble move

We say that .T; !/ ! .T 0; !0/ is a bubble pre-branching ( pb-) transit if for

every 2-face F which is common to T and T 0 the ! and !0 co-orientations of F

coincide, and if the restriction of !0 on the boundary of B consists of two copies

of the restriction of ! to F . For a negative bubble move, the latter condition is

replaced by: the restriction of !0 on the boundary of B consists of two copies of a

same co-orientation on F . It is easy to see that every pre-branching ! on T gives

rise to three positive bubble pre-branching transits .T; !/! .T 0; !0
j /, j D 1; 2; 3;

in every case the two pre-branched tetrahedra of .T 0; !0
j / share their four square

edges, two of them being internal toB , two being boundary edges of the two copies

of F in T 0. Hence the three prebranching transits are obtained one from another

by simultaneous reversal of the !0
�-co-orientations of two oppositely co-oriented

2-faces among the three inner 2-faces of the 3-ball B . Although these are related

to each other by such evident symmetries, in a strict sense no bubble pb-transit

is “non-ambiguous”. We need some further input in order to select one. We are

going to do it in the framework of (relative) distinguished triangulations .T;H/

of pairs .M;L/. This kind of triangulations has been already used to construct the

QHI for .M;L/ [4].

By de�nition a distinguished triangulation .T;H/ of .M;L/ is formed by a

triangulation T of the closed manifold M and a Hamiltonian subcomplex H of

T .1/ isotopic to L. Then we have to consider naked distinguished triangulation

moves .T;H/$ .T 0; H 0/.

For every positive 2 ! 3 or lune move T ! T 0, every pair .T;H/ gives rise

to a distinguished move .T;H/ ! .T 0; H 0/ where H D H 0. The inverse moves

.T;H/  .T 0; H 0/ are by de�nition the negative distinguished 3 ! 2 or lune

moves.
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In order to enhance a positive bubble move T ! T 0 to some distinguished

bubble move .T;H/! .T 0; H 0/, we require that at least one edge e of the 2-face

of T involved in the move belongs to H ; e determines one internal 2-face of the

two new tetrahedra of T 0, having three boundary edges e, e0, and e00. Then we set

H 0 D .H n e/ [ e0 [ e00. Recall (see [4], and also [3] in a more general setting)

that the quotient set of distinguished triangulations of .M;L/ up to distinguished

moves encodes the topological type of .M;L/.

De�nition 7.1. Given a positive naked distinguished bubble move .T;H/ !
.T 0; H 0/ and a pre-branching .T; !/, the non ambiguous pre-branching (pb-)

enhancement .T;H; !/ ! .T 0; H 0; !0/ is the one among the three possible pre-

branchings w0 such that there are no abstract diagonal edges of .B; !0/ at both

edges e0 and e00, while the two abstract edges of .B; !0/ at e are diagonal. The

negative non ambiguous distinguished bubble pb-transit is de�ned consequently.

A (non ambiguous) distinguished ideal pb-transit is the relative enhancement of

an ordinary (non ambiguous) ideal pb-transit.

De�nition 7.2. The non ambiguous distinguished pb-transit equivalence on the

set of distinguished triangulations of .M;L/ is generated by isotopy and non

ambiguous distinguished pb-transits. We denote by NA.M;L/ the quotient set.

Every coset is a relative non ambiguous structure on .M;L/.

De�nition 7.3. A distinguished triangulation .T;H; !/ of .M;L/ is relative taut

if .T; !/ is a pre-branched triangulation, around every edge e 2 T .1/ nH there

are exactly two diagonal abstract edges, and around every edge e 2 H there are

no diagonal edges. We say that .T;H; !/ is relative Z=2-taut if .T; !/ is locally

taut and around every edge e 2 T .1/ nH there are diagonal edges.

Similarly to point (3) of Proposition 4.3 we easily prove the following result.

Proposition 7.4. If .T;H; !/ is a relative Z=2-taut triangulation of .M;L/ and

there is no diagonal edge around any edge ofH , then it is a relative taut triangu-

lation.

Let us come to the relative version of “charges.” Every triangulation T of M

can be considered as an ideal triangulation with respect to its set of vertices. So

the notions of Z- andZ=2-charges of Section 4 could be adopted as well. However

we have to modify the de�nitions because of the presence of the subcomplexH .

A Z-charge on .T;H/ is de�ned as in Section 4, with the di�erence that for

every edge e � H we require that the total charge C.e/ D 0 instead of C.e/ D 2.
Every Z=2-charge on T is also a Z=2-charge on .T;H/.
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Similarly to point (4) of Proposition 4.3 we have the following proposition.

Proposition 7.5. Every distinguished triangulation .T;H/ of .M;L/ carries

Z-charges.

The proof is not easy (see [4], and the references given for (4) of Proposi-

tion 4.3).

We say that a locally taut Z=2-charge  on T is Z=2-taut for the pair .T;H/

if around every edge of T .1/ nH , there are at least two 1-colored abstract edges.

Hence, .T;H; !/ is a relative Z=2-taut triangulation of .M;L/ if and only if the

Z=2-charge ! is taut for .T;H/. If .T;H; !/ is a relative taut triangulation, then

! is a Z-charge.

We can de�ne the quotient sets c.M;L;Z=2/ and c.M;L;Z/ of Z=2- or

Z-charged distinguished triangulations of .M;L/ up to charge transits, in the usual

way. Similarly to Proposition 4.4 we have the following proposition.

Proposition 7.6. The sets c.M;L;Z=2/ and c.M;L;Z/ encodeH 1.M IZ=2/: in

particular, for every class ˛ 2 H 1.M IZ=2/ and every distinguished triangulation

.T;H/ of .M;L/ there is a Z-charge on .T;H/ that realizes ˛.

Similarly to lemmas 4.5 and 4.6 we have the following lemma.

Lemma 7.7. Let .T;H; !/! .T 0; H 0; !0/ be any distinguished pb-transit (bub-

ble included). Then the following facts are equivalent:

(1) the transit is non ambiguous;

(2) the transit sends relative Z=2-taut triangulations to relative Z=2-taut trian-

gulations;

(3) the transit sends relative taut triangulations to relative taut triangulations.

Lemma 7.8. Every (necessarily non ambiguous) pb-transit

.T;H; !/ �! .T 0; H 0; !0/

(bubble included) of relative taut (resp. Z=2-taut) triangulations .T;H; !/ !
.T 0; H 0; !0/ induces a transits of Z- (resp. Z=2-taut) charges on .T;H/.

Hence, similarly to Proposition 4.8, we can de�ne the set �.M;L/�NA.M;L/

of relative taut structures on .M;L/, and there is a well de�ned map

hWNA.M;L/! H 1.M IZ=2/:
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Let .T;H; !/ be a distinguished pre-branched triangulation of .M;L/. For-

mally consider T as an ideal triangulation of M obtained by removing a small

3-ball around every vertex of T . Then @M is a union of 2-spheres Sj , with induced

branched triangulations .Kj ; bj /. For everyZ-charge c on .T;H/ and every sphere

Sj , there are exactly two vertices v
j
˙ of Kj with total charge C.v

j
˙/ D 0, while

the other vertices have total charge equal to 2. If the triangulation is relative taut,

then the combing associated to .Kj ; bj / on every sphere Sj can be represented by

a �eld having one source singular point at one of these special vertices, say v
j
C,

one pit at vj�, and is non singular elsewhere.

In the rest of the section we show how to construct relative taut triangulations.

Let us consider the following situation.

� Y is a 3-manifold such that @Y is a collection of tori. For simplicity we

assume that @Y is connected (the general case would be treated similarly).

� We denote by m a simple essential curve on @Y , considered up to isotopy.

Then M is the manifold obtained by Dehn �lling of Y , by attaching a solid

torus U D D�S1 along @Y so thatm is identi�ed with a meridian @D�¹s0º
of U ; L is the knot in M formed by the core of the solid torus. So we deal

with this couple .M;L/.

� We assume that yY is endowed with a taut triangulation .TY ; !Y /.

Our aim is to construct a distinguished triangulation .T;H; !/ of .M;L/ “strictly

related” to .TY ; !Y / and (relatively) taut.

Let us consider the standard spine PY of Y made by the 2-skeleton of the cell

decomposition of yY dual to TY . Fix a “normal retraction” r WY ! PY (the inverse

image of a regular point of PY is an interval, for a point in the interior of an edge

of PY it is a cone over 3 points, and for a vertex of PY it is a cone over 4 points).

Let D WD D � ¹s0º be a properly embedded meridian disk of U as above with

boundary @D D m � @Y .

De�nition 7.9. We say that the curve m is well placed (with respect to r) if it

veri�es the following properties.

(1) The restriction of r to m is an embedding in PY .

(2) The curve r.m/ does not pass through any vertex of PY and is transversal to

the edges of Sing.PY /.

(3) The curve r.m/ is subdivided in arcs, such that each arc has its endpoints on

Sing.PY / and its interior is contained in one component of PY n Sing.PY /.

(4) Every component of PY n .Sing.PY / [ r.m// is an open 2-disk.

(5) The mapping cylinder C of rjm is embedded in Y and intersectsPY only along

r.m/.
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Lemma 7.10. Up to isotopy we can assume that the curve m is well placed.

Proof. A simple argument of general position does not exclude the presence

of possible simple self-crossings of r.m/ in some regions of PY n Sing.PY /.

However such crossing points can be eliminated by sliding r.m/ on Sing.PY / and

introducing more points in Sing.PY / \ r.m/. So eventually (up to isotopy) r.m/

is embedded. �

The following Lemma is clear.

Lemma 7.11. Let the essential curve m � @Y be well placed with respect to the

normal retraction r WY ! PY . Let D D C [ D. Then PM WD PY [ D is the

standard spine dual to a triangulation T of M with one vertex. The knot L is

realized by the Hamiltonian subcomplex H of T .1/ formed by one edge e (with

identi�ed endpoints) dual to D.

So we have constructed a distinguished triangulation .T;H/ of .M;L/.

By duality, the other abstract edges of T correspond to the components of

PY n .Sing.PY / [ r.m//, the tetrahedra of T correspond to the vertices of PM .

Every vertex of PY persists in PM , while there is a “new” vertex each time the

curve r.m/ crosses an edge of Sing.PY /. Hence we have a natural inclusion of the

set of naked abstract tetrahedra of TY into the set of naked abstract tetrahedra of

T such that H is separated from the abstract edges of TY .

Next we want to de�ne a pre-branching ! on .T;H/ in such a way that it

agrees with !Y on the abstract tetrahedra of TY . Fix a weak branching Qb on TY

which induces !Y . We can assume that the germs of r.m/ [ Sing.PY / at every

point of r.m/\Sing.PY / are contained in a disjoint union of branched “butter�y”

neighbourhoods of some vertices ofPY . Fix an orientation of the region D of PM ,

hence of its boundary r.m/. It results that the portion of PM formed by the union

of D, those butter�ies, and a regular neighbourhood of r.m/ in PY is a branched

surface with boundary, having one vertex at each point of r.m/ \ Sing.PY /.

It induces a pre-branching on every “new” tetrahedron of T ; by keeping the pre-

branching !Y on every “old” tetrahedron of TY we have eventually de�ned a

pre-branching .T;H; !/ with the desired properties. The following Proposition

summarizes the properties of a distinguished pre-branched triangulation of .M;L/

such that T is dual to the spine PM WD PY [D and ! is obtained by implementing

the above procedure.
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Proposition 7.12. (1) The set of abstract pre-branched tetrahedra of .TY ; !Y / is

included into the set of abstract pre-branched tetrahedra of .T;H; !/.

(2) The abstract edges of .T;H; !/ around H do not belong to the abstract

edges of .TY ; !Y /.

(3) There is no !-diagonal edge at H .

Proof. Points (1) and (2) follow directly from the construction. As for (1), for-

getting the orientation of r.m/ and the !Y -orientation of Sing.PY /, at a branched

butter�y B around a point x of r.m/ \ Sing.PY / there are two possible con�gu-

rations:

� the arc of r.m/ is smoothly embedded in B (with respect to the branched

C 1-structure of B);

� the arc of r.m/ has a “cusp” at x.

By taking into account the orientations, there are 4 possible con�gurations. It is

easy to realize that in any case the abstract edge dual to D is not a diagonal edge,

and so we get the desired behaviour at H . �

Clearly point (3) above is among the tautness conditions. One might wonder

if any .T;H; !/ constructed in this way is a taut triangulation. Unfortunately

we have to strengthen our assumption. Let us analyse the possible position of

a well placed curve m with respect to the oriented train track � on @Y associated

to .TY ; !Y /. As this last is taut, every region, say R, of @Y n � is a bigon with two

cusp points corresponding to the two diagonal corners at the vertex of @TY dual

to R. The boundary of R is formed by two oriented smooth arcs joining the cusp

points. The retraction r maps the region R onto a region r.R/ of PY n Sing.PY /;

r�1.r.R//\@Y consists of two regions R and R0, dual to the endpoints of a same

truncated edge of TY ; every arc of r.m/ which intersects r.R/ lifts to an arc of m

in R or R0 joining two (generic) points of @R or @R0.

De�nition 7.13. An essential curve m 2 @Y is very well placed (with respect to

the retraction r) if it is well placed and moreover, for every region R of @Y n �
and every arc  of m traversing R, one of the following situations is realized.

(1) The arc  separates the two cusp points of @R.

(2) If the arc  does not separate the two cusp points of @R, then together with

a sub-arc � of @R,  [ � is the boundary of a bigon contained in R. Recall

that both � and  are oriented. So we require that one point of  \ � is a

source while the other is a pit.
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Finally we get the following result.

Proposition 7.14. Let the essential curve m � @Y be very well placed with

respect to the normal retraction r WY ! PY . Let .T;H; !/ be a distinguished pre-

branched triangulation of .M;L/ such that T is dual to the spine PM WD PY [D

and ! is obtained as described before Proposition 7.12. Then .T;H; !/ is a

relative taut triangulation of .M;L/.

Proof. We already know that every edge of H satis�es the tautness condition. It

remains to check it at every edge of T dual to a region of PY n .Sing.PY /[ r.m//.
We can do it inductively by implementing the following procedure. The initial

step: select an arc 0 of r.m/which intersects a region R0 of PY nSing.PY /, with

endpoints on Sing.PY /, and such that 0 is “innermost” among the arcs of r.m/

intersecting the region R0; that is, there is a subregion, say R0
0, bounded by the

union of 0 and an arc �0 contained in Sing.PY /, and there is no arc of r.m/ in

the interior of R0
0.

Since R0
0 cannot be cut by r.m/, it is dual to an edge e0 of T . By using the

fact that .TY ; !Y / is taut, looking at the two possible con�gurations of the inverse

image  of 0 in some region R of @Y , and the fact that m is very well placed, it

is not hard to verify that e0 veri�es the tautness condition, as well as the persistent

edges of TY . We iterate the procedure by adapting the above “innermost” criterium

to the partial subdivision PY n .Sing.PY /[ 0/, and so on. One by one we create

the edges dual to the regions of PY n .Sing.PY / [ r.m//, verifying at each step

the tautness condition. �

The hypothesis of the last proposition is not too demanding. For example we

have the following result.

Proposition 7.15. Let the essential curve m � @Y be positively transverse to the

oriented train track � of .@TY ; @!Y /. Then m is very well placed. Moreover, by

varying m by an isotopy through curves positively transverse to � , the associated

taut triangulations of .M;L/ determine the same relative taut structure.

Proof. As for the �rst claim, it is clear that only arcs of m which separate two

cusp points do occur. As for the second, such isotopies are generated by the local

ones where m crosses a vertex of � . One realizes easily that the corresponding

taut triangulations are related by a non ambiguous transit. �
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Remarks and questions. (1) Starting with a taut triangulation .T;H; !/ as

above, via non ambiguous transits (in particular the bubble ones) we can reach

taut triangulations of .M;L/ verifying further conditions, like having all edges

with distinct endpoints.

(2) A main question is: which essential curvesm on @Y can be made very well

placed, possibly by modifying .TY ; !Y / via non ambiguous transits?

(3) Another question concerns to what extent the taut class of .T;H; !/ can

vary (even assuming that the class of .TY ; !Y / is �xed). Note that there are several

arbitrary choices along the construction of .T;H; !/, the most relevant one being

the speci�c way m is made well placed and possibly very well placed.

8. The symmetry defect

We need to recall a few features of the QH triangulations of M or .M;L/ (see

eg. [8]). We assume at �rst thatM is a cusped manifold, and postpone the case of

pairs .M;L/ to Section 8.7.

A QH tetrahedron .�; b; w; f; c/ consists of an oriented branched tetrahedron

.�; b/ (hence with ordered vertices v0; v1; v2; v3) together with an ordered deco-

ration d D .d0; d1; d2/, where dj D .wj ; fj ; cj /, j 2 ¹0; 1; 2º, is associated to the

triple of couples of opposite edges. In fact,

(1) d0 labels the edge Œv0; v1� (and the opposite edge), d1 labels Œv1; v2�, and d2

labels Œv0; v2�;

(2) the shape parameters wj 2 C n ¹0; 1º verify wjC1 D .1 � wj /�1 (indices

j mod.3/);

(3) the �attenings fj 2 Z determine log branches lj WD log.wj / C fj i� such

that l0 C l1 C l2 D 0;
(4) the charges cj 2 Z satisfy c0 C c1 C c2 D 1.

By taking into account the 3-simplex sign �b, we say that w
�b

j and �blj are signed

shape parameters and log branches respectively.

A QH triangulation .T; Qb; w; f; c/ is a weakly branched ideal triangulation

.T; Qb/ made of QH tetrahedra satisfying the following global conditions at every

edge e of T :

� the total signed shape parameter at e, ie. the product of the signed shape

parameters around e, is W.e/ D 1;
� the total signed log branch at e, ie. the sum of the signed log branches around

e, is L.e/ D 0;
� c is a Z-charge on T , as in Section 4.
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The conditions W.e/ D 1 mean that the system of signed shape parameters is

a point of the gluing variety (ie. the algebraic set de�ned by the Thurston edge

equations) supported by the (naked) ideal triangulation T .

For every QH tetrahedron .�; b; w; f; c/ de�ne the triple w WD .w0;w1;w2/

of N th-roots of the shape parameters by

wk WD exp
� log.wk/C �i.N C 1/.fk � �bck/

N

�

; k D 0; 1; 2: (7)

Similarly as above, w
�b

k
is called a signed “quantum” shape parameter. Call

total signed quantum shape parameter W .e/ of an edge e of T the product of the

signed quantum shape parameters around e. Set �N WD exp.2i�=N/. We have the

relations:

� w0w1w2 D ���b
N�1

2

N ;

� W .e/ D ��1
N around every edge e of T .

The local symmetrization factor of .�; b; w; f; c/ is de�ned by

˛N .�; b; w; f; c/ WD .w�c1

0 w
c0

1 /
N�1

2

and the global symmetrization factor of T WD .T; Qb; w; f; c/ is

˛N .T / WD
Y

�2T .3/

˛N .�; b; w; f; c/:

8.1. Pre-branching dependence. We consider at �rst the behaviour of ˛N .T /

when only the weak branching varies.

Lemma 8.1. Let T and T 0 be QH triangulations which di�er only by their

weak branchings Qb and Qb0. If Qb and Qb0 induce the same pre-branching, then

˛N .T / D ˛N .T 0/.

Proof. This statement is of local nature, as we can pass from T to T 0 by chang-

ing the local branchings at some tetrahedra without changing the induced pre-

branching. Given a local pre-branching on an oriented tetrahedron � there are

four local branchings that induce it. The set of such local branchings is obtained

from a single one, say b, by reordering the vertices v0; v1; v2; v3 of� using the four

permutations of the set J4 WD ¹0; 1; 2; 3º that form the cyclic subgroup < � > of

the symmetric group S.J4/, generated by the cycle � WD .0; 1; 2; 3/. Let us assume

for instance that �b D 1 and compare ˛N .�; b; w; f; c/ and ˛N .�; b� ; w� ; f� ; c� /,

where b� is the branching obtained by applying � on b, while w� ; f� ; c� denote
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the result of reordering w; f; c with respect to b� . Note that �b�
D �1. So we

have

w� D .w�1
1 ; w�1

0 ; w�1
2 /; f� D .�f1;�f0;�f2/; c� D .c1; c0; c2/:

Hence ˛N .�; b� ; w� ; f� ; c� / is equal to

�

exp
� log.w�1

1 / � �i.N C 1/.f1 � c1/
N

��c0

exp
� log.w�1

0 / � �i.N C 1/.f0 � c0/
N

�c1
�.N�1/=2

D
�

exp
� log.w1/C �i.N C 1/.f1 � c1/

N

�c0

exp
� log.w0/C �i.N C 1/.f0 � c0/

N

��c1
�.N�1/=2

which in turn is equal to ˛N .�; b; w; f; c/. One proceeds similarly if at the

beginning we assume that �b D �1. �

So, given a QH triangulation T D .T; Qb; w; f; c/, we see that ˛N .T / depends

on Qb only through the underlying pre-branching !. Let us analyze now the ef-

fect of performing the total inversion of the pre-branching. For every branched

tetrahedron .�; b/ of .T; Qb/ with b-ordered vertices v0; v1; v2; v3, the total inver-

sion changes b by reordering the vertices by the permutation � D .0; 1/.2; 3/. Let

us compare ˛N .�; b; w; f; c/ and ˛N .�; b� ; w� ; f� ; c� /. Assume for example that

�b D 1; then also �b�
D 1. We see that

w� D w; f� D f; c� D c
so we obtain immediately the following result.

Lemma 8.2. Let T and T 0 be QH triangulations which di�er only by their weak

branchings Qb and Qb0. If the underlying pre-branchings di�er by the total inversion,

then ˛N .T / D ˛N .T 0/.

8.2. Transit invariance. Now we consider the behaviour of ˛N .T / under tran-

sits of QH triangulations .T; Qb; w; f; c/ ! .T 0; Qb0; w0; f 0; c0/. Such a transit is

supported by a wb-transit .T; Qb/ ! .T 0; Qb0/ and involves natural transition rules

of the whole decoration .w; f; c/ (see [5], Section 2.1.3). For the charges, these

rules have been reminded in Section 4; the transition rules for the log branches as-

sociated to .w; f / are formally the same, and act as a “logarithm” of the transition

rules of the shape parameters. As we can freely change the weak branching with-

out modifying the induced pre-branching, we can apply Lemma 3.5 and assume

that the wb-transit is locally branched.
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Proposition 8.3. Let .T; Qb; w; f; c/ ! .T 0; Qb0; w0; f 0; c0/ be a 2 $ 3 or lune

QH transit. Then we have ˛N .T; Qb; w; f; c/ D ˛N .T
0; Qb0; w0; f 0; c0/ if and only if

.T; Qb/! .T 0; Qb0/ is non ambiguous.

Proof. By lemmas 8.1 and 3.5, it is enough to check the claim for an arbitrarily

chosen locally branched transit .T; b/ $ .T 0; b0/ which covers the given pre-

branching transit. Assume at �rst that the latter is 2 $ 3 non ambiguous. Then

we can restrict to the remarkable b-transits pointed out before Lemma 3.5. The

invariance of ˛N .T / in this case was already an important fact used in Theorem

5.7 of [5], where we sketched the proof. For the sake of completeness we give

here all the details in the case of Figure 3 (the other case is similar). Let us write

the local symmetrization factor of a QH tetrahedron .�; b; w; f; c/ with �b D 1

in the form

˛N .�; b; w; f; c/

WD .w�c1

0 w
c0

1 /
.N�1/=2

D exp
�N � 1

2

�

� c1
l0

N
C c0

l1

N

��

exp
�

i�
N � 1
2

.�c1f0 C c0f1/
�

:

Denote by l
j

k
the k-th log branch of the tetrahedron opposite to the j -th vertex

according to the vertex ordering de�ned by the branching of Figure 3, and sim-

ilarly c
j

k
and f

j

k
for the charges and the �attenings. The products of the local

symmetrization factors corresponding to the tetrahedra involved in the QH transit

are

.�1/N�1
2
.f 1

0
c1

1
Cf 1

1
c1

0
Cf 3

0
c3

1
Cf 3

1
c3

0
/ exp

�N � 1
2N

.�c11 l10 C c10 l11 � c31 l30 C c30 l31 /
�

before the transit, and

.�1/N�1
2
.f 0

0
c0

1
Cf 0

1
c0

0
Cf 2

0
c2

1
Cf 2

1
c2

0
Cf 4

0
c4

1
Cf 4

1
c4

0
/ exp

�N � 1
2N

. � c01 l00 C c00 l01
� c21 l20 C c20 l21
� c41 l40 C c40 l41 /

�

after the transit. Let us consider the exponential terms and prove that

� c11 l10 C c10 l11 � c31 l30 C c30 l31 D �c01 l00 C c00 l01 � c21 l20 C c20 l21 � c41 l40 C c40 l41 : (8)
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The QH transit implies the relations

l30 D l20 C l40 ; c30 D c20 C c40 ;
l31 D l00 C l41 ; c31 D c00 C c41 ;
l40 D l11 � l01 ; c40 D c11 � c01 ;
l20 D l10 � l00 ; c20 D c10 � c00 ;
l21 D �l02 � l42 D l00 C l01 C l40 C l41 ; c21 D 2� c02 � c42 D c00 C c01 C c40 C c41 :

Taking the di�erence of both sides of (8) and substituing these identities we get

� c11 l10 C c10 l11 C c01 l00 � c00 l01 � .c00 C c41/.l10 � l00 C l11 � l01 /
C .l00 C l41 /.c10 � c00 C c11 � c01/C .c00 C c01 C c40 C c41 /.l10 � l00 /
� .c10 � c00/.l00 C l01 C l40 C l41 /C c41.l11 � l01 / � l41 .c11 � c01/:

Cancelling terms this gives

� c11 l10 C c10 l11 � c00 l11 C c11 l00 C .c01 C c40 /.l10 � l00 / � .c10 � c00/.l01 C l40 /
D c11.l20 � l10 /C l11 .c10 � c20/ � c00 l11 C c11 l00
D 0:

The same argument proves that the signs are equal, by working with coe�cients

mod.2/ and replacing the log branches with the �attenings.

Consider now a 2 $ 3 QH transit with underlying ambiguous pre-branching

transit. Again it is enough to consider any compatible branching transit. An

instance is obtained by applying the transposition .12/ on the vertex ordering

induced by the branching of Figure 3. This transposition alters only the local

symmetrization factors of the QH tetrahedra opposite to the 3-, 0- and 4-vertex,

that it multiplies by

.w3
1 /

1�N
2 ; .w0

0 /
N�1

2 ; .w4
1 /

1�N
2

respectively. Since w
3
1 D w

0
0w

4
1 , we have .w3

1 /
1�N

2 ¤ .w0
0 /

N�1
2 .w4

1 /
1�N

2 , and so

˛N .T / is not invariant in this case.

The proof for the lune transits is based on similar computations. �
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8.3. Boundary QH triangulations. Let T D .T; Qb; w; f; c/ be a QH triangula-

tion of M . Our next task is to study the behaviour of ˛N .T / when c varies. Let

us recall from [8] that

� the system of shape parameters w encodes a PSL.2;C/-character � WD �.w/
of M ;

� the charge c encodes a pair of bulk and boundaryweights, hc 2H 1.M IZ=2Z/
and kc 2 H 1.@M IZ/;
� the pair .w; f /, and equivalently the system of log-branches, encodes an-

other pair of bulk and boundary weights, hf 2 H 1.M IZ=2Z/ and kf 2
H 1.@M IC/.

The weights hc , kc (resp. hf , kf ) satisfy certain natural compatibility conditions.

Let us remind a few details about the actual computation of these weights from

.w; f; c/. Concerning the charge c, we did it in the proof of Proposition 4.4; with

the same notations, simply set kc D .c/ and hc D  0
2.c/. Given .w; f /, the

construction of .kf ; hf / is similar. Namely, as in the proof of Proposition 4.4:

represent any non zero class in H1.@M IZ/ by normal loops, say C , with respect

to @T ; if the triangle F of @T is a cusp section of the tetrahedron� of T , for every

vertex v of F we denote by Ev the edge of � containing v, and de�ne the index

ind.C; v/. Moreover, we denote by �v the branching sign of�. Finally one de�nes

the cohomology class kf 2 H 1.@M IC/ by setting

kf .ŒC �/ WD
X

C!Ev

�v ind.C; v/l.Ev/

D
X

C!Ev

�v ind.C; v/.log.w.Ev//C �
p
�1f .Ev//

(9)

Hence, the formula is very similar to the one given for the charge in Section 4.4,

simply here we take the signs �b into account. The other classhf 2 H 1.M IZ=2Z/
is de�ned similarly, by using normal loops in T and taking the sum mod.2/

of the �attenings of the edges we face along the loops. Denoting by dw 2
H 1.@M IC=2i�Z/ the log of the linear part of the restriction of �.w/ to �1.@M/,

for all a 2 H1.@M IZ/ we have

kf .a/ D dw.a/ mod.i�/; .kf .a/ � dw.a//=i� D hf .a/ mod.2/: (10)

We will study ˛N .T / again via a holographic approach. Let .T; Qb; w; f; c/
be a QH triangulation of M . By Lemma 8.1 we know that the symmetrization
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factors ˛N .T / can be computed by using any weak branching Qb compatible with

the underlying pre-branching !. So we can normalize the choice of Qb by requiring

that �b D 1 on every branched tetrahedron .�; b/ of .T; Qb/.
Referring to Figure 18, near each of the four vertices of .�; b/, the picture

shows the corresponding branched triangle of .@T; @!/, with the naturally induced

ordered decoration of the corners, denoted by @d . Note that we have chosen one

of the two positively branched tetrahedra that induce the same pre-branching; it

is immediate that the boundary corner decoration does not depend on this choice.

So we have de�ned a correspondence

T D .T; Qb; d/ �! .@T; @!; @d/DW @T :

For every triangle � WD .t; @!; @d/ of @T set

wk WD exp
� log.wk/C �i.N C 1/.fk � ck/

N

�

; k D 0; 1; 2

˛0N .�/ D ˛0N .t; @!; @d/ WD .w�c1

0 w
c0

1 /
N�1

2

and de�ne

˛0N .@T / D
Y

�2@T

˛0N .�/: (11)

Figure 18. Boundary QH triangulations.



814 S. Baseilhac and R. Benedetti

The following Lemma is immediate.

Lemma 8.4. ˛0N .@T / D ˛N .T /4.

So, up to multiplication by 4th-roots of 1, the symmetrization factor is com-

pletely determined by @T .

8.4. Flattening and charge invariance. We use the notations of Section 8.3.

Proposition 8.5. Let T D .T; Qb; w; f; c/ and T � D .T; Qb; w; f; c�/ be two

QH triangulations encoding a same tuple .M; �; h; k/, and di�ering only by the

charges c and c�. Then ˛0N .@T / D ˛0N .@T
�/. Moreover, up to multiplication by

a N -th root of 1 the value of ˛0N .@T / is the same for any �attening f (hence also

for any weight .hf ; kf / compatible with the holonomy �).

Proof. The last claim is clear from the formula of ˛0N .@T /. Let us consider the

situation where c� ¤ c. As explained in Section 8.3 we can assume that .T; Qb/ is

normalized by requiring that �b D 1 on every branched tetrahedron .�; b/. Let us

subdivide .K; b/ D .@T; @!/ by a branched triangulation .K 0; b0/, as suggested in

Figure 19. Denote by .Z; b0
Z/ the subcomplex of .K 0; b0/ formed by the union of

the “central” triangles � 0 of K 0, lying inside all triangles � of K. By confusing a

complex with its support, we have an inclusion i WZ ! @M , which induces a map

i�WH 1.@M IC/! H 1.ZIC/.
Set a WD c�c�, that is, label each abstract edge of T (hence each corner of each

triangle of @T ) with the di�erence of its values by c and c�. De�ne a 1-cochain a

onZ as indicated in Figure 19, where the ordering of the labels aj follows from the

one shown in Figure 18. Actually a is a 1-cocycle. De�ne another 1-cochain l
onZ by replacing aj with the log branch lj for every j . By restricting � to @M we

get a conjugacy class of representations �w W�1.@M/ Š Z � Z ! A�.C/, where

A�.C/ is the group of complex a�ne transformations of the plane. The linear part

of �w de�nes a class in H 1.@M IC�/. Let ıw 2 H 1.@M IC=2i�Z/ be the log of

this class, with imaginary part in ���; ��. The boundary weight kf 2 H 1.@M IC/
is a lift of the class ıw in the sense that, for every a 2 H1.@M IZ/, we have (see [8],

Section 4C)

kf .a/ D ıw.a/ mod.i�/:

Then we realize that

Œl � D i�.kf /; Œa� D i�.kc � kc�/:
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Figure 19. The subcomplex Z.

De�ne the 2-chain

cZ D
X

� 02Z

��� 0:

Using the factorization formula of ˛N .�; b; w; f; c/ at the beginning of the proof

of Proposition 8.3, we see that

˛0N .@T /˛
0
N .@T

�/�1 D exp
�

2
.N � 1/
N

.l [ a � a [ l /.cZ/
�

:

Assume that kc D kc� ; then there exists a 0-cochain � on Z such that a D ı�.

By the formula of the cup product of cochains and the fact that l is a cocycle we

deduce

˛0N .@T /˛
0
N .@T

�/�1 D exp
�

2
.N � 1/
N

.�l [ � � � [ l /.@cZ/
�

: (12)

Now, .l[�C�[l/.@cZ/ is the sum of the scalars�.v/l.e/, where v ranges over

the vertices of Z and e is an edge of Z having v among its endpoints (so there are

four such scalars for each v). Here is a complete description of �. Since hc D hc�

and kc D kc� , one can obtain the charge c from c� by local modi�cations taking

place in the abstract stars of some edges of T (see the proof of Proposition 4.4).

As viewed from @M , such a modi�cation can be described equivalently on the

abstract stars in @T of the endpoints x of the edge, in terms of 1-cochains on Z.

Namely, consider the cochain c� encoding kc� , de�ned similarly as a above,
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by replacing aj by c�
j for every j . Then a modi�cation about x changes c�

by the coboundary of a Z-valued 0-cochain �x, supported by the vertices of Z

“around” x, that is, the endpoints of the edges of Z “facing” x in the triangles

� 2 Star@T .x/. By de�nition, �x takes the same value on all such vertices.

We have� DP

x �x, where x ranges over the endpoints of the edges about which

c� is modi�ed.

For instance, if the bottom left triangle of Figure 19 represents � , and x is its

bottom left vertex, then �x is supported in � by the endpoints of the segment

labelled by a1; if �x equals n 2 Z at these vertices, then its coboundary changes

c� by substracting n on the edges labelled by a0 and �a2.
One readily checks that the contribution of .l [ � C � [ l /.@cZ/ coming

from the edges of Z in the star of x is a multiple of 2
P

e l .e/, where e spans the

set of edges of Z facing x. By the log-branch condition about the edges of T , this

is 0. Since these contributions are disjoint (there is no common contribution), this

proves .l [ �C � [ l /.@cZ/ D 0. �

We stress that the proof of Proposition 8.5 is not of cohomological nature

(the 2-chain cZ is not a cycle). We have worked at the chain-cochain level, and this

re�ects the fact that the symmetry defects (and the reduced QHI) are genuinely

geometric invariants.

Remarks 8.6. The de�nition of ˛0N .�/ depends only on the boundary trace @T

of the QH triangulation T , so that its global 3D entanglement is immaterial. This

suggests that the functions ˛0N might belong to a certain “free” 2D QH theory.

However, though they verify a statement analogous to (1) of Theorem 1.6, there is

no clean statement analogous to (2) because there are b-sliding transits between

2D QH triangulations for which ˛0N is not invariant. It is the entanglement of the

system of 2D transits induced by 3D transits which ensures the invariance of ˛0N
in that case (by Proposition 8.3). A quite complicated “free” 2D theory for ˛0N
can nevertheless be developed on some quotient set of 2D QH triangulations.

8.5. Proofs of Theorem 1.6 and 1.10. Theorem 1.6 (1) follows directly from

Lemma 8.1, Lemma 8.4 and Proposition 8.5, and (2) follows from Proposition 8.3.

The proof of the �rst claim of (3) is then immediate, by using the factorization

formula (3) in the Introduction. As for the second claim, note that the reduced state

sums are just functions of the quantum shape parameters (7), and that these depend

only on the system of fused �at/charges fk ��bck mod.N / (the only independent

contributions of the charges in the unreduced state sums being concentrated in

the symmetrization factors). On another hand, any two pairs of �attening weights
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.hf ; kf / and .h0
f ; kf / compatible with � and di�ering only by the bulk weights hf

and h0
f are realized on every tetrahedron by �attenings fk and f 0

k WD fk C ak,
ak 2 Z, such that the weights associated to the system a of integers ak are

.a/ D 0 2 H 1.@M IZ/ and  0
2.a/ D h0

f �hf 2 H 1.M IZ=2Z/ (this follows from

the arguments at the end of the proof of Proposition 4.8 (2) and 4.9 (2) in [8], that

we have recalled brie�y in Proposition 4.4 and 8.5). Since N is odd, the system

Na has the same weights, and hence also the �attenings fk C Nak realize the

weight .h0
f ; kf /. However, by the previous observation the reduced state sums

take the same values on these �attenings and on the �attenings fk. Hence they

do not depend on hf . The same argument works for the charge weights. Finally,

the formulas (4) and (9) imply immediately that the boundary weight associated

to the fused �at/charges fk � �bck is � WD kf � �ikc . This concludes the proof

of Theorem 1.6.

Consider now Theorem 1.10. If one applies to ˛0N .@T / the arguments of

Proposition 8.5, but �xing c and changing the choice of log-branch system l�

to l , we get the formula

˛0N .@T /˛
0
N .@T

�/�1 D exp
�

2
.N � 1/
N

..� [ c C c [ �/.@cZ/

� .� [ ıc C ıc [ �/.cZ//
�

(13)

where � is a 0-cochain on Z such that ı� D l�l� . Then, by following the rest of

the proof with these substitutions we see that the contribution of .� [ c C c [
�/.@cZ/ on the edges e of Z around a vertex x is a multiple of

P

e c.e/ D 2 ¤ 0.
If only f varies when changing l� to l , then � takes values in �iZ, and hence

.�[cCc[�/.@cZ/ 2 2�iZ, like the other term in the exponential. This makes

˛0N .@T / well de�ned up to an N -th root of 1. On another hand, if also w varies,

then � takes values in C, and we have no control on the variation of ˛0N .@T /.

We correct this issue by considering ˛0N;c0
.@T / WD ˛0N .@T /=˛0N .@Tc0

/, instead of

˛0N .@T /. From (13) we deduce

˛0N;c0
.@T /˛0N;c0

.@T �/�1 D exp
�

2
.N � 1/
N

.� [ a C a [ �/.@cZ/
�

(14)

where a WD c � c0; note that a is a 1-cocycle. Since
P

e a.e/ D 0, by following

the proof as before we get that ˛0N;c0
.@T / is eventually a function of kf and kc�k0c .

8.6. Proofs of corollaries 1.8 and 1.11. Consider the proof of Corollary 1.8.

Let both .T; Qb; w; f; c/ and .T 0; Qb0; w0; f 0; c0/ be two QH triangulations encod-

ing .M; �; h; k/ and such that .T; ! Qb
/ and .T 0; ! Qb0

/ represent the non-ambiguous

structure s. Let .T; Qb/! � � � ! .T 0; Qb0/ be a sequence of non-ambiguous transits.
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By Theorem 6.8 of [5] (in the case of cusped manifolds) and the results of Section 7

of [8] (that allow to deal with weak branchings Qb which are not global branchings),

one derives a sequence of QH transits .T; Qb; w; f; c/! � � � ! .T 0; Qb0; w0; f 00; c00/,

where possibly f 00 and c00 di�er from f 0 and c0. On another hand, the system

of shape parameters w0 is determined uniquely, as follows (see the proof of The-

orem 4.16 of [8] for details). Suppose �rst that M has a single cusp. Then one

assumes that the gluing variety of T (and similarly T 0) has some rich irreducible

component Z, which means that Z contains a point whyp representing the com-

plete hyperbolic structure of M and the regular map assigning its holonomy to a

point w 2 Z is a birational isomorphism �WZ ! X , where X is the geometric

component of the variety of PSL.2;C/-characters ofM (for instance, a rich com-

ponent exists if T is a subdivision of the Epstein-Penner cellulation ofM ). Then,

by taking w 2 ��1.�/, � 2 X , the uniqueness of w0 follows from the fact that the

QH transits preserve the holonomy. IfM has several cusps, rich components map

birationally to the eigenvalue subvariety E of X (see eg. [25] for the de�nition),

and the conclusion is the same for w 2 ��1.�/, � 2 E. Finally, by (2) and (1) of

Theorem 1.6 we have

˛N .T; Qb; w; f; c/D ˛N .T 0; Qb0; w0; f 00; c00/

and

.˛N .T
0; Qb0; w0; f 00; c00//4N D .˛N .T 0; Qb0; w0; f 0; c0//4N :

This proves the �rst claim of Corollary 1.8 (1), by noting that Lemma 8.4 and The-

orem 1.6 (1) imply the invariance of ˛N with respect to the choice of .hc ; hf ; kf /.

The second claim follows from it and the formula (3) in the introduction.

Point (2) is merely a reformalization of (1). When M has a single cusp, the

covering space zXN is de�ned precisely in [8], Theorem 1.1. Brie�y, by varying �

in X and � among the fused weights compatible with �, one describes a covering

space ofX made of the sheets of the (multivalued) mapX ! C
��C� assigning to

� a pair of N -th roots of eigenvalues of � on basis elements of �1.@M/. TheseN -

roots are rational expressions in the quantum shape parameters w , w 2 ��1.�/.

When M has p > 1 cusps, we get similarly a covering space of the eigenvalue

variety E of X , made of the sheets of the product map X ! .C� �C
�/h over the

boundary components of M .

Corollary 1.11 follows from Proposition 8.3, applied to the normalized sym-

metrization factors, and Theorem 1.10. Indeed, the latter shows that ˛0N;c0
.@T /

depends only on kf and kc � k0c , these are preserved by QH transits, and any two

QH triangulations encoding a same tuple .M; kf ; kc; s/, with M as in the state-

ment, can be connected via sequences of non ambiguous QH transits. This last
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fact is proved as explained above, but without the need of the rigidity argument

because only the weights contribute to ˛0N;c0
.@T /. Finally, the last claim is proved

like (2) above, noting that ˛0N;c0
factors through the map ¹QH triangulations ofM

with �xed weight kc � k0c º ! H 1.@M;C�/ given by T 7! exp.4kf =N/.

Remark 8.7. There is an important di�erence between the invariance proof of

the QHI and the proof of Corollary 1.8 (for the reduced QHI). In the latter one

uses the invariance of the symmetry defect, for which a crucial role is played by

global considerations like the charge invariance in Proposition 8.5. On another

hand for the QHI one uses the full transit invariance of the QH state sums. They

may involve ambiguous transits, whereas by Proposition 8.3 these do not preserve

the values of the symmetry defect, hence also of the reduced QHI.

8.7. The case of pairs .M; L/. Similarly to Proposition 8.3, for bubble transits

we the following lemma. (The proof follows by very similar computations.)

Lemma 8.8. Let .T;H; Qb; w; f; c/ ! .T 0; H 0; Qb0; w0; f 0; c0/ be a QH bubble

transit. If .T; Qb/! .T 0; Qb0/ is non ambiguous, then

˛N .T; Qb; w; f; c/D ˛N .T 0; Qb0; w0; f 0; c0/:

We show at �rst that the non normalized symmetry defects of pairs .M;L/

are in general ill-de�ned. Consider a knot L in S3, represented as the closure of a

planar “vertical” braid diagram B oriented from bottom to top. In [7], Lemma 3.2,

we described a procedure which associates to B a QH distinguished triangulation

TB, suited to compute the QHI of .S3; L/ (note that .�; h; k/ is trivial in that

case). The charge of TB is the ”Yang-Baxter charge” �xed in Section 3.3 of [7].

Moreover, every branched tetrahedron of TB carries the same shape parameters

and �attenings, given by .w0; f0; f1/ D .2; 0;�1/. If the knot diagram of L is

alternating, then in Section 2.5 of [7] we show that these shape parameters and

�attenings are the particular case at a D �i of a family .w0; f0; f1/a, depending

on a generic complex parameter a, and de�ning QH triangulations TB.a/ that work

as well. Eventually we have w0 D 4a=.aC 1/2 (so that w1 D .aC 1/2=.a� 1/2),
while .f0; f1/ is given by a so called canonical log-branch. For simplicity let us

just compute the absolute value j˛N .TB.a//j. This is a function of jw0j and jw1j,
and we can forget the �attening. By a direct computation we get

j˛N .TB.a/j D
� 1

N
p

jw0j2
�

N

r

ˇ

ˇ

ˇ

w1

w0

ˇ

ˇ

ˇ

�2C

.
N
p

jw1j/2s
�.N�1/=2
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where C is the number of crossing of B and s the number of strands. It is clear

that j˛N .TB.a/j varies with a. The same examples also prove the claim (2) in

Remark 1.14.

Next we prove Proposition 1.13. Consider a tuple .M;L; �; hI s/; recall that �

is an arbitrary conjugacy class of representations of �1.M/ into PSL.2;C/, and

h D .hf ; hc/ is an arbitrary pair of bulk weights on .M;L/. Then, there exist QH

distinguished triangulations T encoding .M;L; �; hI s/, see [4] and [5]; the only

modi�cation of this notion with respect to the case of a cusped manifoldM is that

now c is a Z-charge of the pair .M;L/, as in Section 7. The proof of Theorem 1.10

applies now to the spherical components of @M . Then kf D kc D k0c D 0. In

particular ˛N;c0
.T /4 does not depend on c, and so, by taking c D c0, we get

˛N;c0
.T /4 D 1. If s is a taut structure and c D c0 is the charge tautologically

carried by s, this yields ˛N .T /
4 D 1. The conclusion then follows from (3) (the

independence on h is proved like in Theorem 1.6 (3)).

9. Examples

We will use di�erent ways to encode the weak branchings or the pre-branchings,

and in particular the so called N -graphs de�ned in [8]. We refer also to [8] for

details about gluing varieties. Concerning the symmetry defects, let us recall that,

by Corollary 1.12, in the case of a taut structure s they are computed up to 4-th

roots of 1 by the symmetrization factor of any QH triangulation representing s.

For non taut structures the symmetry defects are de�ned only up to multiplication

by 4N -th roots of 1.

9.1. A “trivial” example. For every n � 1, denote by Fn an oriented surface

of genus 1 with n boundary components, and by yFn the surface obtained by

collapsing to one point each boundary component of Fn. Hence yFn is a torus

F with a set Pn of n marked points. The product manifold M WD F1 � S1 is

the simplest example of a manifold with boundary a single torus S , and carrying

in�nitely many di�erent �brations.

Many �brations. We consider a family ¹Mn D M n
ºn�1 of realizations of M

as mapping tori of orientation preserving di�eomorphisms  nWFn ! Fn, which

extend to homeomorphisms y n of yFn so that the set Pn is y n-invariant. They are

de�ned as follows. We put  1 D id; so M1 is the tautological product �bration

of M . For every n � 1 realize yFn as the quotient R2=.nZ � Z/; a fundamental
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domain of the action is Rn D Œ0; n� � Œ0; 1�. The set Pn is given by the n classes

of the points in Rn \ Z
2. The translation �.x; y/ D .x C 1; y/ of R2 induces the

automorphism y n of yFn.

The layered triangulations. For every n � 1, decompose the domain Rn in n

squares Qj D Œj; j C 1� � Œ0; 1�, j D 0; : : : ; n � 1. By means of the diagonal

edge Œ.j; 1/; .j C 1; 0/�, every Qj is triangulated by two triangles. This induces

a triangulation of the domain Rn and eventually an ideal triangulation Hn of yFn.
Starting with Hn, we can construct taut triangulations Tn of yM which are layered

with respect to the mapping torus structure Mn. As Hn is y n-invariant, a “full”

sequence of �ips which connects Hn to y n.Hn/ can be formed by 3n couples of

�ips and inverse �ips at every edge ofHn. In order to specify Tn it is then enough

to �x an ordering e1; : : : e3n of the edges ofHn. We �x such an ordering by lifting

it to Rn, accordingly to the following rules:

� in every squareQj we consider the ordered edges Œ.j; 1/; .j C 1; 0/�; Œ.j; 0/,
.j C 1; 0/�; Œ.j C 1; 0/; .j C 1; 1/�;

� these 3n edges of Rn correspond bijectively to the 3n edges of Hn. If E, E 0

are among them, E � Qj and E 0 � Qi for j < i , then E < E 0.

For every edge ek, k D 1; : : : ; 3n of Hn, the associated couple of �ip and

inverse �ip carries a polyhedron Bk made of two pre-branched tetrahedra of Tn,

like the one resulting from a positive non ambiguous lune move. We denote by

�˙;k the two tetrahedra of Bk, where the label “C” (resp. “�”) indicates that

the co-orientation of the two free 2-faces goes in (resp. out) Bk . We �x a weak

branching Qb on Tn which is compatible with the pre-branching and such that the

local branching bk induced on every tetrahedron has sign �b D 1. We use it to

“name” the usual decorations on the tetrahedra; for instance

w.˙; k/ D .w.˙; k/0; w.˙; k/1; w.˙; k/2/

will denote the shape parameters on .�˙;k; bk/, and so on. Every truncated

polyhedron Bk carries 8 triangles of the boundary triangulation @Tn.

We denote by ı.˙; k/r , r D 0; 1; 2; 3, the triangle obtained by truncation of the

r th vertex of the branched tetrahedron .�˙;k; b˙;k/. We can assume that ı.C; k/1
and ı.�; k/2/ (resp. ı.C; k/3 and ı.�; k/0) have two common edges and their

union is like the result of a sliding 2D bubble move; ı.C; k/0 and ı.�; k/1 (resp.

ı.C; k/2/ and ı.�; k/3) have one common edge.
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The boundary triangulations. In Figure 20 we show a planar fundamental do-

main R1 for @T1. As usual, the opposite vertical boundary sides are identi�ed, as

well as the opposite horizontal boundary sides, in order to produce a triangulated

torus S . Let us denote by @T 0
1 the triangulation obtained from @T1 by performing

all evident negative 2D sliding bubble moves.

In Figure 21 we show a fundamental domainR0
2 for @T 0

2 , de�ned similarly. The

rule to go back to a domain R2 relative to @T2 is clear. In both �gures, if a triangle

is labeled by .˙; k/, it means that it has been obtained by truncating a vertex of

the tetrahedron �˙;k. For the pairs of triangles which form the bubbles this is

understood.

On R1 we have also indicated some vertex indices (by omitting to write “ı”).

On R0
2 we omit the vertex indices because they are not essential in the next

discussion. R1 or R0
1 plays the role of a “basic tile”: by forgetting the labels, R0

2

is formed by two copies of R0
1 adjacent along a vertical side, and in general Rn

or R0
n is formed by n copies of R1 or R0

1 adjacent along n� 1 vertical sides. The

rule for the triangle labels can be naturally extended from R2 to an arbitrary Rn.

In the �gures we have also indicated a “vertical” generator � and a “horizontal”

generator � of the fundamental group of the torus S . They do not depend on n.

In particular � is isotopic to @F1 � @M . For every n the boundary combing is the

one induced by the foliation by simple curves parallel to �.

One taut structure. It is clear that all these mapping toriMn belong to the same

ray inH2.M; @M IZ/ and that the layered triangulation constructed so far forMnm

is also a layered triangulation for bothMn andMm. Hence all these non equivalent

�brations of M (they have non homeomorphic �bres) actually represent a single

taut structure on M .

The gluing varieties. We encode characters � of the mapping toriMn by points

in the gluing varieties associated to the triangulations Tn. The gluing varietyG.T1/

is eventually de�ned by the following system of independent equations:

w.C; k/jC1 D 1=.1 �w.C; k/j /; j D 0; 1; 2 mod.3/;

w.�; k/2 D w.C; k/�12 ;

where k 2 ¹1; 2; 3º. So it is a non singular algebraic set of complex dimension 3,

isomorphic to .C n ¹0; 1º/3n. The gluing variety G.T2/ contains the set de�ned by

the equations

w.C; k/jC1 D 1=.1 �w.C; k/j /; j D 0; 1; 2 mod.3/;

w.�; k/2 D w.C; k/�12 ;
w.˙; k/j D w.˙; k C 3/j ; j D 0; 1; 2 mod.3/;
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Figure 20. The triangulation @T1.

Figure 21. The triangulation @T 0

2 .
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where k 2 ¹1; 2; 3º. Again this set has complex dimension 3. In general, every

gluing variety G.Tn/ contains a similar 3-dimensional subset. For every n, the

data w.C; k/2 D exp.i�=3/, k D 1; : : : ; 3n, determine a point in such a subset.

Let us call it the special shape system. For every n it encodes a �xed character �0

of �1.M/.

On �attenings. For every n, let us denote by c� the Z-charge tautologically

carried by the taut triangulation Tn. It is easy to see that f� de�ned by

f� .˙; k/ D �c� .˙; k/
is a �attening of the special shape system. The boundary weight determined by

the associated log-branches is trivially equal to zero for every n.

On charges. Every charge on Tn is of the form c D c� C  ,  being a solution

of the homogeneous linear system associated to the de�ning equations of Z-

charges. We �x a distinguished set of charges c D c.a; b/ by setting, for every

k D 1; : : : ; 3n,

.C; k/2 D a; .C; k/0 D b; .C; k/1 D �.aC b/
.�; k/j D �.C; k/j ; j D 0; 1; 2

where a and b are free parameters. As for every j 2 ¹0; 1; 2º there is an equal

number of terms .C; :/j and .�; :/j , the charge edge relations are automatically

satis�ed. The boundary weight of c.a; b/ is given by

kc.�/ D �6a; kc.�/ D �.2aC 4b/n:

On the symmetry defect. Let us endow Tn with the special shape system,

the special �attening f� , and a charge c.a; b/. Then Tn becomes an ideal QH

triangulation Tn.a; b/ of yM , which encodes some tuple .M; �0; h; k/ whose c-

weights vary with .a; b/.

Let us compute the symmetrization factors. For simplicity we specialize the

charges by setting a D 0. Then the contribution of every Bk to ˛N .Tn.0; b// is

equal to

exp
� i�

3N
� i�.N C 1/b

N

�b.N�1/=2

exp
� i�

3N
C i�.N C 1/b

N

�b.N�1/=2

exp
��i�
3N
C i�.N C 1/b

N

��b.N�1/=2

exp
��i�
3N
� i�.N C 1/b

N

��b.N�1/=2

D exp
�4bi�

3N

�

:
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Hence

˛N .Tn.0; b// D
�

exp
�4bi�

3N

��3n.N�1/=2

:

Given Tn and Tm, n ¤ m, then Tn.0; m/ and Tm.0; n/ encode the same boundary

c-weight and eventually

˛N .Tn.0; m// D
�

exp
�4mi�

3N

��3n.N�1/=2

D
�

exp
�4ni�

3N

��3m.N�1/=2

D ˛N .Tm.0; n//
as it must be! It is not hard to see that the same happens for every Tn.a; b/ and

Tm.a; b
0/, for every choice of a, b and b0 such that .2aC b/n D .2aC b0/m.

9.2. Three taut structures on the �gure-eight knot complement. Let M8 be

the complement of an open tubular neighbourhood of the �gure eight knot in S3.

It is a cusped manifold with a single realization as a mapping torus M , with

once punctured genus 1 �bre. The minimal ideal triangulation T of yM8 has two

tetrahedra. We are going to show that it carries three taut structures represented

by pre-branchings .T; !j /, j 2 ¹0; 1; 2º, where Œ.T; !0/� D s . In doing it, we will

test the various invariants of non ambiguous structures that we have introduced.

Let us start with .T; !1/. In Figure 22 the system of edge arrows speci�es the

2-face identi�cations that produce yM8, as well as a (genuine) branching .T; b/.

Set .T; !1/ WD .T; !b/. The labels a; b; : : : ; m; n in the �gure show also the

identi�cations of the sides of the triangles that form @T . From now on we will

refer to the tetrahedron on the right (resp. left) side as�C (rest. ��). The various

decorations of the edges of�C (resp. ��) shall be denoted by capital (resp. small)

letters. The top picture in Figure 23 shows an N -graph �1 representing .T; b/; as

b is a branching, the edge Z=3-colors are equal to 0, hence omitted. The bottom

picture shows the decoding of the graph in terms of a regular neighbourhoodN.P /

of Sing.P / in P , the internal spine of M8 dual to .T; b/. The triangulation T has

two edges as well as N.P / has two boundary components, each one being the

boundary of an embedded disk contained in P n Sing.P /, and dual to one edge

of T . At every vertex of N.P / we see a distribution of the pre-branching colors

A;B;D; the rule depends on the sign �b D ˙1, and the color on the opposite

branch of N.P / at the crossing is understood. The colors along every component

of @N.P / re�ect the distribution of the abstract edges of .T; !1/. These facts hold

in general for every N -graph representing a weakly branched triangulation .T; Qb/
(see [8]). Then one easily checks that .T; !1/ is taut, and moreover it veri�es the

property that the two diagonal (abstract) edges at every edge of T belong to a

single tetrahedron.
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Figure 22. .T; b/ inducing .T;!1/.

Figure 23. The N -graph �1.



Non ambiguous structures and quantum symmetry defects 827

Next we turn to .T; !0/. Every pair of N -graphs representing a given trian-

gulation T are connected by a �nite sequence of moves of two types: either local

moves at a dotted crossing that do not change the underlying pre-branching; or in-

version of the orientation of a circuit of the graph together with a correction of the

Z=3-colors on the edges that form the circuit (see [8] and [13]). By just reversing

the orientation of one circuit in �1, we get the N -graph �0 of a weakly branched

triangulation .T; Qb/; see Figure 24. Set .T; !0/ WD .T; ! Qb
/. As Qb is only a weak

branching, there are non trivial Z=3-colors and orientation con�icts along some

components of @N.P /. We see that also .T; !0/ is taut. Di�erently from .T; !1/,

the two diagonal edges at each edge of .T; !0/ belong to di�erent tetrahedra. By

looking at the triangulations themselves, without passing to the dual picture, we

see that Qb is obtained from b by applying the transposition .0; 1/ on the (locally)

ordered vertices v0; : : : ; v3 of the tetrahedron �� of .T; b/, and the transposition

.2; 3/ on �C.

Figure 24. The N -graph �0.
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Finally let us apply respectively the permutation .0; 2; 1/ on the vertices of��

and the permutation .0; 3; 2/ on the vertices of �C of .T; b/. In this way we get a

further weak branching .T; Qb0/. Set .T; !2/ WD .T; ! Qb0
/. It is also taut, and has the

same properties as .T; !1/ stated above.

In Figure 25 we show (a fundamental parallelogram of) the branched boundary

triangulations .@T; @!j /, for j 2 ¹1; 0; 2º, from top to bottom in that order. On

.@T; @!0/ the edges are labelled by a; b; c; : : : ; m; n, referring to Figure 22 (this

is understood in the other two cases). The �gure shows also the train track �j

carried by .@T; @!j /, and a couple �; � of generators of H1.@M8IZ/ (the train

track orientation is shown only on a few arcs for future use).

Figure 25. Boundary triangulations.

Computation of @H C.T; !j /. Consider the truncated cell decomposition ofM

derived from T as in Section 5.6, and the integer weights of the truncated 2-faces,

ie. hexagons. The integer weight of such a hexagon H induces a labelling of the

three edges of @T contained in @H . So let us �x the following correspondence
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“triples of triangle edges 7! indeterminate integer weights”:

¹a; d; lº �! x; ¹c; i; nº �! y; ¹b; g; eº �! z; ¹h; f;mº ! t:

The relations between tuples x; y; z; t � 0 that de�ne the non negative 1-cycles

on .@T; @!j / are, respectively,

� j D 1: z D �x; t D �y ;

� j D 0: z D x; t D y;

� j D 2: z D �x; t D �y.

It is easy to verify that @HC.T; !0/ spans the rank 1 submodule of H1.@M8IZ/
generated by �, while @HC.T; !j / D ¹0º for j 2 ¹1; 2º. So, certainly Œ.T; !0/� ¤
Œ.T; !j /� for j 2 ¹1; 2º, but for the moment the last two are confused.

The taut structure Œ.T; !0/� D s . It follows immediately that the branched

surface of .T; !0/ carries a full positive 2-cycle. Hence, accordingly with [26], it

determines a �bration which in this case is unique, and the full cycle is a multiple

of the �bre. The branched surface carries also a non negative cycle with boundary

� that realizes the �bre, hence � is the canonical longitude. Strictly speaking,

.T; !0/ is not a layered triangulation of M in the sense of Section 6.1, but it

becomes one via a non ambiguous lune move. So Œ.T; !0/� D s .

Remark 9.1. As @HC.T; !j / D ¹0º for j 2 ¹1; 2º, these two taut structures on

M8 cannot be obtained as in Theorem 1.1 (1) or (2). It is well-known that M8 con-

tains another properly embedded orientable incompressible and @-incompressible

surface, which has the boundary slope  D ˙4�C �, where the sign depends on

the meridian orientation (see Chapter 4 of Thurston’s notes). This surface satis�es

the hypothesis of [26], Theorem 2. So it can be incorporated in a hierarchy Z as

in Theorem 1.1 (2). Then s ¤ sZ because  does not belong to @HC.T; !0/.

Cohomological invariants. Let cj be the canonicalZ-charge carried by .T; !j /.

By using Figure 25 it is easy to compute the corresponding boundary weight kcj .

� For every j 2 ¹0; 1; 2º, kcj .�/ D 0.
� kc0.�/ D 0, kc1.�/ D 2, and kc2.�/ D �2.

Hence, the cohomological invariants @h.�/ distinguish the three taut structures

Œ.T; !j /�, and it is also excluded that one is obtained from another via the total

inversion involution.
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Comparison of boundary combings. The combing determined by the bound-

ary oriented train track of the branched surface of .T; !j / is transverse and

equivalent to the combing �j . So we can compare these combings by consid-

ering the oriented curves carried by the �j ’s. By using the curves of this type

shown in Figure 25, we realize that the primary obstruction �.�0 � �j / D �,

j 2 ¹1; 2º. Hence, like for HC.�/, the boundary combings distinguish Œ.T; !0/�

from Œ.T; !j /�, j D 1; 2, but these last two are not distinguished.

Symmetry defects. Let c0 be as above the Z-charge of .T; !0/. We know that

the corresponding boundary weight kc0 D 0, and that for any QH triangulation

T0 D .T; Qb; w; f; c0/, ˛N .T0/ D 1. With respect to the ordering of the charge

entries determined by .T; Qb/, and with the “capital vs small letters” convention

stated above, we have that c0 is given by

.c0; c1; c2/ D .C0; C1; C2/ D .0; 0; 1/:
Let us place ourselves at the complete structure, so that the ordered shape param-

eters on .T; Qb/ start with

w0 D exp.i�=3/; W0 D exp.�i�=3/:
Let us �x the �attening with ordered entries with respect to .T; Qb/ given by

.f0; f1; f2/ D .0; 0;�1/; .F0; F1; F2/ D .0; 0; 1/:
Let us rename these data with respect to .T; b/ and .T; Qb0/ respectively.

� On .T; b/ we have

w0 D exp.�i�=3/; W0 D exp.i�=3/;

.c0; c1; c2/ D .0; 1; 0/; .C0; C1; C2/ D .0; 1; 0/;
.f0; f1; f2/ D .0; 1; 0/; .F0; F1; F2/ D .0;�1; 0/:

� On .T; Qb0/ have

w0 D exp.�i�=3/; W0 D exp.i�=3/;

.c0; c1; c2/ D .1; 0; 0/; .C0; C1; C2/ D .0; 1; 0/;
.f0; f1; f2/ D .1; 0; 0/; .F0; F1; F2/ D .0;�1; 0/:

Let us denote by T0, T1 and T2 the resulting QH triangulations supported by

.T; Qb/, .T; b/ and .T; Qb0/. They obviously represent a same tuple .M8; �hyp; h; k/.

By computation we get

˛N .T1/ D 1; ˛N .T2/ D exp
�

� 2i�
3N

�.N�1/=2

:

These values separate Œ.T; !1/� from Œ.T; !2/� and Œ.T; !0/� from Œ.T; !2/�.
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Let us consider now the canonical charge c1. We specify the corresponding

QH triangulations T 0
0 and T 0

1 supported by .T; Qb/ and .T; b/ as follows.

� T 0
1 is given by

w0 D exp.�i�=3/; W0 D exp.i�=3/;

.c0; c1; c2/ D .0; 0; 1/; .C0; C1; C2/ D .0; 0; 1/;
.f0; f1; f2/ D .0; 1; 0/; .F0; F1; F2/ D .0;�1; 0/:

� T 0
0 is given by

w0 D exp.i�=3/; W0 D exp.�i�=3/;
.c0; c1; c2/ D .0; 1; 0/; .C0; C1; C2/ D .1; 0; 0/;
.f0; f1; f2/ D .0; 0;�1/; .F0; F1; F2/ D .0; 0; 1/:

Then we get

˛N .T
0
1/ D 1; ˛N .T

0
0/ D exp

�

� 2i�
3N

�.N�1/=2

:

Again, this separates Œ.T; !1/� from Œ.T; !0/�. Moreover, we can conclude that if

i ¤ j then Œ.T; !j /� is not related to Œ.T; !i/� via the total inversion involution.

9.3. Three non ambiguous structures on the �gure eight knot’s sister. De-

note by M s
8 this cusped manifold. In Figure 26 we show a N -graph �0 and its

decoding, which represent a weakly branched triangulation .T; Qb0/ of M s
8 , sup-

ported by the minimal triangulation T with two tetrahedra. Note by the way that

T does not carry any genuine branching. Set .T; !0/ WD .T; ! Qb0
/. This is the

unique taut triangulation supported by T . One can see that HC.T; !0/ D ¹0º, so

it does not represent the taut structure de�ned by the �bration of M s
8 .

In Figure 27 we show (left to right) two other N -graphs �j , j 2 ¹1; 2º, rep-

resenting weakly branched triangulations .T; Qbj / of M s
8 . Set .T; !j / D .T; ! Qbj

/.

They are not taut. Denote by �C (resp. ��) the tetrahedron of T dual to the top

(resp. bottom) dotted crossing of the graphs. We adopt the“capital vs small let-

ters” convention as above. Note that .T; Qb1/ is obtained from .T; Qb0/ by performing

the permutation .0; 2; 3/ on the ordered vertices of both�C and��. Also, .T; Qb2/
is obtained by performing the transposition .2; 3/ on both tetrahedra �C and ��

of .T; Qb1/.
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Figure 26. The N -graph �0 for M s
8 and its decoding.

Figure 27. Two more N -graphs for M s
8 .



Non ambiguous structures and quantum symmetry defects 833

We are going to use the symmetry defects in order to distinguish the non

ambiguous structures represented by the pre-branched triangulations .T; !j /. Let

c0 be the tautological Z-charge on the taut triangulation .T; !0/. As usual, for

every QH triangulation T0 D .T; Qb0; w; f; c0/ we have ˛N .T0/ D 1. Let us place

ourselves at the complete structure on M s
8 . Consider the following speci�c QH

triangulation T1 supported by .T; Qb1/:
� W0 D w0 D exp.i�=3/;

� .C0; C1; C2/ D .c0; c1; c2/ D .1; 0; 0/;
� .F0; F1; F2/ D .f0; f1; f2/ D .�1; 0; 0/.

Clearly the charge is just c0 renamed with respect to .T; Qb1/. Now let us rewrite

these data with respect to .T; Qb2/, getting a QH triangulation T2:

� W0 D w0 D exp.�i�=3/;
� .C0; C1; C2/ D .c0; c1; c2/ D .1; 0; 0/;
� .F0; F1; F2/ D .f0; f1; f2/ D .1; 0; 0/.
Finally

˛N .T1/ D exp
�

� 10i�
3N

�
N�1

2

; ˛N .T2/ D exp
�10i�

3N

�
N�1

2

:

Again these values are di�erent up to multiplication by 4N -th roots of 1, so T1

and T2 represent distinct non ambiguous structures.

9.4. Six taut structures on the Whitehead link complement. Denote by M

the complement of an open tubular neighborhood of the Whitehead link L in S3.

We use the ideal triangulation T of yM provided by SnapPea [16] or Regina [14].

It has four tetrahedra �0; : : : ; �3 shown from left to right and top to bottom in

Figure 28; the face pairings are indicated by the symbols and the orientations on

the edges, and by the letters on the faces.

By using eg. Regina, we see that T carries 10 taut angle structures. Only six of

them are compatible with some pre-branchings, and for each one, there is only one

compatible pre-branching up to the the total inversion involution. These taut pre-

branchings are depicted in Figure 29; let us denote them .T; !j /, j D 0; : : : ; 5.

For each graph, the vertices represent the tetrahedra �0; : : : ; �3 and the edges

represent the 2-faces of T , as labelled in the top left graph. So these graphs are

just obtained from usual N -graphs by forgetting the informations at the dotted

vertices.
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Figure 28. The triangulation T of the Whitehead link complement.

Figure 29. Graphs showing the six taut pre-branchings !j on T , up to total inversion.
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It is easy to determine the cyclically ordered sequences of 2-faces given by

the pre-branching co-orientations about the edges of T . For instance, the pre-

branching .T; !0/ gives (the numbers between arrows correspond to the tetrahedra

to which the faces belong to):

� sequence for the edge with no symbol:

1
E�! 2

G�! 3
B�! 0

A � 1I

� sequence for the edge with symbol �:

0
C�! 2

H�! 3
F�! 1

D � 0I

� sequence for the edge with symbol ı:

3
F�! 1

A�! 0
D�! 1

E�! 2
C � 0 A � 1 D � 0 B � 3I

� sequence for the edge with symbol �:

2
G�! 3

F�! 1
E�! 2

H�! 3
G � 2 C � 0 B � 3 H � 2:

In particular, the �rst two sequences show that the diagonal edges of �0 are the

common edges of the faces A, B and C , D, the last two show that the diagonal

edges of �3 are the common edges of the faces B , F and H , G, and so on.

Computation of H C.T; !j /. Denote by a small letter “h” the integer weight of

a hexagonH of the cell decomposition of M obtained from T , as in Section 5.6.

The relations between the integer weights of the non-negative relative 2-cycles on

.T; !j / are, respectively,

� HC.T; !0/: a D e C g C b, d D c C hC f , b C c D f C e;
� HC.T; !1/: b D c D d D e D f D h D 0, a D g;

� HC.T; !2/: b D c D a D e D f D g D 0, h D d ;

� HC.T; !3/: b D c D a D e D f D g D 0, h D d ;

� HC.T; !4/: b D c D d D e D f D h D 0, a D g;

� HC.T; !5/: g D aC b C e, h D c C d C f , b C f D c C e.
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For j 2 ¹1; : : : ; 4º, HC.T; !j / is a cone of H2.M; @M IZ/ of rank 1, generated

by a surface of Euler characteristic �1 (by a D g D 1 or h D d D 1 it has 2

triangles and 3 edges); we will see that it has one boundary component, so it is

a once punctured torus. For j D 0 or j D 5, HC.T; !j / is more complicated.

To identify the class in H2.M; @M IZ/ of a surface carried by HC.T; !j /, it is

enough to look at the circuit de�ned by its boundary on the triangulations of the

two boundary components of M induced by T ; these triangulations are shown in

Figure 30, with the meridians �0 and �1 (dotted line, �0 being in the top picture)

and the canonical longitude �0 and �1 (dashed line, �0 being in the top picture).

A label ij inside a triangle indicates that it is the boundary section of the i-th

tetrahedron near its j -th vertex; the ordering of the vertices of tetrahedra is the

same as for SnapPea: in Figure 28, for each tetrahedron the vertex 3 is the top

one, and the vertices 0, 1, and 2 are in clockwise order starting from the bottom

left vertex. The branching @!0 on @T is also shown. By the rule of Figure 18 it is

immediate to label the corners of each triangle with the decorations dj .

Figure 30. The triangulations of the boundary components, with the branching @!0.
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Doing similarly with each of the �ve other branchings @!j , we �nd that the

surfaces generating HC.T; !j /, j 2 ¹1; 4º, are bounded by (a curve isotopic

to) ��1, and those generating HC.T; !j /, j 2 ¹2; 3º, are bounded by �0. Let

us denote their classes by s2 and s3 respectively. A surface fully carried by

.T; !0/ is given by b D c D e D g D h D 1, which gives a D d D 3

and f D 1. It is bounded by the curves �0 C 3�0 and �2�1 � 2�1, and so its

class s1 2 H2.M; @M IZ/ Š H1.LIZ/ has the coordinates .3;�2/ in the basis

.�0; �1/. Similarly, the class s4 of the surface fully carried by .T; !0/ given by

a D b D c D d D e D 1 has the coordinates .�2;�3/.
The classes s1, s2, s3, and s4 and the Thurston ball BM (determined in [30])

are shown in Figure 31. The classes s2 and s3 are vertices of the Thurston ball BM

of M ; s1 and s4 lie in the cones over two distinct and non opposite faces of BM .

The classes obtained from them by totally reversing the pre-branchings lie in the

opposite vertices and �bered faces, respectively.

Figure 31. BM and a few classes of surfaces carried by one of the taut triangulations.

Cohomological invariants. One obtains immediately the weight of the canon-

ical charge cj of the taut triangulation .T; !j / by looking at Figure 30, for j D 0,
and the analogous �gures corresponding to the branchings @!j , j 2 ¹1; : : : ; 5º
(the corners corresponding to diagonal edges, hence where cj D 1, have one in-

coming edge and one outgoing edge on the boundary of the triangle it belongs to).
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We get:

� kc0 is identically 0;

� kc1.�0/ D kc1.�1/ D kc1.�1/ D 0 and kc1.�0/ D 2;
� kc2.�0/ D kc2.�1/ D kc2.�0/ D 0 and kc2.�1/ D 2;
� kc3.�0/ D kc3.�1/ D 0, kc3.�0/ D �1 and kc3.�1/ D �2;
� kc4.�0/ D kc4.�1/ D kc4.�1/ D 0 and kc4.�0/ D �2;
� kc5 is identically 0.

Hence the the invariants @h.�/ do not distinguish .T; !0/ from .T; !5/.

The symmetry defects. They are given on .T; !j / as functions of the charge c

and the system w of quantum shape parameters. Assuming that we take compati-

ble weak branchings Qbj normalized so that �b D 1 for each tetrahedron, the edge

relations satis�ed by c and w are (�rst comes the equation associated to the edges

� or with no symbol, and then comes the one for the edges ı or˝; see the relations

before (7) in Section 8)

w
2
0w

0
2w

1
2w

3
0 D e� 2i�

N ; .w0
0 /
2
w
1
1w

2
2w

3
2 ; .w

1
0 /
2
w
0
1 D e� 2i�

N ;

and

c20 C c02 C c12 C c30 D 2; 2c00 C c11 C c22 C c32 C 2c10 C c01 D 2:

Besides these relations, there are also the tetrahedral ones, ck0 C ck1 C ck2 D 1,

k 2 ¹0; : : : ; 3º, and w
k
0w

k
1w

k
2 D �e�=N . We see that the gluing variety of shape

parameters has complex dimension 2, and that the rank of the lattice of charges

with given bulk and boundary weights hc and kc is equal to

2 D 4 � .2 charges per tetrahedron/ � .2 edge relations/ � .4 weight relations/:

Let us denote by Tj D .T; Qbj ; w; f; c/ a QH triangulation ofM supported by T

with induced pre-branching !j . By using the tetrahedral relations and comparing

the decorations dj as viewed from the di�erent boundary branched triangulations

.@T; @!j /, we get easily (we put � WD exp.2i�=N/):

˛N .T0/˛N .T5/
�1 D

�

w
2
1w

3
1

w
0
0w

1
0

.��N�1
2 /c

0
0

Cc1
0

�c2
1

�c3
1

�.N�1/=2

;

˛N .T0/˛N .T1/
�1 D

�

w
1
1w

2
1

w
3
0

.��N�1
2 /c

3
0

�c1
1

�c2
1

�.N�1/=2

;

˛N .T0/˛N .T2/
�1 D

�

w
1
1w

3
1

w
2
0

.��N�1
2 /c

2
0

�c1
1

�c3
1

�.N�1/=2

;
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and so on. By specializing at the complete structure, for instance, where w20 D
w02 D w12 D w30 D i , and choosing some charge and �attening, one can verify

easily that the values are ¤ 1, so that the symmetry defects distinguish the taut

structures de�ned by the !j ’s.

10. Appendix: the reduced Turaev–Viro invariants

The construction of reduced Turaev–Viro (TV) invariants is much simpler than

that of reduced QHI, because their arguments are just compact connected oriented

3-manifoldsM , possibly with non empty boundary. Indeed we slightly modify our

set up as follows.

� We consider only oriented compact 3-manifolds M with non empty bound-

ary, and we stipulate that either @M has no spherical component, or @M is

connected and consists of one spherical boundary component. The closed

manifolds are covered by this latter case.

� We use ideal triangulations of yM , hence we exclude the bubble move.

� We deal with the TV invariants of manifolds with boundary already con-

sidered in [10] (where they were related to the Witten-Reshetikhin-Turaev

invariants of the “double” D.M/), and recently reconsidered in [15].

Let us recall the main features of these invariants. Fix an integer level r � 3,
and q0 such that q WD q20 is a primitive r th root of 1. We have the set of half integer

colors

Ir D ¹0; 1=2; 1; 3=2; : : : ; .r � 3/=2; .r � 2/=2º:
For every positive real number x, we denote by x1=2 the positive square root; then

for x < 0 we have x1=2 D
p
�1jxj1=2. For every integer m � 1, set

Œm� D qm0 � q�m
0

q0 � q�1
0

2 R; Œm�Š D Œm�Œm � 1� � � � Œ1�:

For every j 2 Ir , set

wj D
p
�12j Œ2j C 1�1=2; w D

p
2r=jq0 � q�1

0 j:
A r-TV-tetrahedron .�; b; �/ consists of

� a branched tetrahedron .�; b/ and

� an Ir -coloring � of the edges of �.

We require furthermore that � is admissible, that is

� for every 2-face F , the sum of the colors of the edges of F is � r � 2, and the

colors satisfy all triangular inequalities.



840 S. Baseilhac and R. Benedetti

As usual, the branching b corresponds to an ordering v0; v1; v2; v3 of the

vertices of �. If Fk is the 2-face opposite to the vertex vk , then the edges of

Fk are ordered as usual: e0;k D Œvs; vt �, e1;k D Œvt ; vh�, e2;k D Œvs; vh�, where

s < t < h 2 ¹0; 1; 2; 3º n ¹kº. We will denote by �i;j the color that � gives to the

edge ei;j .

The basic 6j -symbol Sq0
.�; b; �/ is a scalar denoted by

Sq0
.�; b; �/ WD

²

�2;3 �1;2 �1;3

�0;1 �0;3 �0;2

³

:

It is not important to give here the explicit formula, which is derived from

the representation theory of the “small” quantum group xUq.sl2.C// (see [32]).

Figure 32 shows four branched tetrahedra that share a same pre-branching and

carry the 6j -symbol
²

u t m

s p n

³

:

Figure 32. I -labelling of .�; b/.
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The symmetrized 6j -symbol Zq0
.�; b; �/ is de�ned by

Zq0
.�; b; �/ WD

ˇ

ˇ

ˇ

ˇ

�2;3 �1;2 �1;3

�0;1 �0;3 �0;2

ˇ

ˇ

ˇ

ˇ

WD .w�0;2
w�1;3

/�1
²

�2;3 �1;2 �1;3

�0;1 �0;3 �0;2

³

: (15)

Here, by “symmetrized” we mean that the value of Zq0
.�; b; �/ is the same for

any branching b on �.

A r-TV-triangulation T D .T; Qb; �/ of yM consists of a weakly branched

triangulation .T; Qb/ equipped with an Ir -coloring � of the edges of T .1/, such

that every branched tetrahedron .�; b/ of .T; Qb/ inherits a structure of r-TV-

tetrahedron. Each � is also called a r-state of .T; Qb/. Clearly, for every .T; Qb/
there is only a �nite number of r-TV-triangulations .T; Qb; �/. De�ne the TV state

sum and the reduced TV state sum by

jT; Qbjq0
WD

X

�

�

Y

e2T .1/

w2�.e/

�

Zq0
.T; Qb; �/; jT; Qbjred

q0
WD

X

�

Sq0
.T; Qb; �/; (16)

where

Zq0
.T; Qb; �/ D

Y

�2T .3/

Zq0
.�; b; �/; Sq0

.T; Qb; �/ D
Y

�2T .3/

Sq0
.�; b; �/;

and � ranges over the set of r-states of .T; Qb/.

Remark 10.1. There is an important di�erence between the TV and the QHI local

symmetrization factors. In the TV case, they are the scalars ˛q0
.�; b; �/ WD

.w�0;2
w�1;3

/�1 in (15), which depend on the r-state � . This and the factor
Q

e2T .1/ w2�.e/ in (16) imply that it is no longer true that the state sums jT; Qbjq0

di�er from the reduced ones jT; Qbjred
q0

just by a global symmetrization factor.

The naked ideal triangulation moves can be enhanced automatically to TV-

transits .T; Qb; �/$ .T 0; Qb0; � 0/, de�ned by imposing that � 0 and � coincide on the

common edges of T and T 0. The main result of [32] is that

jM jq0
WD jT; Qbjq0

is a well de�ned real valued topological invariant ofM . The proof is based on the

fact that the TV state sums are fully TV-transit invariant.

Remark 10.2. The choice of q0, and not only r , is far to be immaterial. For

example, if r is odd, both q0 D exp.i�=r/ and q0 D exp.2i�=r/ are possible

choices. Let M have non trivial boundary, eg. take M D M8 as in Section 9.



842 S. Baseilhac and R. Benedetti

In [15] one can �nd evidences that, for the �rst choice of q0, jM jq0
has polynomial

growth when r is odd and r ! C1, accordingly with the Witten asymptotic ex-

pansion conjecture for the Witten–Reshetikhin–Turaev invariant WRTq0
.D.M//

of the double of M (see [10]). On the other hand, jM jq0
grows exponentially for

the second choice of q0.

We can formulate the analog of Theorem 1.6 as follows.

Theorem 10.3. (1) For every ideal triangulation .T; Qb/ of yM , the value of the re-

duced state sum jT; Qbjred
q0

depends only the underlying pre-branched triangulation

.T; ! Qb
/. Moreover, it is invariant under the total inversion of the pre-branchings.

(2) If .T; Qb/ and .T 0; Qb0/ are ideal triangulations of yM such that .T; ! Qb
/ and

.T 0; ! Qb0
/ represent the same non ambiguous structure onM , say s, then jT; Qbjred

q0
D

jT 0; Qb0jred
q0

.

Hence there are well de�ned reduced TV invariants jM I sjred
q0

, which are in-

variant under the natural total inversion involution on the set of non ambiguous

structures.

Proof. A change of the weak branching that preserves or reverses totally the

pre-branching does not modify the TV local symmetrization factors, because

.w�0;2
w�1;3

/�1 does not depend on the colors of the square edges. So Theo-

rem 10.3 (1) follows immediately.

As for the TV transits, let us just consider the 2 ! 3 one (things are similar

with the lune move). It is enough to prove that

Sq0
.T; b; �/ D

X

� 0

Sq0
.T 0; b0; � 0/ (17)

whenever .T; b/! .T 0; b0/ is one of the two remarkable b-transits described be-

fore Lemma 3.5, and the move .T; b; �/ ! .T 0; b0; � 0/ varies among its TV en-

hancements. We realize that (17) is the Biedenharn–Elliot identity that arises from

the representations theory of xUq.sl2.C//. This achieves also Theorem 10.3 (2). �

It is interesting to recover the proof of Theorem 10.3 (2) in a way which

points out also a holographic content, in the sense of what we have developed

in Section 5. Every triple .T; !; �/ as above restricts naturally to a boundary “TV

branched triangulation” .@T; @!; @�/, where @� is the Ir -coloring of the vertices of

@T induced by � . For every such a colored 2D branched triangulation .@T; @!; @�/

and every vertex v of @T , let Cv be the 2-cell dual to v. De�ne

˛TV.@T; @!; @�/D
Y

v2@T

w
Eub.Cv/

@�.v/
:

A simple rewriting of the formulas shows the following lemma.
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Lemma 10.4. For every TV-triangulation .T; Qb; �/ of yM we have

Zq0
.T; Qb; �/

�

Y

e2T .1/

w2�.e/

�

D ˛TV.@T; @! Qb
; @�/Sq0

.T; Qb; �/:

Hence ˛TV.@T; @! Qb
; @�/ can be considered as the symmetrization factor of

the product of basic 6j -symbols Sq0
.T; Qb; �/, and is entirely determined by the

boundary TV triangulation. Now, in the remarkable b-transits described before

Lemma 3.5, for every � 0 we have

˛TV.@T
0; @!0; @� 0/ D ˛TV.@T; @!; @�/:

So, up to an overall scalar factor, the Biedenharn–Elliot identity (17) coincides

with the identity obtained from it by replacing Sq0
with Zq0

. Ultimately, this

depends on the nice behaviour of the scalar ˛TV.@T; @!; @�/ under 2D sliding

transits.

Finally, recall that the taut structures are in a sense the most natural non

ambiguous structures. To this respect we note that the reduced TV invariants are

disappointing. In fact ˛TV.@T; @!; @�/D 1 for a taut triangulation .T; !/.

Corollary 10.5. For every taut structure s on M we have jM I sjred
q0
D jM jq0

.

So the reduced TV invariants are completely blind with respect to the taut

structures (though they can distinguish other non ambiguous structures on M ).

This can be regarded as a TV counterpart of the fact that the QHI symmetrization

factors ˛N .T; Qb; w; f; c/D 1, whenever .T; ! Qb
/ is a taut triangulation and c is the

tautological charge carried by .T; ! Qb
/. The advantage of the QH framework is that

we can vary also the c-weight kc in order to distinguish di�erent taut structures,

as we have done in Section 9.

On the other hand, recall that the normalized QH symmetry defects are blind

with respect to the relative non ambiguous structures on .M;L/. The situation

for reduced TV invariants is slightly better in the relative case. Let us work for

example with relative taut triangulations .T;H; !/ of .M;L/ (if any) and the cor-

responding relative taut structures s. Then the reduced TV invariant jM;LI sjred
q0

does not coincide in general with jM jq0
, and it should be sensitive to bothL and s.

As an example, let us outline a construction of invariants of �bred knotsK in S3.

Let Y be the complement of an open tubular neighbourhood of K in S3. Let M

be obtained via Dehn �lling of Y along the canonical longitude, say m, of K, and

L �M be the core of the attached solid torus. Since Y has a single �bration it has

a canonical taut structure sY . By Section 7 it extends to a relative taut structure

sK on .M;L/. Hence jM;LI sKjred
q0

is an invariant of the �bred knot K.
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