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Introduction

Khovanov and Lauda [16, 18, 17], and Rouquier [34] following a slightly di�erent

approach, de�ned a graded additive 2-category U.g/ with “nice properties” for

any Cartan datum describing a Kac–Moody algebra g. The 2-morphisms are

de�ned by string diagrams with regions labeled by g-weights. They are generated

by a �nite set of elementary diagrams which obey a �nite set of relations. The

split Grothendieck group of the Karoubi envelope of U.g/ is isomorphic to the

idempotented version of the corresponding quantum group PU.g/. In Crane and

Frenkel’s [3] terminology, we say that U.g/ categori�es PU.g/.

Khovanov and Lauda only proved this categori�cation theorem for g D sln.

A key ingredient of that proof was a 2-representation of U.sln/ on a 2-category

build out of the cohomology rings of partial �ag varieties. The equivariant

cohomology rings of these varieties, which also give rise to a 2-representation,

are equivalent to the singular Soergel bimodules of typeA, introduced and studied

by Williamson in his Ph.D. thesis in 2008 and published in [37]. The general

categori�cation theorem was proved by Webster [36].

In [28], Mackaay, Stošić and Vaz de�ned a quotient of U.sln/, denoted �.n; r/,

and proved that it categori�es the quantum Schur algebra S.n; r/, for any r 2 Z>0.

If n � r , then �.n; r/ contains a full sub-2-category which categori�es the Hecke

algebra HAr�1
. This sub-2-category is equivalent to the 2-category of (ordinary)

Soergel bimodules of typeAr�1, as was proved in [28] using Elias and Khovanov’s

diagrammatic presentation of the Soergel 2-category [8].

In the same paper, Mackaay, Stošić and Vaz also showed that Khovanov and

Lauda’s 2-representation of U.sln/ on the singular Soergel bimodules descends to

S.n; r/. Its restriction to the aforementioned sub-2-category of S.n; r/ is exactly

Elias and Khovanov’s 2-equivalence of their diagrammatic 2-category and the

2-category of (ordinary) Soergel bimodules.

Naturally the question arises whether the results in [28] extend to a�ne typeA.

In this paper, we show that this is indeed the case for 3 � r < n:

� As Libedinsky explained in [22], one can de�ne Soergel bimodules using

the geometric representation of the a�ne Weyl group W yAr�1
or Soergel’s

extension of that representation [35]. The geometric representation is not

re�ection faithful in Soergel’s sense, whereas Soergel’s representation is.

Both representations give rise to categories of Soergel bimodules which

categorify the a�ne Hecke algebra H yAr�1
, as shown in [13, 23, 22, 35].

For more information on this topic, see also [9].
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However, the extension of the geometric representation to the extended

a�ne Weyl group �W yAr�1
is “too degenerate” and cannot be used to categorify

the extended a�ne Hecke algebra �H yAr�1
. Soergel’s representation extends

nicely to �W yAr�1
and we show that there is a corresponding category of

bimodules, denoted EBim yAr�1
, which categori�es �H yAr�1

.

Soergel’s representation of �W yAr�1
has dimension r C 1 (see [35, Sec-

tion 2], [9, Example 3.2]) and the corresponding bimodules are de�ned over

QŒy; x1; : : : ; xr � where deg.y/ D deg.x1/ D � � � D deg.xr / D 2. We note

that Soergel’s representation �xes y, so the left and the right action of y on

any bimodule coincide.

� We also de�ne a diagrammatic 2-category DEBim yAr�1
, similar to the ones

in [8, 9], and show that it is 2-equivalent to EBim yAr�1
(actually they are

equivalent as monoidal categories, i.e. 2-categories with one object). Here

we use the corresponding result for the non-extended category of a�ne

bimodules and its diagrammatic analogue due to Elias and Williamson [9].

� We de�ne a y-deformation of the level-zero 2-category U.bsln/. In order to do

that, the homogeneous 2-morphisms are de�ned over QŒy� instead of Q, with

y a formal variable of degree two. We denote this 2-category by U.bsln/Œy�

and prove that its Karoubi envelope is Krull–Schmidt.

We recover U.bsln/ when we quotient by the 2-ideal generated by y. This

2-ideal is virtually nilpotent, so the Grothendieck groups of the Karoubi

envelopes of U.bsln/Œy� and U.bsln/ are isomorphic.

� We de�ne a quotient of U.bsln/Œy�, which we denote y�.n; r/Œy�. We prove that
y�.n; r/Œy� categori�es the a�ne quantum Schur algebra yS.n; r/. Again, the 2-

ideal generated by y is virtually nilpotent, so the quotient of y�.n; r/Œy� by this

2-ideal also categori�es yS.n; r/. We denote this quotient by y�.n; r/, which

can also be obtained as a quotient of Khovanov and Lauda’s original U.bsln/.

� We de�ne a 2-functor

†n;r W DEBim�
yAr�1

�! y��.n; r/Œy�;

prove it to be faithful and conjecture it to be full.1

1 We will explain the � notation in Section 2. It basically allows us to consider 2-morphisms

of arbitrary degree.
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� We de�ne the 2-category of extended a�ne singular Soergel bimodules

E�Bim yAr�1
and give the a�ne analogue (and y-deformation) of Khovanov

and Lauda’s 2-representation, i.e. a 2-functor

F
0W y�.n; r/�Œy� �! E�Bim�

yAr�1
:

Remark 0.1. We do not consider the case r D 2, because we heavily rely on the

results on a�ne Schur–Weyl duality due to Doty and Green [6], which they proved

for r � 3.

The case n D r is di�erent, because yS.n; n/ is not a quotient of PU.bsln/ but

only of a strictly larger algebra. Therefore, one has to extend the Khovanov-Lauda

a�ne calculus in order to de�ne y�.n; n/. This case is dealt with in a follow-up

paper [29].

The case n < r cannot be dealt with at present, because even the decategori�ed

story has not been worked out (see Problem 2.4.5 in [5]).

Remark 0.2. There is a technical detail, which will be fully explained in Section 3

but should be mentioned here already. Just as in [28], we actually de�ne y�.n; r/Œy�

as a quotient of U.bgln/Œy�, which is a 2-category obtained from U.bsln/Œy� by

switching to bgln-weights of level zero for the labels of the regions in the string

diagrams. We conjecture that U.bgln/Œy� categori�es the level-zero PU.bgln/, but do

not need that fact for the rest of this paper.

The results in this paper have several points of interest. The categories

EBim yAr�1
and DEBim yAr�1

contain the new objects B�˙ and ˙, respectively,

and some corresponding morphisms. As our results show, these objects and mor-

phisms also show up naturally in y�.n; r/Œy� as 1 and 2-morphisms.

The y-deformation U.bsln/Œy� and its Schur quotient y�.n; r/Œy� are new. As the

results in this paper show, they both show up naturally when considering Soergel

bimodules over QŒy; x1; : : : ; xr �, which is the ring of polynomial functions on

Soergel’s re�ection faithful representation of the a�ne Weyl group.

Furthermore, there are interesting (possible) links with other categori�cations

of the (extended) a�ne Hecke algebra and the quantum a�ne Schur algebra.

Lusztig [25, 26] and Ginzburg and Vasserot [11] gave a categori�cation of yS.n; r/

using perverse sheaves, extending Grojnowski and Lusztig’s approach to the

categori�cation of S.n; r/. It would be interesting to �nd the precise relation with

the categori�cation presented here and in our follow-up paper [29].
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In this paper we also de�ne an extended version of the a�ne singular Soergel

bimodules. Williamson introduced and studied the 2-category of singular Soergel

bimodules for any Coxeter group in his PhD thesis in 2008, the results of which

were published in [37], and proved that it categori�es a certain “new” algebra,

which he called the Schur algebroid. In �nite type A the Schur algebroid is

isomorphic to the quantum Schur algebra. Williamson’s a�ne type A Schur

algebroid should also be closely related to the a�ne quantum Schur algebra.

Whatever the precise relation turns out to be, the 2-representation of y�.n; r/Œy� on

the extended a�ne singular Soergel bimodules establishes an interesting relation

between Khovanov and Lauda’s work and Williamson’s.

Another point of interest is related to the possibility of categorifying the

so called Kirillov-Reshetikhin modules of PU.bsln/. These level zero modules

can be de�ned for any a�ne quantum group and have been intensively studied

(see [2, 5, 7, 15] for more information and references).

In a�ne type A (and only in that type), they are special examples of evaluation

modules V�;a, where � is a dominant weight and a 2 C�. If � is an n-part partition

of r , then V�;a descends to a representation of yS.n; r/. More precisely, V�;a is

de�ned by pulling back (the technical term is in�ating) the action of S.n; r/ on

the irrep V� via the so called evaluation map

evaW yS.n; r/ �! S.n; r/:

If � D .mi /, i.e.m times the i-th fundamental gln-weight, then it is known that

V�;qi�mC2 is isomorphic to a Kirillov-Reshetikhin module and has a canonical

basis. It seems likely that one can categorify the evaluation map

evqi�mC2 W yS.n;mi/ �! S.n;mi/

and therefore V�;qi�mC2 , but such a categori�cation is beyond the scope of this

paper.

1. The a�ne setting

1.1. A�ne roots of level zero. We use the well-known realization of bslr as the

central extension of the loop algebra of slr , de�ned as L.slr / WD slr ˝QQŒt; t�1�,

together with a derivation (see for example [33, 14, 10]), i.e. the underlying vector

space is isomorphic to

bslr D L.slr/˚ Qc ˚ Qd:
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In order to express its root system, consider the Cartan subalgebra

Oh D h ˚ Qc ˚ Qd D Qhhi ; c; d j i D 1; : : : ; r � 1i

with h being the Cartan subalgebra of slr . The roots with respect to Oh are

˛ D . N̨ ; 0; m/; N̨ 2 ˆ.slr / i.e. N̨ is a root of slr ; m 2 Z;

and

˛ D .0; 0; m/; m 2 Z n ¹0º:

The roots of the �rst family are called the real roots and the ones of the second

family are called the imaginary roots.

The simple roots are

˛i D . N̨i ; 0; 0/; i D 1; : : : ; r � 1;

and

˛r D .� N�; 0; 1/ D ı � N�;

where N̨ i D "i � "iC1, for i D 1; : : : ; r � 1 are the simple roots of slr , N� D

N̨1 C � � � C N̨r�1 D "1 � "r is the highest root and ı is the dual element of d . The

elements "i for i D 1; : : : ; r are the canonical basis vectors in Zr .

Weights are triples of the form

� D . N�; k;m/;

where N� is an slr -weight and k andm are integers. The integer k is called the level

of �. The inner product between two weights � D . N�; k;m/ and �0 D . N�0; k0; m0/

is given by

.�; �0/ D . N�; N�0/C km0 C k0m;

where . N�; N�0/ is the usual inner product of slr -weights. In particular, we have

.˛i ; ˛i / D 2; for all i D 1; : : : ; r;

and

.˛r ; ˛1/ D .˛i ; ˛iC1/ D �1; for all i D 1; : : : ; r � 1:

In the following sections, we will also use cglr -weights

� D . N�; k;m/;

where N� denotes a non-a�ne glr -weight.

Remark 1.1. In this paper, we will only considerbslr and bglr -weights of level zero.
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1.2. The Weyl group action. For any real root ˛ 2 ˆ.bslr / and bslr -weight �,

the Weyl re�ection �˛ is de�ned by �˛.�/ D � � h�; ˛_i˛. So if ˛ D . N̨ ; 0; n/

and � D . N�; k;m/, then ˛_ D N̨ _ C 2n
.˛;˛/

c and we can express �˛.�/ as follows:

�˛.�/ D
�

N� � hN�; N̨ _i N̨ �
2kn

.˛; ˛/
N̨ ; k; m� hN�; N̨ _in �

2kn2

.˛; ˛/

�
:

The a�ne Weyl group W yAr�1
is the group generated by all these re�ections. For

any simple root ˛i , we write �i WD �˛i
.

Similarly, one can consider the action of �i on a level zero bglr -weight of the

form ."j ; 0; m/ with j D 1; : : : ; r . If i ¤ r , one gets

�i ."j ; 0; m/ D

8
ˆ̂̂
<
ˆ̂̂
:

."iC1; 0; m/ if j D i;

."i ; 0; m/ if j D i C 1;

."j ; 0; m/ otherwise.

The action of �r is given by

�r."j ; 0; m/ D

8
ˆ̂̂
<
ˆ̂̂
:

."r ; 0; mC 1/ if j D 1;

."1; 0; m� 1/ if j D r;

."j ; 0; m/ otherwise.

For each simple slr -root N̨ i , i D 1; : : : ; r � 1, there also exists a translation t N̨i
,

which acts on the level zero bglr -weights as follows:

t N̨i
. N�; 0; m/ D . N�; 0; m� .�i � �iC1//;

where N� D .�1; : : : ; �r/ and the indices are taken to be modulo r , e.g. �rC1 D �1

by de�nition.

One can prove that W yAr�1
is the semidirect product of the �nite Weyl group

WAr�1
, generated by the re�ections �i for i D 1; : : : ; r � 1, and of the abelian

group ht N̨1
; : : : ; t N̨r�1

i of translations along the root lattice of slr .

1.3. The extended a�ne Weyl group. See [24], [6] or [5] for more details about

the extended a�ne Weyl group. For example in [6], there is a de�nition of this

group di�erent from the following, it is described as a subgroup of permutations

of Z.

Let us now consider the translations t"i
along the basic glr -weights "i ,

i D 1; : : : ; r . Their action on a level zero bglr -weight � is given by

t"i
. N�; 0; m/ D . N�; 0; m� �i /:
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The extended a�ne Weyl group �W yAr�1
is de�ned as the semidirect product

of the �nite Weyl group WAr�1
and the abelian group ht"1

; : : : ; t"r
i of translations

along the weight lattice of glr . It contains the a�ne Weyl group W yAr�1
as a normal

subgroup.

The group �W yAr�1
is generated by �1; : : : ; �r�1 and t"1

; : : : ; t"r
, which satisfy

the following relations:

�i t"j
�i D t�i ."j / for i D 1; : : : ; r � 1 and j D 1; : : : ; r:

Hence the set of generators is not minimal, e.g. one can obtain any t"j
for

j D 2; : : : ; r by conjugating t"1
by certain re�ections.

There is another presentation of �W yAr�1
, which is important for this paper. It

involves the following speci�c element

� D t"1
�1 : : : �r�1;

which acts on a level zero bglr -weight � D . N�; 0; m/ by

�. N�; 0; m/ D ..�r ; �1; : : : ; �r�1/; 0; m� �r/:

The action of its inverse ��1 D ��1
r�1 : : : �

�1
1 t�"1

is given by

��1. N�; 0; m/ D ..�2; : : : ; �r ; �1/; 0; mC �1/:

One then sees that �W yAr�1
is generated by

�1; : : : ; �r ; �;

subject to the relations

�2
i D 1; for i D 1; : : : ; r; (1.1a)

�i�j D �j�i ; for distant i; j D 1; : : : ; r; (1.1b)

�i�iC1�i D �iC1�i�iC1; for i D 1; : : : ; r; (1.1c)

��i�
�1 D �iC1; for i D 1; : : : ; r; (1.1d)

where the indices have to be understood modulo r , as before. We say that i

and j are distant if j 6� i ˙ 1 mod r . Using this set of generators, any

element w 2 �W yAr�1
can be written in the following way:

w D �kw0 D �k�i1 � � ��il (1.2)

where k 2 Z is unique and �i1 � � ��il is a reduced expression of the element

w0 2 W yAr�1
.

Note that the conventions here are opposite to the ones chosen by Doty and

Green [6].
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1.4. The extended a�ne braid group and Hecke algebra. One can form the

extended a�ne braid group yB yAr�1
associated to �W yAr�1

. It admits the same

presentation (1.1a)–(1.1d) as �W yAr�1
except that one omits the involutivity rela-

tions (1.1a) of the generators �i for i D 1; : : : ; r .

One can also de�ne the extended a�ne Hecke algebra �H yAr�1
, which is the

quotient of the Q.q/-group algebra of yB yAr�1
by the relations

T 2
�i

D .q2 � 1/T�i
C q2; for all i D 1; : : : ; r;

with q being a formal parameter. For more details about this algebra, see [30, 31,

4, 32, 5].

A Q.q/-basis of �H yAr�1
is given by the set

¹Tw ; w 2 �W yAr�1
º;

where

Tw D T k
� Tw 0 D T k

� T�i1
� � �T�il

;

with w, k, w0 and �ij as in (1.2). See [12] and [6].

The above shows that �H yAr�1
is generated by

¹T�; T��1; T�i
; i D 1; : : : ; rº

as an algebra. An alternative set of algebraic generators of �H yAr�1
is given by

¹T�; T
�1
� ; bi ; i D 1; : : : rº;

where the bi WD C 0
�i

D q�1.1 C T�i
/ are the Kazhdan–Lusztig generators.

The relations satis�ed by these generators are the following:

b2
i D .q C q�1/bi ; for i D 1; : : : ; r;

bibj D bj bi ; for distant i; j D 1; : : : ; r;

bibiC1bi C biC1 D biC1bibiC1 C bi ; for i D 1; : : : ; r;

T�biT
�1
� D biC1; for i D 1; : : : ; r: (1.3)

Let C 0
w be the Kazhdan–Lusztig basis elements of the (non-extended) a�ne

Hecke algebra associated to the a�ne Weyl group W yAr�1
. Then by (1.3) it follows

that

T�C
0
wT

�1
� D C 0

�w��1;

for any w 2 W yAr�1
. Therefore, �H yAr�1

has the following Kazhdan–Lusztig type

basis

¹T k
� C

0
w ; k 2 Z and w 2 W yAr�1

º; (1.4)

with the usual positive integrality property.
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2. A categori�cation of the extended a�ne Hecke algebra

Notation 2.1. Let C be a Q-linear Z-graded additive category (resp. 2-category)

with translation (see Section 5.1 in [21] for the technical de�nitions). In all

examples in this paper, the vector space of morphisms (resp. 2-morphisms) of

any �xed degree is �nite-dimensional.

If C is a category (resp. 2-category), its hom-spaces (resp. hom-categories) are

denoted C.x; y/, for any objects x; y in C .

The Karoubi envelope of C is denoted by Kar C .

By C
� we denote the category (resp. 2-category) with the same objects (resp.

same objects and 1-morphisms) as C , but whose hom-spaces (resp. 2-hom-spaces)

are de�ned by

C
�.x; y/ WD

M

t2Z

C.x¹tº; y/:

These graded vector spaces of morphisms are referred to as HOM-spaces (resp.

2-HOM-spaces) following Khovanov and Lauda’s notations, see [17, Remark 3.2].

A degree preserving functor F W C ! D between two such categories C and

D lifts to a functor between the categories enriched in vector spaces C� ! D�

and to a functor between the Karoubi envelopes Kar C ! Kar D , which are both

also denoted F .

2.1. An extension of Soergel’s categori�cation

2.1.1. Action on polynomial rings. Consider R D QŒy�Œx1; : : : ; xr �. The ex-

tended a�ne Weyl group �W yAr�1
acts QŒy�-linearly and faithfully onR as follows:

�.xi/ D

8
<
:
xiC1 for i D 1; : : : ; r � 1;

x1 � y for i D r;

��1.xi / D

8
<
:
xi�1 for i D 2; : : : ; r;

xr C y for i D 1;

t"j
.xi / D

8
<
:
xj � y for i D j;

xi otherwise,

�j .xi / D

8
ˆ̂̂
<
ˆ̂̂
:

xj C1 for i D j;

xj for i D j C 1;

xi otherwise,

for j D 1; : : : ; r � 1;
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�r.xi / D

8
ˆ̂̂
<
ˆ̂̂
:

xr C y for i D 1;

x1 � y for i D r;

xi otherwise.

Note that in particular �r simply translates all xi ’s by �y and that multiplication

by y commutes with the action of �W yAr�1
on R.

Remark 2.2. The action above naturally extends the action of the (non-extended)

a�ne Weyl group W yAr�1
. We are working here with Soergel’s original re�ection

faithful realization of the a�ne type A Coxeter system W yAr�1
considered in [35]

and [13]. Indeed, when generalized to the extended a�ne Weyl group �W yAr�1
, this

representation remains faithful which explains why we choose to use this precise

realization to achieve a categori�cation of the extended a�ne Hecke algebra
�H yAr�1

in the present paper.

Let us set Xi D xiC1 � xi for i D 1; : : : ; r � 1 and Xr D x1 � xr � y.

2.1.2. Extended Soergel bimodules. We introduce a grading on R, inducing a

grading on the R-bimodules considered in the sequel, by setting

deg.y/ D deg.xk/ D 2

for all k D 1; : : : ; r . Curly brackets will indicate a shift of the grading: if

M D
L

i2ZMi is a Z-graded bimodule and p an integer, then the Z-graded

bimodule M ¹pº is de�ned by M ¹pºi D Mi�p for all i 2 Z.

For any i D 1; : : : ; r , we de�ne the R-bimodule

Bi D R˝R�i R¹�1º

where R�i is the subalgebra of elements of R �xed by the re�ection �i 2 �W yAr�1
:

R�i D QŒy�Œx1; : : : ; xi C xiC1; xixiC1; : : : ; xr � for i D 1; : : : ; r � 1;

R�r D QŒy�Œx2; : : : ; xr�1; xr C x1; .xr C y=2/.x1 � y=2/�:

We also de�ne the twisted R-bimodule B� (resp. B��1), which coincides with R

as a left R-module but is twisted by � (resp. by ��1) as a right R-module, i.e.

any a 2 R acts on B� on the right by multiplication by �.a/ (resp. ��1.a/).

Form now the category monoidally generated by the graded R-bimodules de-

�ned above. Then allow direct sums and grading shifts of these objects and con-

sider only morphisms which are degree preserving morphisms of R-bimodules,
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and denote this category EBim yAr�1
. Its Karoubi envelope Kar EBim yAr�1

is a

Q-linear graded additive monoidal category with translation, which we call the

category of extended Soergel bimodules of type yAr�1.

As mentioned in Remark 2.2, we are precisely using Soergel’s original real-

ization, so the bimodules Bi considered here are the ones constructed by Här-

terich [13] and Soergel [35]. Therefore Soergel’s category Kar Bim yAr�1
of a�ne

type A is equivalent to the full subcategory of Kar EBim yAr�1
generated by the

Bi , for i D 1; : : : ; r . Let us recall a special case of Härterich’s categori�cation

result [13]:

Theorem 2.3 (Härterich). We have

H yAr�1
Š K

Q.q/
0 .Kar Bim yAr�1

/

where

K
Q.q/
0 .Kar Bim yAr�1

/ WD K0.Kar Bim yAr�1
/˝ZŒq;q�1� Q.q/:

For each w 2 W yAr�1
, there exists a unique indecomposable bimodule Bw in

Kar Bim yAr�1
such that, under the isomorphism above, the Kazhdan–Lusztig basis

element C 0
w is mapped to ŒBw �. Conversely, any indecomposable bimodule in this

category is isomorphic to Bw¹tº, for a certain w 2 W yAr�1
and a certain grading

shift t 2 Z.

In the rest of the paper, we keep the convention that subscripts are considered

to be modulo r , e.g. the bimodule BrC1 is by de�nition equal to B1. We will

also use the notation B˝k
� for any k 2 Z, where this bimodule is de�ned to be the

tensor product of jkj copies of B� if k � 0 and of B��1 if k � 0. In both cases

B˝k
� is isomorphic to B�k .

2.1.3. Categori�cation of H yAr�1

Lemma 2.4. For any i D 1; : : : ; r , there exists an R-bimodule isomorphism

B� ˝R Bi Š BiC1 ˝R B�: (2.1)

Applying these isomorphisms r times gives an isomorphism

B˝r
� ˝R Bi Š Bi ˝R B

˝r
� ; (2.2)

for any i D 1; : : : ; r .
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Proof. � Isomorphism (2.1). First note that there exist natural isomorphisms

of R-bimodules:

B� ˝R Bi Š B� ˝R�i R¹�1º and BiC1 ˝R B� Š R ˝R
�iC1 B�¹�1º:

De�ne the isomorphism of R-bimodules  WB� ˝R�i R ! R˝R
�iC1 B� by

 .a˝ b/ D a ˝ �.b/:

This isomorphism is well–de�ned, because � de�nes an isomorphism between

R�i and R�iC1 .

� Isomorphism (2.2). Note that B˝r
� Š B�r and that �r leaves the ring R�i

invariant. �

Theorem 2.5. The category Kar EBim yAr�1
categori�es the extended a�ne Hecke

algebra, i.e.

�H yAr�1
Š K

Q.q/
0 .Kar EBim yAr�1

/;

where

K
Q.q/
0 .Kar EBim yAr�1

/ WD K0.Kar EBim yAr�1
/˝ZŒq;q�1� Q.q/:

Under this isomorphism, the set of isomorphism classes of the indecomposables

¹Bk
�Bw ; k 2 Z and w 2 W yAr�1

º in Kar EBim yAr�1
corresponds exactly to the

Kazhdan–Lusztig basis (1.4) of �H yAr�1
, with Bw as in Theorem 2.3. In particular,

ŒBi � corresponds to bi and ŒB�˙1 � corresponds to T˙1
� .

Proof. Recall that

H yAr�1
Š K

Q.q/
0 .Kar Bim yAr�1

/;

by Theorem 2.3. The indecomposables in Kar Bim yAr�1
, which are denoted Bw

for w 2 W yAr�1
, correspond exactly to the Kazhdan–Lusztig basis elements

¹C 0
w ; w 2 W yAr�1

º of H yAr�1
. Moreover, Bw appears as a direct summand of

the tensor product Bi1 ˝R � � � ˝R Bik where �i1 : : : �ik is a reduced expression

of w.

We de�ne the homomorphism of algebras

�H yAr�1
�! K

Q.q/
0 .Kar EBim yAr�1

/

by

bi 7�! ŒBi¹�1º� and T˙1
� 7�! ŒB�˙1 �:
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The homomorphism is well-de�ned, as follows from the following isomorphisms

in EBim yAr�1
:

Bi ˝R Bi Š Bi ˚ Bi¹2º;

Bi ˝R Bj Š Bj ˝R Bi ; for distant i; j;

Bi ˝R BiC1 ˝R Bi ˚ BiC1¹2º Š BiC1 ˝R Bi ˝R BiC1 ˚ Bi¹2º;

B� ˝R Bi Š BiC1 ˝R B�; (2.3)

for i; j D 1; : : : ; r .

Note that any tensor product of B�˙1’s and Bi ’s can be rewritten in the follow-

ing way

B˝k
� ˝R Bi1 ˝R � � � ˝R Bil ;

by sliding all the B�˙1’s to the left using the isomophism (2.3).

Let us now look at the indecomposables of the category Kar EBim yAr�1
. First

observe that if the bimodule M is indecomposable in Kar EBim yAr�1
then, for

any k 2 Z, the tensor product B˝k
� ˝R M is indecomposable as well. Indeed

assume that

B˝k
� ˝R M Š P ˚Q;

then tensoring on the left by B˝�k
� gives

M Š B˝�k
� ˝R P ˚ B˝�k

� ˝R Q;

which contradicts the fact that M is supposed to be indecomposable.

So let M be an indecomposable of Kar EBim yAr�1
. It is a direct summand of

some tensor productB˝k
� ˝RBi1 ˝R � � �˝RBil . Then the indecomposable bimod-

uleB˝�k
� ˝RM is a direct summand ofBi1 ˝R � � �˝RBil . The latter tensor product

belongs to the subcategory Kar Bim yAr�1
of Kar EBim yAr�1

. Thus B˝�k
� ˝RM is

of the form Bw for somew 2 W yAr�1
. We can conclude that the indecomposables

of the category Kar EBim yAr�1
are all of the form

B˝k
� ˝R Bw for k 2 Z and w 2 W yAr�1

:

Their Grothendieck classes correspond bijectively to the elements of

¹T k
� C

0
w ; k 2 Z and w 2 W yAr�1

º;

which is precisely the Kazhdan–Lusztig basis of �H yAr�1
in (1.4). �
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Proposition 2.6. For any k; l; i1; : : : ; im; j1; : : : ; jn, we have

EBim�
yAr�1

.B˝k
� ˝R Bi1 ˝R � � � ˝R Bim ; B

˝l
� ˝R Bj1

˝R � � � ˝R Bjn
/

Š ık;l Bim�
yAr�1

.Bi1 ˝R � � � ˝R Bim ; Bj1
˝R � � � ˝R Bjn

/;

where ık;l is the Kronecker delta.

Proof. In the category EBim yAr�1
, the Bi are self-adjoint and B� and B�1

� form a

biadjoint pair. Therefore, there exist isomorphisms

EBim�
yAr�1

.B˝k
� ˝R Bi1 ˝R � � � ˝R Bim ; B

˝l
� ˝R Bj1

˝R � � � ˝R Bjn
/

Š EBim�
yAr�1

.R; B˝l�k
� ˝R Bj1

˝R � � � ˝R Bjn
˝R Bim ˝R � � � ˝R Bi1/:

The latter HOM-space is equal to zero except when k D l , in which case it is

isomorphic to the corresponding HOM-space in Bim�
yAr�1

.

Indeed any morphism

f 2 EBim�
yAr�1

.R; B˝l�k
� ˝R Bj1

˝R � � � ˝R Bjn
˝R Bim ˝R � � � ˝R Bi1/

is completely determined by the image p of 1. Since f is a morphism of R-bi-

modules, we have pa D ap for any a 2 R. In particular, for a D
Pr

iD1 xi we

have

p
� rX

iD1

xi

�
D
� rX

iD1

xi

�
p:

Since
Pr

iD1 xi is invariant under all the re�ections �j for j D 1; : : : ; r , we also

have

p
� rX

iD1

xi

�
D �l�k

� rX

iD1

xi

�
p D

� rX

iD1

xi � .l � k/y
�
p:

This implies that p, and therefore the morphism f , has to be zero unless k D l .

�

2.2. The diagrammatic version. The category of Soergel bimodules of �nite

type A is described via planar diagrams by Elias and Khovanov in [8]. They as-

sociate planar diagrams to certain generating bimodule maps and give a complete

set of relations on them. Elias and Williamson [9] worked out the generalization

of the diagrammatic approach to Soergel bimodules for any Coxeter group which

does not contain a standard parabolic subgroup isomorphic to H3.
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Our aim is to de�ne and study an extension of Elias and Williamson’s dia-

grammatic category for extended a�ne type A [9]. In a�ne type A Elias and

Williamson’s diagrammatic category is a straightforward generalization of Elias

and Khovanov’s original category, which was de�ned for �nite type A. In addi-

tion to Elias and Williamson’s diagrams, we also have to introduce a new type

of strand. These new strands are oriented and their endpoints are labeled C or

� depending on orientations. The Karoubi envelope of the diagrammatic cate-

gory DEBim yAr�1
obtained in this way is equivalent to the category of extended

Soergel bimodules Kar EBim yAr�1
of a�ne type A, as we will show.

2.2.1. De�nition of DEBim yAr�1

. First start with the category whose objects

are graded �nite sequences of integers belonging to ¹1; : : : ; rº and the symbols C

and �. Graphically we represent these sequences by sequences of colored points

(read from left to right) of the x-axis of the real plane R2. The morphisms are

then equivalence classes of Q-linear combinations of graded planar diagrams

in R � Œ0; 1� (read from bottom to top) and composition is de�ned by vertically

glueing the diagrams and rescaling the vertical coordinate. These morphisms

are de�ned by generators and relations listed below. This category possesses a

monoidal structure given by stacking sequences and diagrams next to each other.

Let DEBim yAr�1
be the category containing all direct sums and grading

shifts of these objects and let its morphisms be the degree preserving diagrams.

The diagrammatic extended Soergel category is by de�nition its Karoubi enve-

lope Kar DEBim yAr�1
.

In the diagrams, the strands whose endpoints are C or �-signs are oriented

and the other strands are non-oriented. The non-oriented strands can be colored

with integers belonging to ¹1; : : : ; rº. Two colors i and j are called adjacent (resp.

distant) if i � j ˙ 1 mod r (resp. i 6� j ˙ 1 mod r). By convention, no label

means that the equation holds for any color i 2 ¹1; : : : ; rº.

The morphisms of DEBim yAr�1
are built out of the following generating di-

agrams. The non-oriented diagrams are the a�ne analogues of Elias and Kho-

vanov’s diagrams, the ones involving oriented strands are new.

� Generators involving only one color:
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It is useful to de�ne the cap and cup as follows:

� Generators involving two colors:

– the 4-valent vertex with distant colors, of degree 0, denoted 4 verti;j

– and the 6-valent vertices with adjacent colors i and j , of degree 0,

denoted 6 verti;j and 6 vertj;i

� Generators involving only oriented strands, of degree 0:

� Generators involving oriented strands and adjacent colored strands. The

mixed 4-valent vertex of degree 0:

� Generators involving boxes, of degree 2, denoted boxi

i

for all i D 1; : : : ; r , and denoted boxy

y
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The generating diagrams are subject to the following relations. The relations

involving only non-oriented diagrams are the obvious a�ne analogues of Elias

and Khovanov’s relations, the ones with diagrams involving oriented strands are

new. The labels of the colored strands are omitted here, but the reader can �gure

what they are from which generating morphisms are involved in the relations.

� Isotopy relations:

D D ; (2.4a)

D D ; (2.4b)

D D ; (2.4c)

D D ; (2.4d)

D D ; (2.4e)

D D ; (2.4f)

D D ; (2.4g)

D D ; (2.4h)

D D : (2.4i)
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� Relations involving one color:

D ; (2.5a)

D 0; (2.5b)

C D 2 : (2.5c)

� Relations involving two distant colors:

D ; (2.6a)

D ; (2.6b)

D ; (2.6c)

� Relations involving two adjacent colors:

D C ; (2.7a)

D � ; (2.7b)
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D ; (2.7c)

j

i

�
j

i

D
1

2

 

i

i

�
i

i

!
: (2.7d)

� Relation involving three distant colors (i.e. three colors forming a parabolic

subgroup of type A1 � A1 � A1):

D : (2.8)

� Relation involving two adjacent colors and one distant from the other two

(i.e. three colors forming a parabolic subgroup of type A2 � A1):

D : (2.9)

� Relation involving three adjacent colors forming a parabolic subgroup of type

A3 (i.e. , the case yA2 is excluded):

D : (2.10)

� Relations involving only oriented strands:

D 1 D ; (2.11a)

D ; (2.11b)
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D : (2.11c)

� Relations involving oriented strands and distant colored strands:

D : (2.12)

� Relations involving oriented strands and two adjacent colored strands:

D ; (2.13a)

D ; (2.13b)

D ; (2.13c)

D ; (2.13d)

D : (2.13e)
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� Relations involving oriented strands and three adjacent colored strands:

D ; (2.14a)

D : (2.14b)

� Relations involving boxes:

i
D iC1 � i ; for i ¤ r , (2.15a)

r
D 1 � r � y ; (2.15b)

�
i C iC1

�

i

D

i

�
i C iC1

�
; (2.15c)

i iC1

i

D

i

i iC1 ; for i ¤ r , (2.15d)

�
r C

1

2
y

��
1 �

1

2
y

�

r

D

r

�
r C

1

2
y

��
1 �

1

2
y

�
; (2.15e)

j

i

D

i

j ; for j ¤ i; i C 1, (2.15f)

y

i

D

i

y ; (2.15g)
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y D y ; (2.15h)

y D y ; (2.15i)

iC1 D i ; for i ¤ r , (2.15j)

�
1 � y

�
D r ; (2.15k)

i�1 D i ; for i ¤ 1, (2.15l)

�
r C y

�
D 1 : (2.15m)

Remark 2.7. Note that the relations (2.12)–(2.14b) also hold when the oriented

strand has the opposite orientation. This follows from relations (2.12)–(2.14b) and

relations of isotopy.

Note also that the generators and relations listed above are redundant. This

redundancy helps us to simplify some of the proofs later on. More speci�cally, let

us list some of these unnecessary generators and relations:

(i) relation (2.11c) follows from relation (2.11b) and isotopy invariance;

(ii) relation (2.15l) follows from relation (2.15j) and isotopy invariance;

(iii) relation (2.15k) follows from relations (2.15j) for i D r � 1, (2.15a) for

i D r � 1, (2.15g), (2.13c), and (2.13d);

(iv) relation (2.15m) follows from relations (2.15i), (2.15k), and isotopy invari-

ance;
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(v) if we sum relation (2.15a) for all i D 1; : : : ; r � 1 and relation (2.15b), we

obtain that

y D �

rX

kD1
k

I

(vi) if we sum relation (2.7d) for j D i � 1 and for j D i C 1, we obtain that

i�1
C

i
C

i C 1

i

D
i � 1

i

C
i

C
iC1

I

(vii) relation (2.15g) follows from relation (2.6b), the two relations exhibited just

above in (v) and (vi) and isotopy invariance;

(viii) relation (2.15h) follows from relations (2.13c) and (2.13d) and the relation

exhibited in (v);

(ix) relation (2.15i) follows from relation (2.15h) and isotopy invariance;

(x) relations (2.11a)–(2.14b) imply the following: suppose that two diagrams

without boxes D and D0 are equal, then the diagrams obtained by shifting

all their colors by �1 ( mod r) are also equal. Indeed,

where the �rst and last equalities follow from relation (2.11a), the second

and one but last equalities follow from relations (2.12)–(2.14b), and the

third equality is our assumption.
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As a consequence, provided that relations (2.5a)–(2.10) are each satis�ed

for one set of colors, they are each satis�ed for all the colors. In particular,

since none of them involve all the colors ¹1; : : : ; rº at the same time, rela-

tions (2.5a)–(2.10) with strand(s) colored r follow by this argument from

the same relations without strands colored r .

2.2.2. Functor from DEBim�

yAr�1

to EBim�

yAr�1

. Let us construct a degree

preserving functor

F W DEBim�
yAr�1

�! EBim�
yAr�1

which extends the one by Elias and Khovanov. On objects, it is de�ned as follows:

it maps each integer i 2 ¹1; : : : ; rº toBi , and the symbols C and � toB� andB��1

respectively. Sequences of these are mapped to tensor products. The empty

sequence is sent to R.

For the morphisms one only needs to specify F on the generators. A sequence

of vertical strands is mapped to the identity of the corresponding bimodule and

boxi (resp. boxy) is mapped to multiplication by xi (resp. y). We de�ne

F .enddoti / D bri W a˝ b 7�! ab;

F .startdoti / D rbi W a 7�!
a

2
.Xi ˝ 1C 1˝Xi /;

F .mergei / D pri W

8
<
:
a˝ 1˝ b 7�! 0;

a˝ Xi ˝ b 7�! 2a˝ b;

F .spliti / D inji W a˝ b 7�! a ˝ 1˝ b;

F .4 verti;j / D fi;j W a˝ 1˝ b 7�! a ˝ 1˝ b;

F .6 verti;iC1/ D fi;iC1W

8
<
:
a ˝ 1˝ 1˝ b 7�! a˝ 1˝ 1˝ b;

a ˝ .XiC1 ˝ 1C 1˝XiC1/˝ b 7�! 0;

F .6 vertiC1;i / D fiC1;i W

8
<
:
a ˝ 1˝ 1˝ b 7�! a ˝ 1˝ 1˝ b;

a ˝ .Xi ˝ 1C 1˝Xi /˝ b 7! 0;

F .C cap/ DC;� rW a˝ b 7�! a�.b/;

F .� cap/ D�;C rW a˝ b 7�! a��1.b/;

F .� cup/ D r�;CW a 7�! a ˝ 1;

F .C cup/ D rC;�W a 7�! a ˝ 1;



138 M. Mackaay and A.-L. Thiel

F .4 vertC;i / D �C;i W a˝ b 7! a ˝ �.b/;

F .4 vertiC1;C/ D �iC1;CW a˝ b 7! a ˝ ��1.b/;

F .4 verti;�/ D �i;�W a˝ b 7! a ˝ �.b/;

F .4 vert�;iC1/ D ��;iC1W a˝ b 7! a˝ ��1.b/;

F .boxi / D mi W a 7�! axi ;

F .boxy/ D my W a 7�! ay;

see the end of Section 2.1.1 for the de�nition of the Xi ’s.

Proposition 2.8. The functor F is well-de�ned, degree preserving and essentially

surjective.

Proof. The fact that the functor F is well-de�ned and degree preserving amounts

to a straightforward veri�cation that it preserves the relations (2.4a)–(2.15m) and

the degrees of the morphisms. For the relations involving only non-oriented

strands, this is completely analogous to Elias and Khovanov’s case. For the

relations involving oriented strands, the calculations are new but easy.

Furthermore, in view of the de�nitions of the objects of DEBim�
yAr�1

and

EBim�
yAr�1

, the functor F is clearly essentially surjective. �

Proposition 2.9. The functor F is full.

Proof. Libedinsky has proved in [23] that all the morphisms of the category

Bim�
yAr�1

are generated by the following ones:

� bri , rbi , pri and inji , for all i D 1; : : : ; r;

� fi;j , for all i; j D 1; : : : ; r with i ¤ j ,

� multiplication by xi , for all i D 1; : : : ; r .

In view of Proposition 2.6, this implies that all the morphisms of the cate-

gory EBim�
yAr�1

are generated by the ones listed by Libedinsky and copied above,

together with multiplication by y plus �C;i and �iC1;C, giving

B� ˝R Bi Š BiC1 ˝R B� for i D 1; : : : ; r;

and C;� r, �;C r, r�;C and rC;�, giving

B� ˝R B��1 Š R Š B��1 ˝R B�:

Thus the functor F is full, since all the morphisms generating EBim�
yAr�1

are in

the image of F . �
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Theorem 2.10. The categories DEBim�
yAr�1

and EBim�
yAr�1

are equivalent and

so are their Karoubi envelopes Kar DEBim yAr�1
and Kar EBim yAr�1

.

Proof. Only the faithfulness of F remains to be proved, which is an easy conse-

quence of the far more general and important Theorem 6.28 in [9].

For a given object X in DEBim�
yAr�1

, let kX 2 Z denote the di�erence

between the number of pluses and minuses in X . Given two objects X; Y in

DEBim�
yAr�1

, the hom-space between X and Y is non-zero only if kX D kY (see

Proposition 2.6). Any object X in DEBim�
yAr�1

is isomorphic to the object EX 0,

where E is the string of signs sign.kX/
jkX j andX 0 does not contain any signs, and

is obtained fromX by applying the commutation isomorphisms .˙; i / Š .i˙1;˙/

and the isomorphisms .˙;�/ Š ;.

Besides, the mixed relations (2.12)–(2.14b) imply that an oriented strand can

be pulled over any diagram involving only colored strands. In particular, any

diagram with only signs at the boundary is equal to a diagram with only ori-

ented strands times a closed colored diagram, i.e. times an element of R, cf [9].

Moreover, due to relations (2.11a)–(2.11c), all diagrams containing only oriented

strands with a �xed boundary are equal. Therefore, the endomorphism ring of any

string of signs is isomorphic to R.

LetD be a diagram representing a morphism fromX to Y , such that kX D kY .

Since

DEBim�
yAr�1

.sign.kX/
jkX j; sign.kX /

jkX j/ Š R

and HOM-spaces in DEBim�
yAr�1

have a structure of R-modules, it follows that

DEBim�
yAr�1

.X; Y / Š DEBim�
yAr�1

.X 0; Y 0/;

Let us illustrate this by the example in Figure 1.

Since

DEBim�
yAr�1

.X 0; Y 0/ Š DBim�
yAr�1

.X 0; Y 0/;

the faithfulness of F follows from the faithfulness of Elias and Williamson’s

analogous functor for non-extended a�ne type A, which they proved in their

aforementioned theorem. �

3. The a�ne Schur quotient

3.1. Notations. Let n; r be integers, with n > r and r � 3, and let q be a formal

parameter.
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Figure 1. Example of a decomposition of a diagram D

A generic gln-weight will be denoted � D .�1; : : : ; �n/, and we set N�i D

�i � �iC1. De�ne

ƒ.n; r/ D
°
� 2 NnW

nX

iD1

�i D r
±

and

ƒC.n; r/ D ¹� 2 ƒ.n; r/W r � �1 � �2 � � � � � �n � 0º:

We will denote by .1r/ the weight "1 C � � � C "r .

Let us formally denote by N̨n the opposite of the highest root of sln, i.e.

N̨n D � N� D � N̨1 � � � � � N̨n�1 D "n � "1.

In the de�nitions below of the a�ne quantum enveloping algebras and the

a�ne Schur algebras, we use the convention that the indices appearing in the

relations are considered modulo n. Perhaps it is a bit confusing that until now

indices were considered modulo r , but that was for the a�ne Hecke algebra.

3.2. The (extended) a�ne algebras. In the following de�nitions we do not need

to consider the derivation, which we used above.
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De�nition 3.1. The extended quantum general linear algebra yUq.bgln/ is the

associative unital Q.q/-algebra generated byR˙1,K˙1
i andE˙i , for i D 1; : : : ; n,

subject to the relations

KiKj D KjKi ; KiK
�1
i D K�1

i Ki D 1;

EiE�j �E�jEi D ıi;j

KiK
�1
iC1 �K�1

i KiC1

q � q�1
;

KiE˙j D q˙h"i ; N̨j iE˙jKi ;

E2
˙iE˙.i˙1/ � .q C q�1/E˙iE˙.i˙1/E˙i CE˙.i˙1/E

2
˙i D 0;

E˙iE˙j �E˙jE˙i D 0; for distant i; j;

RR�1 D R�1R D 1;

RXiR
�1 D XiC1 for Xi 2 ¹E˙i ; K

�1
i º:

De�nition 3.2. The a�ne quantum general linear algebra Uq.bgln/ � yUq.bgln/ is

the unital Q.q/-subalgebra generated by E˙i and K˙1
i , for i D 1; : : : ; n.

The a�ne quantum special linear algebra Uq.bsln/ � Uq.bgln/ is the unital

Q.q/-subalgebra generated by E˙i and KiK
�1
iC1, for i D 1; : : : ; n.

Remark 3.3. Note that Uq.bgln/ is the quantum group associated to the a�ne Lie

algebrabgln without the well-known central extension. In other words, we will only

consider level-zero representations in this paper. The same holds for Uq.bsln/. The

algebra yUq.bgln/ is a Hopf algebra, so in that sense it can be considered to be a

quantum group.

We will in fact only need the bialgebra structure on yUq.bgln/, so we do not

explicit the antipode here.

De�nition 3.4. yUq.bgln/ is a bialgebra with counit "W yUq.bgln/ ! Q.q/ de�ned by

".E˙i / D 0; ".R˙1/ D ".K˙1
i / D 1

and coproduct�W yUq.bgln/ ! yUq.bgln/˝ yUq.bgln/; de�ned by
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�.1/ D 1˝ 1;

�.Ei / D Ei ˝KiK
�1
iC1 C 1˝Ei ;

�.E�i / D K�1
i KiC1 ˝E�i C E�i ˝ 1;

�.K˙1
i / D K˙1

i ˝K˙1
i ;

�.R˙1/ D R˙1 ˝R˙1:

Note that� and " can be restricted to Uq.bgln/ and Uq.bsln/, which are bialgebras

too.

At level 0 we can work with the Uq.sln/-weight lattice, when considering

Uq.bsln/-weight representations. The corresponding root-lattice is degenerate,

because ˛1 C ˛2 C � � � C ˛n D 0, but that does not matter in this section.

Similarly, we can work with the Uq.gln/-weight lattice, when considering yUq.bgln/
and Uq.bgln/-weight representations.

Suppose that V is a Uq.bgln/-weight representation with weights � D .�1; : : :,

�n/ 2 Zn, i.e.

V Š
M

�

V�

and Ki acts as multiplication by q�i on V�. Then V is also a Uq.bsln/-weight

representation with weights N� D . N�1; : : : ; N�n�1/ 2 Zn�1 such that N�j D �j ��j C1

for j D 1; : : : ; n� 1.

Conversely, there is not a unique choice of Uq.bgln/-action on a given

Uq.bsln/-weight representation with weights � D .�1; : : : ; �n�1/. We �rst have

to �x the action of K1 � � �Kn. In terms of weights, this corresponds to the obser-

vation that, for any given r 2 Z the equations

�i � �iC1 D �i ; (3.1a)

nX

iD1

�i D r (3.1b)

determine � D .�1; : : : ; �n/ uniquely, if there exists a solution to (3.1a) and (3.1b)

at all. We therefore de�ne the map 'n;r WZn�1 ! Zn [ ¹�º by

'n;r .�/ D �

if (3.1a) and (3.1b) have a solution, and put 'n;r .�/ D � otherwise.
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As far as weight representations are concerned, we can restrict our attention

to the Beilinson–Lusztig–MacPherson idempotented version of these quantum

groups [1], denoted OPU.bgln/, PU.bgln/ and PU.bsln/ respectively. For each � 2 Zn

adjoin an idempotent 1� to yUq.bgln/ and add the relations

1�1� D ı�;�1�;

E˙i1� D 1�˙ N̨i
E˙i ;

Ki1� D q�i 1�;

R1.�1;:::;�n/ D 1.�n;�1;:::;�n�1/R:

De�nition 3.5. The idempotented extended a�ne quantum general linear algebra

is de�ned by

OPU.bgln/ D
M

�;�2Zn

1�
yUq.bgln/1�:

Of course one de�nes PU.bgln/ � OPU.bgln/ as the idempotented subalgebra

generated by 1� and E˙i1�, for i D 1; : : : ; n and � 2 Zn.

Similarly for Uq.bsln/, adjoin an idempotent 1� for each � 2 Zn�1 and add the

relations

1�1� D ı�;�1�;

E˙i1� D 1�˙ N̨i
E˙i ;

KiK
�1
iC11� D q�i1�:

De�nition 3.6. The idempotented quantum special linear algebra is de�ned by

PU.bsln/ D
M

�;�2Zn�1

1�Uq.bsln/1�:

Any weight-representation of yUq.bgln/, Uq.bgln/ or Uq.bsln/ is also a representa-

tion of OPU.bgln/, PU.bgln/ or PU.bsln/, respectively. This is not true for non-weight rep-

resentations, of which there are many. There are also other di�erences of course,

e.g. OPU.bgln/, PU.bgln/ and PU.bsln/ are not unital, because they have in�nitely many

orthogonal idempotents. For that same reason, they are not bialgebras, although

their action on tensor products of weight representations is well-de�ned.
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3.3. The a�ne q-Schur algebra. Let us �rst recall Green’s [12, 6] tensor space

and the action of yUq.bgln/ on it. We will also recall some basic results about this

action and add some of our own. The proofs of most results can be found in [6]

and its references. Some other results cannot be found in the literature, but are

probably well-known among experts, e.g. the inner product on tensor space.

Let V be the Q.q/-vector space freely generated by ¹et j t 2 Zº.

De�nition 3.7. The following de�nes an action of yUq.bgln/ on V W

EietC1 D et if i � t mod n;

EietC1 D 0 if i 6� t mod n;

E�iet D etC1 if i � t mod n;

E�iet D 0 if i 6� t mod n;

K˙1
i et D q˙1et if i � t mod n;

K˙1
i et D et if i 6� t mod n;

R˙1et D et˙1 for all t 2 Z:

Note that V is clearly a weight representation of yUq.bgln/, with et having weight

"i , for i � t mod n. Therefore V is also a representation of OPU.bgln/.
From now on, let r 2 N>0 be arbitrary but �xed. As usual, one extends the

above action to V ˝r using the coproduct in yUq.bgln/. Again, this is a weight

representation and therefore a representation of OPU.bgln/, which we call Green’s

tensor space.

We also de�ne a Q.q/-bilinear form on V by hes ; eti D ıst , which extends to

V ˝r factorwise, i.e.

hv1 ˝ � � � ˝ vr ; w1 ˝ � � � ˝ wr i WD hv1; w1i � � � hvr ; wri:

We clearly have the following non-degeneracy result.

Lemma 3.8. For any 0 ¤ v 2 V ˝r , we have

hv; vi ¤ 0:

There is a right action of �H yAr�1
on V ˝r which commutes with the left action

of yUq.bgln/. Its precise de�nition, which can be found in [12, 6], is not relevant

here.
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De�nition 3.9. The a�ne q-Schur algebra yS.n; r/ is by de�nition the centralizing

algebra

End�H yAr�1

.V ˝r /:

By a�ne Schur–Weyl duality (see [6] for example), the image of

 n;r W yUq.bgln/ �! End.V ˝r /

is always isomorphic to yS.n; r/. If n > r , we can even restrict to Uq.bsln/ �
yUq.bgln/, i.e.

 n;r.Uq.bsln// Š yS.n; r/:

For n D r , this is no longer true.

De�nition 3.10. Let �W yUq.bgln/ ! yUq.bgln/ be the Q.q/-linear algebra anti-invo-

lution de�ned by

�.Ei / D qKiK
�1
iC1E�i ; �.E�i / D qK�1

i KiC1Ei ;

�.Ki/ D Ki ; �.R/ D R�1;

for 1 � i � n.

The proof of the following lemma is a straightforward check, which we leave

to the reader.

Lemma 3.11. We have

�� D .�˝ �/�:

Lemma 3.12. For any X 2 yUq.bgln/ and any v; w 2 V ˝r , we have

hXv;wi D hv; �.X/wi:

Proof. By Lemma 3.11, it su�ces to check the above for r D 1 and v D ei and

w D ej , for any i; j 2 Z. This is straightforward and left to the reader. �

Note that � can also be de�ned on PU.bgln/, such that �.1�/ D 1� for any � 2 Zr ,

and that it descends to yS.n; r/.
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3.4. A presentation of yS.n; r/ for n > r. In this subsection, let n > r . Recall

that in this case

 n;r W PU.bgln/ �! End�H yAr�1

.V ˝r/ Š yS.n; r/

is surjective. This gives rise to the following presentation of yS.n; r/. The proof

can be found in [6].

Theorem 3.13. [6] yS.n; r/ is isomorphic to the associative unital Q.q/-algebra

generated by 1�, for � 2 ƒ.n; r/, andE˙i , for i D 1; : : : ; n, subject to the relations

1�1� D ı�;�1�;

X

�2ƒ.n;r/

1� D 1;

E˙i1� D 1�˙ N̨i
E˙i ;

EiE�j � E�jEi D ıij

X

�2ƒ.n;r/

Œ�i � �iC1�1�;

E2
˙iE˙.i˙1/ � .q C q�1/E˙iE˙.i˙1/E˙i CE˙.i˙1/E

2
˙i D 0;

E˙iE˙j � E˙jE˙i D 0 for distant i; j:

We use the convention that 1�X1� D 0 whenever � or � is not contained

in ƒ.n; r/. Recall that Œa� is the q-integer .qa � q�a/=.q � q�1/.

We will use signed sequences
N
i D .�1i1; : : : ; �mim/, with m 2 N, �j 2 ¹˙1º

and ij 2 ¹1; : : : ; nº. The set of signed sequences we denote SSeq. For a signed

sequence
N
i D .�1i1; : : : ; �mim/ we de�ne

N
iƒ WD �1 N̨ i1 C � � � C �m N̨ im :

We write E
N
i for the product E�1i1 : : : E�mim . For any � 2 Zn and

N
i 2 SSeq, we

have

E
N
i1� D 1�C

N
iƒE

N
i:

The surjection  n;r W PU.bsln/ ! yS.n; r/ can also be given explicitly in terms of

the generators in Theorem 3.13. For any � 2 Zn�1, we have

 n;r .E˙i1�/ D E˙i1'n;r .�/; (3.2)

where 'n;r WZn�1 ! ƒ.n; r/ [ ¹�º is the map de�ned in 3.2. By convention, we

put 1� D 0.
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Recall the de�nition of � in 3.10. Since � is an algebra anti-homomorphism,

we get

�W 1�
yS.n; r/1� �! 1�

yS.n; r/1�;

for any �; � 2 ƒ.n; r/.

Lemma 3.14. For any non-zero element X 2 yS.n; r/, we have

X�.X/ ¤ 0 and �.X/X ¤ 0:

Proof. By the de�nition of yS.n; r/, we know that there exist et1 ; : : : ; etr 2 V such

that

X.et1 ˝ � � � ˝ etr / ¤ 0:

By Lemmas 3.12 and 3.8, we get

het1 ˝ � � � ˝ etr ; �.X/X.et1 ˝ � � � ˝ etr /i

D hX.et1 ˝ � � � ˝ etr /; X.et1 ˝ � � � ˝ etr /i ¤ 0:

Therefore, we see that

�.X/X ¤ 0:

The other case follows automatically, becauseX�.X/ D �2.X/�.X/ D �.Y /Y

for Y D �.X/. �

We can also give an explicit formula for the well-known embedding (see [6])

of �H yAr�1
into yS.n; r/. Let 1r D 1.1r /. We de�ne the following map

�n;r W �H yAr�1
�! 1r

yS.n; r/1r

by

�n;r.bi / D 1rE�iEi1r D 1rEiE�i1r ;

for i D 1; : : : ; r � 1,

�n;r.br / D 1rE�n : : : E�rEr : : :En1r ;

�n;r .T�/ D 1rE�n : : : E�r�1E�1 : : :E�r1r

.D 1rE�nE�1 : : :E�rC1E�nC1 : : :E�r1r /;

and

�n;r .T��1/ D 1rEr : : :E1ErC1 : : :En1r

.D 1rEr : : : En�1Er�1 : : : E1En1r /:
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It is easy to check that �n;r is well-de�ned. It turns out that �n;r is actually an

isomorphism, which induces the a�ne q-Schur functor

yS.n; r/-mod �! �H yAr�1
-mod

between the categories of �nite-dimensional modules of the extended a�ne Hecke

algebra and of the a�ne q-Schur algebra. This functor is an equivalence (see

Theorem 4.1.3 in [5], for example).

The following result will be needed in Section 6.

Proposition 3.15. Let n > r . Suppose that A is a Q.q/-algebra and

f W yS.n; r/ �! A

is a surjective Q.q/-algebra homomorphism which is an embedding when re-

stricted to 1r
yS.n; r/1r Š �H yAr�1

. Then f is a Q.q/-algebra isomorphism

A Š yS.n; r/:

Proof. We �rst prove that f is an embedding when restricted to 1r
yS.n; r/ and

yS.n; r/1r . Suppose that this is not true in the �rst case, then there exists a non-

zero element 1rX 2 1r
yS.n; r/ in the kernel of f . By Lemma 3.14, we have

1rX�.X/1r ¤ 0. However, we have

f .1rX�.X/1r/ D f .1rX/f .�.X/1r/ D 0;

which leads to a contradiction, because by hypothesis f is an embedding when

restricted to 1r
yS.n; r/1r . The second case can be proved similarly.

Now, let X 2 yS.n; r/ be an arbitrary non-zero element. By a�ne Schur–Weyl

duality, we have

yS.n; r/ Š Hom�H yAr�1

.yS.n; r/1r ; yS.n; r/1r/;

where the isomorphism is induced by left composition. Therefore, there exists an

element Y1r such that

XY1r ¤ 0:

By the above, we have

f .X/f .Y1r/ D f .XY1r/ ¤ 0;

so

f .X/ ¤ 0:

This shows that f is an embedding and therefore an isomorphism. �
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Let us end this section giving an embedding between a�ne q-Schur algebras

which we will use in Section 5.

Proposition 3.16. The Q.q/-linear algebra homomorphism

�nW yS.n; r/ �! yS.nC 1; r/

de�ned by

1� 7�! 1.�;0/;

E˙i1� 7�! E˙i1.�;0/;

En1� 7�! EnEnC11.�;0/;

E�n1� 7�! E�.nC1/E�n1.�;0/;

for any 1 � i � n�1 and � 2 ƒ.n; r/, is an embedding and gives an isomorphism

of algebras

yS.n; r/ Š
M

�;�2ƒ.n;r/

1.�;0/
yS.nC 1; r/1.�;0/:

3.5. The 2-categories U.bgln/Œy� and y�.n; r/Œy�. In this section we de�ne three

2-categories, U.bsln/Œy�, U.bgln/Œy� and y�.n; r/Œy�, using a graphical calculus anal-

ogous to Khovanov and Lauda’s in [17].

3.5.1. The 2-category U.bgln/Œy�. The 2-category U.bsln/Œy� is de�ned just as

U.bsln/ in [17], but the 2-HOM-spaces are tensored with QŒy�, where y is a formal

variable of degree two, and the de�ning KL-relation (3.17) is y-deformed, as

shown below. In order to de�ne U.bgln/Œy�, change the weights in the de�nition of

U.bsln/Œy� into level-zero bgln-weights (i.e. gln-weights). The 2-category y�.n; r/Œy�

is then de�ned as a quotient of U.bgln/Œy�. This is precisely the a�ne analogue of

what was done in [28].

Remark 3.17. We use the sign conventions from [28] in the relations on 2-mor-

phisms, which di�er from Khovanov and Lauda’s sign conventions. For more

details on this change of convention, see below.

Remark 3.18. We do not prove that the 2-category U.bgln/Œy� provides a cate-

gori�cation of Uq.bgln/, although we conjecture that it does. We will prove that
y�.n; r/Œy� categori�es yS.n; r/.
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In order to avoid giving several long de�nitions which are very similar, we

only de�ne U.bgln/Œy� in detail. The 2-category U.bsln/Œy� is de�ned exactly as

U.bgln/Œy�, but using level-zero bsln-weights. The 2-category y�.n; r/Œy� is de�ned

as a quotient of U.bgln/Œy�. We will show that y�.n; r/Œy� can also be obtained as a

quotient of U.bsln/Œy�.

To be more precise, we �rst de�ne the QŒy�-linear graded 2-category with

translation U.bgln/�Œy�
, whose 2-morphisms are QŒy�-linear combinations of ho-

mogeneous 2-morphisms of various degrees. The Q-linear 2-category U.bgln/Œy�

is then obtained by restricting to the degree-zero 2-morphisms.

De�nition 3.19. The additive QŒy�-linear graded 2-category with translation

U.bgln/�Œy�
consists of objects � 2 Zn and 1 and 2-morphisms such that the hom-

category U.bgln/�Œy�
.�; �0/ between two objects �, �0 is an additive QŒy�-linear

graded category with translation de�ned as follows.

� Objects2 of U.bgln/�Œy�
.�; �0/. A 1-morphism in U.bgln/�Œy�

from � to �0 is a

formal �nite direct sum of 1-morphisms

E
N
i1�¹tº D 1�0E

N
i1�¹tº WD E�1i1 � � �E�mim1�¹tº

for any t 2 Z and signed sequence
N
i 2 SSeq such that �0 D � C

N
iƒ and �,

�0 2 Zn.

� Morphisms of U.bgln/�Œy�
.�; �0/ . They are presented by generators and rela-

tions. Multiplication by y is indicated graphically by y in the diagrams below.

The QŒy�-linearity of the 2-category U.bgln/�Œy�
implies that y can freely slide

through any line in a diagram.

ı Generators. For 1-morphisms E
N
i1�¹tº and E

N
j1�¹t 0º in U.bgln/�Œy�

,

the hom-sets U.bgln/�Œy�
.E

N
i1�¹tº;E

N
j1�¹t 0º/ of U.bgln/�Œy�

.�; �0/ are graded

QŒy�-vector spaces given by linear combinations of diagrams of homoge-

neous degrees, modulo certain relations, built from composites of the fol-

lowing morphisms.

2 We refer to objects of the category U.bgln/�
Œy�

.�; �0/ as 1-morphisms of U.bgln/�
Œy�

. Like-

wise, the morphisms of U.bgln/�
Œy�.�; �0/ are called 2-morphisms in U.bgln/�

Œy�.
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i) Degree-zero identity 2-morphisms 1x for each 1-morphism x in

U.bgln/�Œy�
; in particular for any i 2 ¹1; : : : ; nº, t 2 Z and � 2 Zn, the

identity 2-morphisms 1Ei 1�
¹tº and 1E�i 1�

¹tº are represented graphically

by

1Ei 1�¹tº 1E�i 1�¹tº

OO

i

i

��C iƒ ��

i

i

�� � iƒ

deg 0 deg 0

More generally, for a signed sequence
N
i D .�1i1; �2i2; : : : �mim/, the

identity 1E
N
i1�¹tº 2-morphism is represented as

� � �

i1 i2 im

i1 i2 im

��C
N
iƒ

where the strand labeled ik is oriented up if �k D C and oriented down

if�k D �. We will often place labels on the side of a strand and omit the

labels at the top and bottom. The signed sequence can be recovered from

the labels and the orientations on the strands. We might also forget the

object on the left of the diagram which can be recovered from the object

on the right and the signed sequence corresponding to the diagram.

ii) For any � 2 Zn the 2-morphisms of Table 1, where the degrees are given

by the symmetric Z-valued bilinear form on C¹1; : : : ; nº,

i � j D

8
ˆ̂̂
<
ˆ̂̂
:

2 if i D j;

�1 if i � j ˙ 1 mod n;

0 if i 6� j ˙ 1 mod n:
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Table 1

Notation 2-morphism Degree

OO
�

i;�

OO

i

�

��C iƒ
i � i

��
�

i;�

��

i

�

� �C iƒ
i � i

__❄❄❄❄❄
??⑧⑧⑧⑧⑧ i;j;�

OOOO

i j

� �i � j

��⑧⑧⑧
⑧⑧
��❄

❄❄
❄❄

i;j;�
����i j

� �i � j

OO
i;�

�� JJ

i
� 1C N�i

OO
i;�

��TT

i
� 1 � N�i

�� i;� WW


i �

1C N�i

�� i;� GG ��
i � 1 � N�i

ı Relations

? Biadjointness and cyclicity

i) 1�CiƒEi1� and 1�E�i1�Ciƒ are biadjoint, up to grading shifts:

OO �� OO

�

�C iƒ

i

D OO
��C iƒ

i

D OO��OO

�

�C iƒ i

; (3.3)
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�� OO ��

�C iƒ

�

i

D ��

�C iƒ�

i

D ��OO��

�C iƒ

� i

I (3.4)

ii) as well for dotted lines:

OO

��

��

�

�C iƒ

�

i

D

��

�
� �C iƒ

i

D OO

��

��

�
�C iƒ

� i

:

(3.5)

iii) All 2-morphisms are cyclic with respect to the above biadjoint struc-

ture. This is ensured by the relations (3.3)–(3.5), and the relations

OO

��OO

��

��OO

�� OO
�

ji

j i

D
�� ��

i j

� D
OO ��

�� OO�� OO

��OO
�

i j

ij

(3.6)

The cyclic condition on 2-morphisms expressed by (3.3)–(3.6) en-

sures that diagrams related by isotopy represent the same 2-mor-

phism in U.bgln/Œy�.

It will be convenient to introduce degree zero 2-morphisms:

OO

��j

i � WD
OO

�� OO

��OO
�

i j

ij

D
��

OO��

OO ��
�

ji

j i

(3.7)

��

OO

i

j� WD
OO

��OO

�� OO
�

ji

j i

D
��

OO ��

OO��
�

i j

ij

(3.8)

where the second equality in (3.7) and (3.8) follow from (3.6).
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? Bubble relations

i) All dotted bubbles of negative degree are zero. That is,

i
��MM

�
m

�

D 0 if m < N�i � 1, (3.9a)

i
QQ��

�
m

�

D 0 if m < �N�i � 1, (3.9b)

for all m 2 ZC, where a dot carrying a label m denotes the m-

fold iterated vertical composite of
OO
�

i;�
or

��
�

i;�
depending on the

orientation.

ii) A dotted bubble of degree zero equals ˙1:

i
��MM

�
N�i �1

�

D .�1/�iC1 for N�i � 1, (3.10a)

i QQ��
�

�N�i �1

�

D .�1/�iC1�1 for N�i � �1. (3.10b)

iii) For the following relations we employ the convention that all sum-

mations are increasing, so that a summation of the form
Pm

f D0 is

zero if m < 0:

�OO

OO

OO

��

i

D �

�N�iX

f D0

�
OO

i

i
��MM

�
N�i �1Cf

��N�i �f

; (3.11a)

� OO

OO

OO

��

i

D

N�iX

gD0

�

OO

i

i
QQ��

�
�N�i �1Cg

� N�i �g

; (3.11b)
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OO ��

i i

�� D OO��

��

OO �

i i

�

N�i �1X

f D0

fX

gD0

�

��NN�
f �g

		OO
�N�i �1�f

i QQ��
�

�N�i �1Cg

; (3.12a)

�� OO

i i

�� D ��

��

OO

OO �

i i

�

�N�i �1X

f D0

fX

gD0

RR���
f �g

II��
�
�N�i �1�f

i
��MM

�
N�i �1Cg

�

: (3.12b)

iiv) Fake bubbles

Notice that for some values of � the dotted bubbles appearing

above have negative labels. A composite of
OO
�

i;�
or

��
�

i;�
with itself

a negative number of times does not make sense. These dotted bub-

bles with negative labels, called fake bubbles, are formal symbols

inductively de�ned by the equation

�
i QQ��

�
�N�i �1

�

C
i QQ��

�
�N�i �1C1

�

t C � � � C
i QQ��

�
�N�i �1Cr

�

t r C � � �

�

�
i ��MM

�
N�i �1

�

C
i ��MM

�
N�i �1C1

�

t C � � � C
i ��MM

�
N�i �1Cr

�

t r C � � �

�
D �1

(3.13)

and the additional condition

i
��MM

�
�1

�

D .�1/�iC1;
i QQ��

�
�1

�

D .�1/�iC1�1 if N�i D 0.

Although the labels are negative for fake bubbles, one can check that

the overall degree of each fake bubble is still positive, so that these

fake bubbles do not violate the positivity of dotted bubble axiom.

The above equation, called the in�nite Grassmannian relation, re-

mains valid even in high degree when most of the bubbles involved

are not fake bubbles.

? Nil-Hecke relations

OOOO

OOOO �

i i

D 0;
OOOO

OOOO

OOOO

i i i

� D
OO OO

OO OO

OO OO

i ii

�; (3.14)
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OOOO
�

i i
D

OO

�

OO

i i

� �

OO
�

OO

i i

�

D

OOOO
�

i i

� �

OOOO

�i i

�:

(3.15)

? For i ¤ j

OO

OO

��

��

�

i j

D ��OO �;

i j

��

��

OO

OO
�

i j

D OO�� �:

i j

(3.16)

? The analogue of the R.�/ -relations

i) For i ¤ j

OO

OO

OO

OO �

i j

D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

OOOO �

i j

if i � j D 0,

�i;j if i � j D �1 and ¹i; j º ¤ ¹1; nº,

�i;j � y OOOO �

i j

if ¹i; j º D ¹1; nº,

(3.17)

where

�i;j WD ".i; j /

0
@ OOOO

�
�

i j

� OO
�

OO �

i j

1
A :

For i � j D �1, we de�ne

".i; j / WD

´
1 if i � j C 1 mod n;

�1 if i � j � 1 mod n:

Note that this sign takes into account the standard orientation of the

Dynkin diagram:

OO
�

OO

i j

� D

OO

�

OO

i j

�;
OOOO

�

i j

� D

OOOO

�i j

�: (3.18)

ii) Unless i D k and i � j D �1

OO

OO

OO

OO

OO

OO

�

i j k

D OO

OO

OO

OO

OO

OO

�:

kji

(3.19)
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For i � j D �1

OO

OOOO

OO

OO

OO

�

i j i

� OO

OO OO

OO

OO

OO

�

iji

D ".i; j / OO OOOO �:

i j i

(3.20)

Composition of 1-morphisms is de�ned by multiplication and horizontal and

vertical composition of 2-morphisms are de�ned by juxtaposition and glueing, as

in [17].

De�nition 3.20. The 2-category U.bgln/Œy� is the full 2-subcategory of U.bgln/�Œy�

with the same objects and 1-morphisms but in which the 2-morphisms are only

the ones of degree zero.

Remark 3.21. Note that the 2-hom-spaces in U.bgln/Œy� are no longer QŒy�-linear,

because deg.y/ D 2. They are �nite-dimensional as Q-vector spaces, because

the original KL 2-HOM-spaces are �nite-dimensional in each degree and their

grading is bounded below.

As already remarked, U.bsln/Œy� is de�ned similarly. Only some signs in the

relations involving right cups and caps have to be changed, so that all relations

really depend onbsln-weights and not onbgln-weights. We use the convention which

is the a�ne analogue of the signed-version in [17]. For more information on this

change of signs, see (3.36).

De�nition 3.22. Let U.bsln/ and U.bgln/ denote the Q-linear 2-categories obtained

by modding out U.bsln/Œy� and U.bgln/Œy� by the ideal generated by y.

Note that U.bsln/ is isomorphic to the original KL 2-category and U.bgln/ isomor-

phic to its bgln-analogue.

Recall that Khovanov and Lauda [17] de�ned a basis of U.bsln/ over Q. The

following theorem will be proved below Proposition 5.10.

Theorem 3.23. U.bsln/Œy� is freely generated over QŒy� by the KL basis, i.e. by the

same diagrams as Khovanov and Lauda used for their basis, so the deformation

is �at. Furthermore, the deformation is non-trivial, i.e. there exists no QŒy�-linear

degree preserving 2-equivalence between U.bsln/Œy� and U.bsln/˝Q QŒy�.

3.5.2. Further relations in U.bgln/Œy�. The other U.bgln/Œy�-relations expressed

below follow from the relations in De�nition 3.19 and are going to be used in the

sequel.
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? Bubble slides

If ¹i; j º ¤ ¹1; nº, we have

�

OO

j

i
QQ��

�
�N�i �1Cm

D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

Pm
f D0

.f �m � 1/

�C jƒ

OO

j

i
QQ��

�
�.�Cjƒ/i �1Cf

� m�f

if i D j ,

�C jƒ

OO

j

i
QQ��

�
�.�Cjƒ/i �1Cm

if i � j D 0.

(3.21)

�

OO

iC1

i
QQ��

�
�N�i �1Cm

D

�C .i C 1/ƒ

OO

iC1

i
QQ��

�
�.�C.iC1/ƒ/i �2Cm

�

�

�C .i C 1/ƒ

OO

iC1

i
QQ��

�
�.�C.iC1/ƒ/i �1Cm

; (3.22)

�

OO

iC1

i
QQ��

�
�N�i �1Cm

D �
X

f CgDm

� � .i C 1/ƒ

OO

iC1

i
QQ��

�
�.��.iC1/ƒ/i �1Cg

�f

; (3.23)

�

OO

iC1

i
��MM

�
N�i �1Cm

D �
X

f CgDm

�C .i C 1/ƒ

OO

iC1

i
��MM

�
.�C.iC1/ƒ/i �1Cg

�f

; (3.24)

�

OO

iC1

i
��MM

�
N�i �1Cm

D

� � .i C 1/ƒ

OO

iC1

i
��MM

�
.��.iC1/ƒ/i �2Cm

�

�

� � .i C 1/ƒ

OO

iC1

i
��MM

�
.��.iC1/ƒ/i �1Cm

: (3.25)

If we switch labels i and i C 1, then the right hand side of the above equations

gets a minus sign. Bubble slides with the vertical strand oriented downwards

can easily be obtained from the ones above by rotating the diagrams 180

degrees.
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If ¹i; j º D ¹1; nº, we get

�

OO

1

n
QQ��

�
�N�n�1Cm

D

�C .1/ƒ

OO

1

n
QQ��

�
�.�C.1/ƒ/n�2Cm

�

�

�C .1/ƒ

OO

1

n
QQ��

�
�.�C.1/ƒ/n�1Cm

� y

�C .1/ƒ

OO

1

n
QQ��

�
�.�C.1/ƒ/n�2Cm

;

(3.26)

�

OO

n

1
QQ��

�
�N�1�1Cm

D �

�C .n/ƒ

OO

n

1
QQ��

�
�.�C.n/ƒ/1�2Cm

�

C

�C .n/ƒ

OO

n

1
QQ��

�
�.�C.n/ƒ/1�1Cm

� y

�C .n/ƒ

OO

n

1
QQ��

�
�.�C.n/ƒ/1�2Cm

;

(3.27)

�

OO

1

n
QQ��

�
�N�n�1Cm

D �
X

f CgDm

Pf
pD0

�
f

p

��
� y

�f �p

� � .1/ƒ

OO

1

n
QQ��

�
�.��.1/ƒ/n�1Cg

�p

;

(3.28)

�

OO

n

1
QQ��

�
�N�1�1Cm

D
X

f CgDm

Pf
pD0

�
f

p

�
y

f �p

� � .n/ƒ

OO

n

1
QQ��

�
�.��.n/ƒ/1�1Cg

�p

; (3.29)
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�

OO

1

n

��MM

�
N�n�1Cm

D �
X

f CgDm

Pf
pD0

�
f

p

��
� y

�f �p

�C .1/ƒ

OO

1

n

��MM

�
.�C.1/ƒ/n�1Cg

�p

; (3.30)

�

OO

n

1
��MM

�
N�1�1Cm

D
X

f CgDm

Pf
pD0

�
f

p

�
y

f �p

�C .n/ƒ

OO

n

1
��MM

�
.�C.n/ƒ/1�1Cg

�p

; (3.31)

�

OO

1

n

��MM

�
N�n�1Cm

D

� � .1/ƒ

OO

1

n

��MM

�
.��.1/ƒ/n�2Cm

�

�

� � .1/ƒ

OO

1

n

��MM

�
.��.1/ƒ/n�1Cm

� y

� � .1/ƒ

OO

1

n

��MM

�
.��.1/ƒ/n�2Cm

;

(3.32)

�

OO

n

1
��MM

�
N�1�1Cm

D �

� � .n/ƒ

OO

n

1
��MM

�
.��.n/ƒ/1�2Cm

�

C

� � .n/ƒ

OO

n

1
��MM

�
.��.n/ƒ/1�1Cm

� y

� � .n/ƒ

OO

n

1
��MM

�
.��.n/ƒ/1�2Cm

:

(3.33)
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? More Reidemeister 3 like relations

Unless i D k D j we have

OO

OO

��

�� OO

OO

�

i j k

D OO

OO

��

��OO

OO

�

kji

(3.34)

and when i D j D k we have

OO��

��

OOOO

OO

�

i i i

� OO

��

OO OO

OO

�� �

iii

D
X

RR
�

f1

LL �f3

i QQ��
�

�N�i �3Cf4

OO

�f2

�

C
X

OO

�
g2 �� KK

�g1

TT���
g3

i ��MM
�

N�i �1Cg4

�
;

(3.35)

where the �rst sum is over all f1; f2; f3; f4 � 0with f1Cf2Cf3Cf4 D N�i and

the second sum is over all g1; g2; g3; g4 � 0 with g1 C g2 C g3 C g4 D N�i � 2.

Note that the �rst summation is zero if N�i < 0 and the second is zero when
N�i < 2.

Reidemeister 3 like relations for all other orientations are determined from

relations (3.19), (3.20), and the above relations using biadjunction and cyclicity.

3.5.3. The 2-category y�.n; r/Œy�. As explained in Section 3.4, the q-Schur

algebra yS.n; r/ can be seen as a quotient of PU.bgln/ by the ideal generated by all

idempotents corresponding to the weights that do not belong to ƒ.n; r/.

It is then natural to de�ne the 2-category y�.n; r/Œy� as a quotient of U.bgln/Œy�

as follows.

De�nition 3.24. The 2-category y�.n; r/Œy� is the quotient of U.bgln/Œy� by the

2-ideal generated by all 2-morphisms containing a region with a label not in

ƒ.n; r/.

We remark that we only put real bubbles, whose interior has a label outside

ƒ.n; r/, equal to zero. To see what happens to a fake bubble, one �rst has to

write it in terms of real bubbles with the opposite orientation using the in�nite

Grassmannian relation (3.13).
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As in [28], we de�ne y�.n; r/Œy� as a quotient of U.bgln/Œy�, rather than U.bsln/Œy�.

Therefore, just as in [28] (see the introduction of Sections 3 and 4:3 in that paper),

we have to show that there exists a full and essentially surjective 2-functor

‰n;r W U.bsln/Œy� �! y�.n; r/Œy�;

which categori�es the surjective homomorphism

 n;r W PU.bsln/ �! yS.n; r/

de�ned in (3.2).

On objects ‰n;r maps � to � WD 'n;r .�/, which was de�ned in Section 3.2.

On 1 and 2-morphisms ‰n;r is de�ned to be the identity except for the left cups

and caps, on which it is given by

�� i;� 7�! .�1/�iC1C1 �� i;� and
OO

i;�
7�! .�1/�iC1

OO
i;�
: (3.36)

Note that here we are simply extending the 2-functor used in [28].

Just for completeness, we now state the following result without proof.

Proposition 3.25. The 2-functor

‰n;r W U.bsln/Œy� �! y�.n; r/Œy�

is well-de�ned, full and essentially surjective.

Just as for U.bsln/Œy� and U.bgln/Œy�, we can put y D 0.

De�nition 3.26. Let y�.n; r/ be the quotient of y�.n; r/Œy� by the 2-ideal generated

by y.

Of course there also exists a full and essentially surjective 2-functor

‰n;r WU.bsln/ �! y�.n; r/;

which is de�ned and denoted just as above.

4. A functor from DEBim�

yAr�1

to y�.n; r/�

Œy�

In this section, we de�ne a functor

†n;r W DEBim�
yAr�1

�! y�.n; r/�
Œy�
;
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which categori�es the embedding

�n;r W �H yAr�1
�! 1r

yS.n; r/1r :

Actually its target will be the one-object sub-2-category y�.n; r/�
Œy�
..1r/; .1r//

of y�.n; r/�
Œy�

. Since y�.n; r/�
Œy�
..1r/; .1r// has only one object, it can be seen as

a monoidal category.

This functor is the a�ne analogue of†n;d in Section 6.5 in [28]. For diagrams

with only unoriented i-colored strands for i D 1; : : : ; r � 1 the de�nitions in that

paper and in this one coincide, for diagrams with unoriented r-colored strands or

oriented strands the de�nition here is new.

In Section 6, we will prove that

†n;r W DEBim�
yAr�1

�! y�.n; r/�Œy�..1
r /; .1r//

is faithful. We conjecture that †n;r is also full and, therefore, that the two cat-

egories DEBim yAr�1
and y�.n; r/Œy�..1

r/; .1r// are equivalent. The latter equiva-

lence would the a�ne analogue of the one proved in Proposition 6.9 in [28] for

�nite type A.

4.1. The de�nition of the functor. The functor †n;r is Q-linear and monoidal,

so it is su�cient to specify the image of the generating objects and morphisms.

The functor †n;r is de�ned on objects by

; 7�! 1r D 1.1r /;

i 7�! E�iEi1r ;

r 7�! E�n : : :E�rEr : : :En1r ;

C 7�! E�n : : :E�r�1E�1 : : :E�r1r ;

� 7�! Er : : :E1ErC1 : : :En1r :

The functor †n;r is de�ned on morphisms as follows, where we use rotation

through 180ı, denoted !, and re�ection in the x-axis plus orientation reversal,

denoted � , to shorten the de�nition.

� The empty diagram is sent to the empty diagram in the region labeled .1r/.

� The vertical line colored i is sent to the identity 2-morphism on the morphism

E�iEi 1r :

i 7�! OO

i

��

i

.1r/:
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� The vertical line colored r is sent to the identity 2-morphism on the morphism

E�n : : :E�rEr : : :En1r :

r 7�! �� � � � �� OO � � � OO

n r r n

.1r /:

� The vertical line colored C is sent to the identity 2-morphism on the morphism

E�n : : :E�r�1E�1 : : :E�r1r :

7�! �� � � � �� �� � � � ��

n rC1 1 r

.1r /:

The vertical line colored � is sent to the identity 2-morphism on the morphism

Er : : :E1ErC1 : : :En1r , which is obtained from the one above by applying !.

� The image of startdoti for i ¤ r :

i
7�! �� JJ

i
.1r/:

The image of enddoti is obtained by applying ! or � .

� The image of startdotr :

r
7�! //

//

� � � � � �
n r r n

.1r/:

The image of enddotr is obtained by applying ! or � .

� The image of mergei for i ¤ r :

i

7�! GG ��
i

.1r/:

OO

��
i i

The image of spliti is obtained by applying ! or � .
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� The image of merger :

r

7�!

zz ddzz dd

//

//

� � � � � �

� � � � � �

� � � � � �
r n n rrn nr

.1r /:

The image of splitr is obtained by applying ! or � .

� The image of 4verti;j with distant colors i and j di�erent from r :

i j

7�! .1r/:

��

[[

��

CC

i i jj

� The image of 4vertr;j with distant colors r and j :

r j

7�!

☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛��

☛☛☛☛☛☛☛☛☛☛☛

EE

� � �

� � � ☛☛☛☛☛☛☛☛☛☛☛

EE◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆&&

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

ff

n r r n j j

.1r/:

The image of 4vertj;r is obtained by applying � (not !!).

� The image of 6vertiC1;i with colors i and i C 1 di�erent from r :

iC1 i iC1

7�! .1r/:

__

��

@@

99 %%

NN

{{
iC1 iC1 i i iC1

i

(4.1)

The image of 6verti;iC1 is obtained by applying ! or � .

� The images of 6vertr;1 and 6vertr�1;r respectively:

r 1 r

7�!

� � �

OO OO

�� � � � ��� � �� � �

� � �� � �

��

OO

��

OO

��
nrrn1n 1rrn

1

.1r /;
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r�1 r r�1

7�!

� � �

�� ��

OO
� � �

OO
� � �� � �

� � �� � �

OO

��

OO

��

OO nrrnr�1n r�1rrn

r�1

.1r/:

The images of 6vertr;r�1 and 6vert1;r , respectively, are obtained by ! or � .

� The images of Ccap and �cap respectively:

7�! oo

oo

� � � � � �

oo

oo

� � � � � �
1 r r 1n rC1 rC1 n

.1r/;

7�! //

//

� � � � � �

//

//

� � � � � �
rC1 n n rC1r 1 1 r

.1r/:

The images of Ccup and �cup are obtained from those of �cap and Ccap,

respectively, by applying ! or � .

� The image 4vertC;i with colors i di�erent from r � 1 and r and i C 1 di�erent

from r and 1:
iC1

i

7�!

☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛��

☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛��

☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛��

oo



oo

��
n rC1 1 i�1 i iC1iC2 r i i

.1r /:

The images of 4vertiC1;C, 4verti;� and 4vert�;iC1 are obtained by applying � ,

�! and ! respectively.
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� The image of 4vertC;r :

1

r

7�!

� � � �� �� � � � ��  � � �  ✙
✙
✙
✙
✙
✙
✙
✙
✙
✙
✙
✙
✙
✙
✙

�� � � �

� � � � � �

��

OO

����
n rC1 1 2 r�1 r n rC1 r r rC1 n

1

.1r /:

The images of 4vert1;C, 4vertr;� and 4vert�;1 are obtained by applying � , �!

and ! respectively.

� The image of 4vertC;r�1:

r�1

r

7�!

� � �

�� �� ��

� � �

�� ��

� � �

��

� � �

� � �� � �

OO

��

OOOO rr�1r�21rC1nnrC1rrrC1n

r�1

.1r /:

The images of 4vertr;C, 4vertr�1;� and 4vert�;r are obtained by applying � , �!

and ! respectively.

� The image of boxi for i D 1; : : : ; r :

i 7�! �

r�1X

j Di

QQ��
j

.1r /

C
r QQ��

�
�1

.1r /

:

� The image of the box morphism boxy:

y 7�! y
.1r /
:

It is easy to check that †n;r is degree preserving and monoidal.

Lemma 4.1. †n;r is well-de�ned.

Proof. We check that †n;r preserves all relations in DEBim�
yAr�1

.

First of all, note that all “�nite type A” relations, i.e. the relations between

diagrams without r-colored or oriented strands, are preserved by precisely the

same arguments as in [28]. And this fact, provided that relations (2.11a)–(2.14b)
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are preserved, implies that relations (2.5a)–(2.10) with at least one r-colored

strand do not need to be checked separately, as mentioned in (x) of Remark 2.7.

Let us also remark that, except in the checks of the box relations, we will use

neither relation (3.17) nor the bubble slides relations (3.26)–(3.33) for ¹i; j º D

¹1; nº.

Let us now go through the list of the remaining relations and explain why they

are preserved.

� The Isotopy relations (2.4a)–(2.4i) are straightforward.

� Relation (2.11a) follows directly from the fact that in y�.n; r/�
Œy�
..1r /; .1r// all

dotted bubbles of degree zero are equal to ˙1. Indeed we can apply successively

relations (3.10) to the nested bubbles in the image of and .

� For relations (2.11b) and (2.11c) use repeatedly relations (3.12). We only give

the details for relation (2.11b), the other relation being completely analogous.

The diagram †n;r

� �
is as follows

�� � � � �� �� � � � ��

n rC1 1 r

OO � � � OO OO � � � OO

r 1 rC1 n

.1r /:

Apply successively relation (3.12b) to each pair of up and down i-strands, with

the region on the right of the pair labelled by �. For i D r C 1; : : : ; n, we have

� D .0; 1; : : : ; 1; 0; : : : ; 0; 1; 0; : : : ; 0/, where the entries which are equal to one

are the 2nd until the r th and the i C 1st (mod n). For i D 1; : : : ; r , we have

� D .1; : : : ; 1; 0; 1; : : : ; 1; 0; : : : ; 0/ where the entries which are equal to zero

are the r C 2nd until the nth and the i th.

For these �, relation (3.12b) becomes

�� OO

i i

� D

�� JJ

i

WW


i

�: (4.2)

for all i . In this way, we get exactly the nested cups and caps which together

form †n;r

� �
.
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� Relation (2.12):

i j

iC1j C1

i j

iC1j C1

D :

The basic idea of the proof is the same for all cases, so we only show one case

in detail. For j < i and i; j ¤ r , this relation follows from the fact that, using

repeatedly relations (3.16), (3.17) for distant i; j , (3.19) and (3.34), one can

reduce both †n;r

� �
and †n;r

� �
to the diagram

☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛��

☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛��

☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛��

OO

//

OO

//

��

oo

��

oo

☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛��

ss



||

��

��

��

zz

  

n rC1 1 j �1 j j C1j C2 i�1 i iC1iC2 r i i j j

j C1j C1iC1iC1

.1r/:

The case for j > i and i; j ¤ r can be proved similarly using exactly the

same relations.

For the remaining cases, in which one of the integers i or j is equal to r � 1

or r , use repeatedly relations (3.16), (3.17) for i � j D 0, (3.19) and (3.34).

� Relations (2.13a) and (2.13b).

First when the colors .i; i C 1/ di�er from .r; 1/ and .r � 1; r/. We only give

the details for relation (2.13a), because the proof of the other relation is very

similar.
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The image under †n;r of is equal to

|| || || || || ||

� � � � � � � � �
//

��

//

��

� � � � � � � � �

oo



oo

��
n rC1 1 i�1 i iC1iC2 r i i

iC1

.1r /:

Thanks to relation (3.16), the left part of the central bubble can be slid to

the right until the whole bubble is contained in the region immediately to the

right of the vertical i-strand, which has label � D .1; : : : ; 1; 0; 1; : : : ; 1; 0; : : : ; 0/

where the �rst 0 is in i C 2nd position and the last 1 in r C 1st position. That

degree-zero bubble is equal to one, by relation (3.10).

After removing the bubble, we can slide the i-colored strand over the r� i�1

rightmost strands and slide the i C 1-colored strand over the n � r C i � 1

leftmost strands, using relation (3.17). Apply relation (4.2) to the two horizontal

i-strands in the region immediately left of the i C 1-strand, which has only one

non-zero term as before because � D .1; : : : ; 1; 0; 1; : : : ; 1; 0; : : : ; 0/, where the

�rst 0 is in i th position and the last 1 in r C 1st position. We get

�� � � � �� �� � � � �� �� OO �� �� � � � �� ��

n rC1 1 i�1 i iC1iC2 r i

.1r /:

i

�

Then the strand with the rightmost endpoints can be slid all the way to the right,

�rst using relation (3.16) and then relation (3.12b), which here is simply equal

to an ordinary Reidemeister 2 relation (i.e. without extra bubble terms) because

� D .1r/. Finally, we end up with a diagram which is indeed equal to†n;r

� �
.

We can prove relations (2.13a) and (2.13b) with colors .r; 1/ and .r � 1; r/ in

almost the same way. We can slide bubbles and strands using relations (3.16)

and (3.17), evaluate bubbles using relation (3.10) and use relations (3.12a)

and (3.12b), which again are particularly simple for the relevant labels. The

di�erence here is that we have to iterate some of the steps that we used above,

e.g. because we get nested bubbles or various pairs of strands to which we can

apply relations (3.12a) and (3.12b).
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� Relations (2.13c) and (2.13d).

We only prove relation (2.13d) when .i; iC1/ di�ers from .r; 1/ and .r�1; r/.

The other cases for this relation and all cases for the other relation are proved

in the same way.

The image under †n;r of is equal to

oo
☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛��

☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛��

☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛��

oo



oo

��
n rC1 1 i�1 i iC1iC2 r i i

.1r /:

We can slide the i C 1-colored strand over the n � r C i � 1 leftmost strands

using relation (3.17), so that we end up with the following picture in the central

part of the diagram

qq
--

��
i iC1

i

�

with � D .1; : : : ; 1; 0; 1; : : : ; 1; 0; : : : ; 0/ where the �rst 0 is in i th position and

the last 1 in r C 1st position. We now use relation (3.12b), which again reduces

to (4.2). Then we apply relation (3.16) to the two rightmost strands. After doing

all this, the central part of the diagram becomes equal to three identity strands

colored i , i C 1, i , the two �rst being oriented down and the last up.

Then, in the full diagram, the rightmost i-colored strand above can be slid

over the r � i �1 rightmost parallel strands using relation (3.16), so that we end

up with

�� � � � �� �� � � � �� //

n rC1 1 r i i

.1r/
: (4.3)

By applying relation (3.11) to the curl and the fact that the bubble appearing

then is equal to �1, the diagram in (4.3) becomes equal to the image under†n;r

of .
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� Relation (2.13e). Actually, we will prove

D ; (4.4)

which is equivalent.

Let us start with colors .i; i C 1/ di�erent from .r; 1/ and .r � 1; r/.

The image under †n;r of is

|| || || || || ||

� � � � � � � � �
//

��

//

OO

� � � � � � � � �

oo



oo

��
n rC1 1 i�1 i iC1iC2 r i i

iC1

.1r /:

The image under †n;r of is

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓		 � � �

� � � ✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓		

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓		 � � �

� � � ✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓		

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓		 � � �

� � � ✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓		��

��
oo

��

PP

oo


n rC1 1 i�1 i iC1iC2 r i i

.1r/:

We can apply to the �rst of these two diagrams the same arguments as in the

beginning of the proof of relation (2.13a), in order to simplify it to

|| || || || || || ||

� � � � � � � � �
//

OO

� � � � � � � � �

oo

��
n rC1 1 i�1 i iC1iC2 r i i

.1r/:
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In order to prove that this diagram is equal to the second one, it only remains to

check that

mm
11

��
ii

i

�
D

��

��

OO

ii

i

�
; (4.5)

where � D .1r/. Because relation (3.12a) reduces to an ordinary Reidemeister 2

relation when � D .1r /, the left hand side of (4.5) is equal to

mm
11

��
ii

i

.1r/
D

jj
44

��
ii

i

.1r /
:

So proving (4.5) is equivalent to proving that

ii
55

��
ii

i

.1r/
D

$$

zz
OO

ii

i

.1r/
; (4.6)

which follows directly from relation (3.35). Indeed in the case � D .1r/, the �rst

term of the l.h.s. of (3.35) is killed since it has a region with a label possessing

a negative entry. While the r.h.s. of (3.35) comes down to one term (the second

sum does not appear since N�i � 2 D �2) whose bubble equals �1. Hence

†n;r

� �
and †n;r

� �
are equal.

Proving relation (4.4) for colors .r � 1; r/ is not much more complicated and

is left to the reader.

� Relations (2.14a) and (2.14b) involving oriented strands and three adjacent

colored strands.

In order to prove these relations we bend the left end of the oriented strand

downward and the right end upward in the diagrams.

Let us start with the case when there are no r-colored strands. We prove

relation (2.14a) for the case in which the bottom strands are colored .i � 1; i ,

i � 1/. Relation (2.14b) for the case in which the bottom strands are colored

.i; i � 1; i/ can be proved similarly.
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By applying relations (3.16), (3.17), (3.19), and (3.34) to the diagrams

†n;r

� �
and †n;r

� �
, we can slide the entangled parts of the strands

colored i �1, i and iC1 to the middle of the diagrams. In this way, we can turn

†n;r

� �
and †n;r

� �
into the following two diagrams: the diagram

†n;r

� �
becomes

☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛��

☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛��

☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛��

OO

//

OO

//

OO

//

��

oo

��

oo

��

oo





ll

11

��

zz

��

�� ��

��

n rC1 1 i�2 i�1 i iC1 iC2 r i�1i�1 i i i�1i�1

iC1iC1 i i iC1iC1

.1r/

and †n;r

� �
becomes

☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛��

☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛��

☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛��

OO

//

OO

//

OO

//

��

oo

��

oo

��

oo

��

tt

((

AA

��

����

��

yy

n rC1 1 i�2 i�1 i iC1 iC2 r i�1i�1 i i i�1i�1

iC1iC1 i i iC1iC1

.1r /:

We have to prove that these two diagrams are equivalent.
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First consider the diagram above which is equivalent to †n;r

� �
. Apply

relation (3.35) to the triangle in the center formed by three i-colored strands.

Since � D .1; : : : ; 1; 0; 1; 2; 0; 1; : : : ; 1; 0; : : : ; 0/, where 2 is in the i C 1st

position and the last 1 in the rC1st position, that relation is equal to an ordinary

Reidemeister 3 relation (i.e. without extra bubble terms).

Then apply relation (3.19) to the two triangles formed by strands colored

.i � 1; i; i C 1/. Both triangles are slightly to the right of the center and one is

higher and the other is lower than the center. Sliding the i-colored strands to the

left using this relation creates four bigons, two between strands colored i and

i C 1 and the other two between strands colored i � 1 and i C 1. The �rst two

bigons can be solved using relation (3.16), the other two using relation (3.17).

Finally, we apply relation (3.19) to the top and bottom central triangles of the

diagram. This proves that †n;r

� �
is equivalent to

☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛��

☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛��

☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛��

OO

//

OO

//

OO

//

��

oo

��

oo

��

oo





tt

((

!!

vv

����

��

ww

n rC1 1 i�2 i�1 i iC1 iC2 r i�1i�1 i i i�1i�1

iC1iC1 i i iC1iC1

.1r/:

Now apply relation (3.20) to the triangle in the central right part of the diagram.

This gives us two terms. The second term, with the identity strands (i.e. the

extra term compared to the usual Reidemeister 3 relation), is killed because

it contains a bigon between two i-colored strands with the same orientation,

which is zero by relation (3.14). In the remaining term we can slide the

vertical i-colored strand to the left using relation (3.35), which again simply

reduces to an ordinary Reidemeister 3 relation. This leaves us with a bigon

between two i-colored strands with opposite orientations. Use relation (3.12b)

in order to remove this bigon. Note that this relation is equal to an ordinary

Reidemeister 2 relation, since � D .1; : : : ; 1; 0; 2; 1; 0; 1; : : : ; 1; 0; : : : ; 0/ with 2

in the i th position and the last 1 in the r C 1st position.
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This tells us that †n;r

� �
is equivalent to

☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛��

☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛��

☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛��

OO

//

OO

//

OO

//

��

oo

��

oo

��

oo





tt

((

!!

vv

����
❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴//

❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴oo

n rC1 1 i�2 i�1 i iC1 iC2 r i�1i�1 i i i�1i�1

iC1iC1 i i iC1iC1

.1r/:

(4.7)

Let us now prove that †n;r

� �
is equivalent to this same diagram. First

apply relation (3.35) to the triangle formed by the three i � 1-colored strands

just right of the center. Since � D .1; : : : ; 1; 2; 0; 0; 1; : : : ; 1; 0; : : : ; 0/ with 2 in

the i th position and the last 1 in the r C 1st position, this relation is equal to an

ordinary Reidemeister 3 relation.

Then apply relation (3.19) to the two central triangles formed by strands

colored .i � 1; i; i C 1/. Sliding the i C 1-colored strands to the left using this

relation creates two bigons between strands colored i�1 and iC1 respectively.

These bigons can be removed using relation (3.17).

In this way, we have proved that †n;r

� �
is equivalent to

☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛��

☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛��

☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛�� � � �

� � � ☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛��

OO

//

OO

//

OO

//
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oo

��

oo

��

oo

��

tt

((

AA

��

����

��

yy

n rC1 1 i�2 i�1 i iC1 iC2 r i�1i�1 i i i�1i�1

iC1iC1 i i iC1iC1

.1r/:
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Next, apply relation (3.20) to the central left part of the diagram. Locally we

end up with a sum of two terms, the usual term in the Reidemeister 3 relation and

an extra term consisting in identity strands. This extra term is killed because

it contains an i � 1-colored curl which is zero by relation (3.14). Note that

� D .1; : : : ; 1; 2; 0; 0; 1; : : : ; 1; 0; : : : ; 0/ where 2 is in the i th position and the

last 1 is in the r C 1st position, so N�i�1 D �1. The �rst term contains a bigon

between two i�1-colored strands with opposite orientations. Remove this bigon

using relation (3.12a), which in this case is just a Reidemeister 2 relation.

Now apply relation (3.19) to the top central and bottom central parts of the

diagram which we have obtained so far. Apply relation (3.34) to the top right

and bottom right parts of the diagram. In this way we get two more bigons

between strands colored i�1 and i with opposite orientations, which we remove

using relation (3.16). This �nishes our proof that †n;r

� �
is equivalent to

the same diagram in (4.7).

Relation (2.14a) when one of the strands has color r and relation (2.14b) can

be dealt with in a similar way. Note that three cases have to be considered: when

the bottom strands are colored .r � 2; r � 1; r � 2/, .r; 1; r/ or .r � 1; r; r � 1/.

We omit the details.

� Box relations. Just as for relations (2.5a)–(2.10), some of the box relations with

i D r or j D r follow from the same box relations for i; j ¤ r together with

some other box relations. Taking into account the observations in Remark 2.7

too, we see that it su�ces to prove relations (2.15b) and (2.15j) here.

Let us start with relation (2.15j). It is su�cient to prove this relation for

i D r � 1, because we can write

iC1 D iC1 � iC2 C iC2 � iC3 C � � � C r�1 � r C r

and

i D i � iC1 C iC1 � iC2 C � � � C r�2 � r�1 C r�1

and use relations (2.13c), (2.13d) and (2.15a).

Let us prove relation (2.15j) for i D r � 1, i.e.

r QQ��
�

�1

�� � � � �� �� � � � ��

n rC1 1 r

D �� � � � �� �� � � � ��

n rC1 1 r

 
� QQ��

r�1
C

r QQ��
�

�1

!
:
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Relations (2.13c) and (2.13d) together imply that

r
D

r�1
;

hence we have

//

//

� � � � � �
oo

oo

nr
�� � � � �� �� � � � ��

n rC1 1 r

D �� � � � �� �� � � � ��

n rC1 1 r

QQ��
r�1
:

Therefore, it su�ces to prove

//

//

� � � � � �
oo

oo

nr
C

r QQ��
�

�1

�� � � � �� �� � � � ��

n rC1 1 r

D �� � � � �� �� � � � ��

n rC1 1 r

r QQ��
�

�1

:

On the one hand, we observe that

r QQ��
�

�1

�� � � � �� �� � � � ��

n rC1 1 r

D �� � � � �� �� � � � ��

n rC1 1 r

�
� �� � � � �� QQ��

r

�� � � � ��

n rC1 1 r

;

since the bubble can be slid through the �rst n � r � 1 left strands and then
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the bubble slide relation (3.22) can be applied to the bubble and the strand

colored r C 1. On the other hand, we have

//

//

� � � � � �
oo

oo

nr
�� � � � �� �� � � � ��

n rC1 1 r

D �� � � � �� QQ��
r

�� � � � ��

n rC1 1 r

;

which is obtained by using repeatedly relation (3.12a), which for the relevant

labels � reduces to

OO ��

i i

� D

��TT

i

GG ��
i

�:

So it only remains to prove that

�� � � � �� �� � � � ��

n rC1 1 r

�
D �� � � � �� �� � � � ��

n rC1 1 r

r QQ��
�

�1

:

Notice that we can invert the orientation of the bubble, by the in�nite Grass-

mannian relation. We can apply relation (3.12a) to the bubble and the strand

colored r . The �rst term that appears is killed, because the weight inside the

bigon has a negative entry. The bubble appearing in the second term is equal to

�1 since � D .1; : : : ; 1; 0; 1; 0; : : : ; 0/ with the last one in rC1st position. Thus

we get

�� � � � �� �� � � � ��

n rC1 1 r

r QQ��
�

�1

D �� � � � �� �� � � � ��

n rC1 1 r

�
: (4.8)

Finally, we have to show that we can move the dot from the r-strand to the

.r C 1/-strand. Just slide the left dotted strand over all the strands colored

1; : : : ; r � 1, using the �rst case of relation (3.17), and then apply the second

case of relation (3.17). Observe that the term with the bigon is killed, because

the weight inside the bigon has a negative entry. Note that this argument is not

valid if r D n � 1. Indeed in this case, r C 1 and 1 are adjacent colors, hence
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the left dotted strand cannot be simply slid over the strand colored 1. In order

to prove this remaining case together with relation (2.15b), let us remark that

the right hand side of equation (4.8) can also be expressed as follows:

�� � � � �� �� � � � ��

n rC1 1 r

�

D �� � � � �� �� � � � ��

n rC1 1 r

�

C
� r�1X

j D1

QQ��
j

.1r /

�
r QQ��

�
�1

.1r /

C
n QQ��

�
1

.1r /

C y

�
�� � � � �� �� � � � ��

n rC1 1 r

:

(4.9)

This expression is obtained using repeatedly kink resolutions and bubble slides.

Indeed the kink on the left hand side of relation (3.11) for i D r is equal to zero

here since the label inside the kink possesses a negative entry. Hence one can

express the dotted r strand as a non-dotted strand times a bubble colored r on the

left. This bubble can then be slid through the r � 1 strand using relation (3.25),

creating two terms: one is a dotted r � 1 strand while the other is a non-dotted

r � 1 strand times a bubble colored r on the left. This bubble can be slid all the

way to the left using (3.25) making appear an extra term which is the dotted rC1

strand on the right hand side of (4.9). One applies this same trick successively

to the dotted strands for colors r � 1 to 1. The only exception is that, in the

end, to slide the bubble colored 1 through the strand colored n, we have to use

the deformed relation (3.33), which brings out the y term in (4.9). Finally the

dotted n strand that thus appears can also be expressed as a non-dotted strand

times a n-colored bubble on the left using relation (3.11).

Therefore, by (4.9), it su�ces to prove

r�1X

j D1

QQ��
j

.1r /

�
r QQ��

�
�1

.1r /

C
n QQ��

�
1

.1r /

C y D 0: (4.10)
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In Section 5 we construct a 2-representation of y�.n; r/�
Œy�

. Its de�nition and

the proof that is well-de�ned do not depend on the results we are proving here.

So, let us just assume the well-de�nedness of this 2-representation for now.

Its restriction to y�.n; r/�
Œy�
..1r/; .1r// gives an algebra homomorphism

F
0W y�.n; r/�Œy�..1

r/; .1r// �! QŒy; x1; : : : ; xr �

which on the elements of degree two is determined by

y .1r / 7�! y;

QQ��
i

.1r / 7�!

8
<
:
xiC1 � xi 1 � i � r � 1;

0 r C 1 � i � n � 1;

r QQ��
�

�1

.1r /
7�! xr ;

n QQ��
�
1

.1r /
7�! x1 � y:

Note that F
0 maps the l.h.s. of (4.10) to zero. We are going to show that

this implies (4.10) by showing that F
0 is an isomorphism. From the de�ni-

tion it is clear that F
0 is surjective. Injectivity follows if we can prove that

y�.n; r/�
Œy�
..1r/; .1r// is generated by

y .1r /; QQ��
i

.1r /
;

r QQ��
�

�1

.1r /

;
n QQ��

�
1

.1r /

; (4.11)

for i D 1; : : : ; r�1, because that implies that y�.n; r/�
Œy�
..1r/; .1r// is isomorphic

to a quotient of QŒy; x1; : : : ; xr � by the surjectivity of F
0, which means that the

two algebras have to be isomorphic.

In order to prove that y�.n; r/�
Œy�
..1r/; .1r// is indeed generated by the 2-mor-

phisms in (4.11), �rst note that y�.n; r/�
Œy�
..1r/; .1r// is generated by all counter-

clockwise bubbles of arbitrary degree and y . It therefore su�ces to prove that

any counter-clockwise bubble is in the span of the 2-morphisms in (4.11).



182 M. Mackaay and A.-L. Thiel

We �rst prove this fact for counter-clockwise i-bubbles with 1 � i � r � 1.

The result follows from the recursive formula

i QQ��
�

tC1

.1r /

D �
i QQ��

�
t

.1r /� QQ��
iC1

.1r /
C � � � C QQ��

r�1

.1r /
�

r QQ��
�

�1

.1r /�
; (4.12)

for t � 0. The equation in (4.12) can be obtained by unnesting the left hand

side of

//

//

� � � � � �
oo

oo

ir

.1r /

�
t

D 0; (4.13)

using bubble slides from the inside to the outside. Equation (4.13) holds,

because the region in the center has label � with �rC1 D �1.

For i D r the argument is simpler, because

r QQ��
�

�2Ct

.1r /

D 0;

for any t � 2. This holds because the inner region has label � with �rC1 D �1.

Similarly, for i D n we have

n
��MM

�
�2Ct

.1r /

D 0;

for any t � 2. By the in�nite Grassmannian relation, this implies that

n QQ��
�
t

.1r /

D

�
n QQ��

�
1

.1r /
�t

;

for any t � 2.

For r C 1 � i � n � 1 there is nothing to prove. In that case, the counter-

clockwise i-bubbles of positive degree are all zero, because their interior is

labeled by � with �iC1 D �1. This �nishes the proof that

y�.n; r/�Œy�..1
r/; .1r// Š QŒy; x1; : : : ; xr �;

which implies (4.10).
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Now let us consider relation (2.15b). The image under †n;r of
r

is

//

//

� � � � � �
oo

oo

nr

.1r /

D �
r QQ��

�
�1

.1r /

C
n QQ��

�
1

.1r /

: (4.14)

This expression can be obtained using repeatedly bubble slide relation (3.23).

Observe that, at each step but the �rst one, only one term survives, the second

being systematically zero since it includes a real bubble whose inside is a label

with a negative entry.

If one replaces, in this expression, the bubble colored n using equation (4.10),

one recognizes precisely the image under †n;r of 1 � r � y .

We have checked that †n;r preserves all the relations of DEBim�
yAr�1

, so this

ends the proof. �

5. A 2-representation of y�.n; r/�

Œy�

In this section we de�ne a 2-category E�Bim yAr�1
and a 2-functor

F
0 W y�.n; r/�Œy� �! E�Bim�

yAr�1
:

The 2-category E�Bim yAr�1
is an extension of the category of singular Soergel

bimodules in a�ne type A considered by Williamson in [37] (see also [27, 28]).

The 2-functor F
0 is a generalization of Khovanov and Lauda’s 2-representation

�G
r de�ned in [17, 19].

5.1. Extended singular bimodules. Let R D QŒy�Œx1; : : : ; xr �. As in Sec-

tion 2.1.2, there is a grading onR de�ned by degy D degxi D 2, for i D 1; : : : ; r ,

and a degree preserving action of �W yAr�1
onR. For any partition .n1; : : : ; nk/ of r ,

let

Sn1
� � � � � Snk

� WAr�1
� �W yAr�1

be the standard parabolic subgroup which is contained in the �nite Weyl group.

Let Rn1���nk � R denote the subring of Sn1
� � � � � Snk

-invariant polynomials.
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Using these rings of partially symmetric polynomials, we can construct bi-

modules by induction and restriction. Induction is de�ned as follows: suppose

nj splits into n0
j plus n1

j , i.e. nj D n0
j C n1

j , then we de�ne the induction

functor by taking the tensor product on the left with R
n1:::n0

j
n1

j
���nk over Rn1���nk .

The restriction functor is de�ned by taking the tensor product on the left with

Rn1:::nj Cnj C1���nk ˝
R

n1:::nj Cnj C1���nk R
n1���nk over Rn1���nk . In particular,

Ind
n0

j
;n1

j
nj

.Rn1���nk / D R
n1:::n0

j
n1

j
���nk ˝n1���nk

Rn1���nk ;

and

Res
nj Cnj C1
nj ;nj C1

.Rn1���nk / D Rn1:::nj Cnj C1���nk ˝n1:::nj Cnj C1���nk
Rn1���nk

where a subscript n1 � � �nk of a tensor product means that it is taken over Rn1���nk .

Also note that Ind
n0

j
;n1

j
nj

.M/ is zero (resp. Res
nj Cnj C1
nj ;nj C1

.M/ is zero) if M is a

Rm1���mk -left module such thatmj ¤ nj (resp. such that .mj ; mj C1/ ¤ .nj ; nj C1/).

Now some twisted bimodules are de�ned like the bimodules B�˙1 of

Section 2.1.2, their well-de�nedness is proved in Lemma 5.2: R
nkn1���nk�1
� (resp.

R
n2���nkn1

��1 ) is equal to Rnkn1���nk�1 (resp. Rn2���nkn1) as a left Rnkn1���nk�1-module

(resp. as a left Rn2���nkn1-module) whereas the action on the right is twisted. The

right action of any a 2 Rn1���nk on R
nkn1���nk�1
� and R

n2���nkn1

��1 is given by multi-

plication by �nk .a/ and ��n1.a/ respectively. Recall that the action of �˙1 was

de�ned in section 2.1.1. The twisted functors de�ned by taking the tensor product

on the left with these twisted bimodules over Rn1���nk are denoted by R�nk and

R��n1 . In particular,

R�nk .R
n1���nk / D Rnkn1���nk�1

� ˝n1���nk
Rn1���nk

and

R��n1 .R
n1���nk / D R

n2���nkn1

��1 ˝n1���nk
Rn1���nk

respectively.

De�nition 5.1. Let E�Bim yAr�1
be the 2-category with

� objects: the rings Rn1���nk , for all partitions .n1; : : : ; nk/ of r ;

� 1-morphisms: given two partitions .n1; : : : ; nk/ and .m1; : : : ; ml / of r , the

1-morphisms between Rn1���nk and Rm1���ml are the direct sums of shifts of ten-

sor products ofRm1���ml -Rn1���nk -bimodules obtained by applying induction, re-

striction and twisted functors to these rings of partially symmetric polynomials;

� 2-morphisms: the degree preserving bimodule maps.
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Lemma 5.2. The map �nk gives an isomorphism betweenRn1���nk andRnkn1���nk�1 ,

while ��n1 gives an isomorphism between Rn1���nk and Rn2���nkn1 .

Proof. We only prove the lemma for �nk . The proof for ��n1 is similar and is left

to the reader.

It is clear that �nk is a bijection. What remains to be shown is that the image

of Rn1���nk is indeed Rnkn1���nk�1 .

For any generating re�ection �l of Snk
� Sn1

� � � � � Snk�1
, relation (1.1d)

implies that ��nk�l�
nk D �l�nk

(with the indices read modulo r) and hence this

latter belongs to Sn1
� � � � � Snk

. In particular, for all p 2 Rn1���nk , we have

��nk�l�
nk .p/ D �l�nk

.p/ D p

i.e. �nk .p/ 2 Snk
� Sn1

� � � � � Snk�1.

This shows that �nk sends the ring Rn1���nk isomorphically to Rnkn1���nk�1 . �

This implies that the twisted bimodules R
nkn1���nk�1
� and R

n2���nkn1

��1 are well-

de�ned.

The proof of the following lemma is straightforward and is left to the reader.

Lemma 5.3. We have the following isomorphisms of bimodules relating twisting,

induction and restriction:

R��nkR�nk .R
n1���nk / Š R�n1R��n1 .R

n1���nk / Š Rn1���nk ;

Ind
n0

j
;n1

j
nj

R�nk .R
n1���nk / Š R�nk Ind

n0
j

;n1
j

nj
.Rn1���nk / for j ¤ k;

Ind
n0

k
;n1

k
nk

R�nk .R
n1���nk / Š R

�
n0

k
R

�
n1

k
Ind

n0
k

;n1
k

nk
.Rn1���nk /;

Res
nj Cnj C1
nj ;nj C1

R�nk .R
n1���nk / Š R�nk Res

nj Cnj C1
nj ;nj C1

.Rn1���nk / for j ¤ k � 1;

Resnk�1Cnk
nk�1;nk

R�nk�1R�nk .R
n1���nk / Š R�nk�1Cnk Resnk�1Cnk

nk�1;nk
.Rn1���nk /:

There exist analogous isomorphisms for the negative twists.

Lemma 5.4. The category EBim yAr�1
is a full subcategory of E�Bim yAr�1

.
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Proof. For i D 1; : : : ; r � 1, the full embedding of EBim yAr�1
into E�Bim yAr�1

sends Bi to Bi and B�˙1 to B�˙1 D R
.1r /

�˙1
. For i D r , the bimodule Br is sent to

B� ˝R Br�1 ˝R B��1 2 E�Bim yAr�1
:

The fact that the isomorphism in EBim yAr�1
betweenBr andB� ˝RBr�1˝RB��1

is unique up to scalar ensures that the category EBim yAr�1
is a full subcategory of

E�Bim yAr�1
. �

5.2. The 2-representation. We will mostly refer the reader to [17, 19, 28] for the

de�nition of

F
0 W y�.n; r/�Œy� �! E�Bim�

yAr�1
;

since F 0 is a straigthforward generalization of the equivariant Khovanov-Lauda

2-representations discussed in those papers.

Remark 5.5. Khovanov and Lauda used the equivariant cohomology rings of the

varieties of partial �ags in Cr for the de�nition of their equivariant 2-representa-

tions. These cohomology rings are isomorphic to the �nite typeA singular Soergel

bimodules which were used in [28].

We do not know if the 2-representation in this paper, which we de�ne using the

extended a�ne singular Soergel bimodules, can be de�ned in terms of equivariant

cohomology rings of the varieties of cyclic partial �ags (or periodic lattices) in

CŒ"; "�1�r de�ned in [26] and [11].

5.2.1. De�nition of F
0. Note that for y D 0 the restriction of F

0 ı‰n;r to U.sln/

is simply equal to �G
r , where

‰n;r W U.csln/�Œy� �! y�.n; r/�Œy�

was de�ned just before Proposition 3.25.

We will de�ne the 2-functor F
0 on all objects and 1-morphisms of y�.n; r/�

Œy�
,

give explicitly the images of the 2-morphisms for which the color n appears and

explain afterwards how they are related to Khovanov and Lauda’s 2-representation

�G
r , see Proposition 5.8. Here we are using their notation ki D �1 C � � � C �i ,

for i D 1; : : : ; n, with the convention that k0 D 0. The origin of the shifts

appearing in the images of the 1-morphisms is explained in Remark 5.7 and the

well-de�nedness of F
0 is proved in Proposition 5.10.
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De�nition 5.6. The 2-functor

F
0W y�.n; r/�Œy� �! E�Bim�

yAr�1

is de�ned as follows.

� On objects � 2 ƒ.n; r/, the 2-functor F
0 is given by

� D .�1; � � � ; �n/ 7�! R�1����n :

� on 1-morphisms we de�ne F
0 by

1�¹tº 7�! R�1����n¹tº:

For i D 1; : : : ; n� 1 and t 2 Z we de�ne

Ei1�¹tº 7�! Res
�i C1

�i ;1
Ind

1;�iC1�1

�iC1
.R�1����n¹t C 1C ki�1 C ki � kiC1º/

and

E�i1�¹tº 7�! Res
�iC1C1

1;�iC1
Ind

�i �1;1

�i
.R�1����n¹t C 1 � kiº/:

For i D n and t 2 Z we de�ne

En1�¹tº 7�! Res�nC1
�n;1

R��1 Ind
1;�1�1

�1
.R�1����n¹t C n � .r C k1/

� .k1 C � � � C kn�2/º/

and

E�n1�¹tº 7�! Res
�1C1

1;�1
R� Ind

�n�1;1
�n

.R�1����n¹t C k1 C � � � C kn�1º/:

� On 2-morphisms, we de�ne F
0 by giving the bimodule maps which correspond

to the generating 2-morphisms of y�.n; r/�
Œy�

. The ones not involving color n have

the same image as under Khovanov and Lauda’s 2-representation [17, Section

6.3.3] [19] [28, Section 4.2].

When the color n occurs in a generating 2-morphism, the 2-functor F
0 is as

follows. Here e˛ and h˛ denote the elementary and the complete symmetric

polynomials respectively:

F
0
� �� JJ

n �

�
W 1 7�!

P�n

f D0

.�1/�n�f x
f
1 ˝ 1˝ 1

˝ e�n�f .xr��nC1 C y; : : : ; xr C y/

D
P�n

f D0

.�1/�n�f .x1 � y/f ˝ 1˝ 1

˝ e�n�f .xr��nC1; : : : ; xr/;
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F
0
� ��TT

n �

�
W 1 7�! .�1/�1

P�1

f D0

.�1/�1�f .xr C y/f ˝ 1˝ 1

˝ e�1�f .x1; : : : ; x�1
/

D .�1/�1
P�1

f D0

.�1/�1�f xf
r ˝ 1˝ 1

˝ e�1�f .x1 � y; : : : ; x�1
� y/;

F
0

�
WW



n
�
�

W x
˛1

1 ˝ 1˝ 1˝ x
˛2

1

7�! .�1/�1C1h˛1C˛2C1��1
.x1; : : : ; x�1

/

D .�1/�1C1
P̨1

pD0

P̨2

qD0

�
˛1

p

��
˛2

q

�

y˛1C˛2�p�qhpCqC1��1
.x1 � y; : : : ; x�1

� y/;

F
0

�
GG ��

n
�
�

W x˛1
r ˝ 1˝ 1˝ x˛2

r

7�!
P̨1

pD0

P̨2

qD0

�
˛1

p

��
˛2

q

�
.�y/˛1C˛2�p�q

h˛1C˛2C1��n
.xr��nC1 C y; : : : ; xr C y/

D h˛1C˛2C1��n
.xr��nC1; : : : ; xr/:

If jn � j j > 1,

F
0

� OOOO

n j

�

�
W x˛1

r ˝ 1˝ x
˛2

kj C1
7�! x

˛2

kj
˝ 1˝ .x1 � y/˛1 ;

F
0

� OOOO

j n

�

�
W x

˛1

kj
˝ 1˝ x

˛2

1 7�! .xr C y/˛2 ˝ 1˝ x
˛1

kj C1
;

F
0

�

�� ��n j

�

�
W x

˛1

1 ˝ 1˝ x
˛2

kj
7�! x

˛2

kj C1
˝ 1˝ .xr C y/˛1 ;

F
0

�

�� ��j n

�

�
W x

˛1

kj 1
˝ 1˝ x˛2

r 7�! .x1 � y/˛2 ˝ 1˝ x
˛1

kj
;
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F
0

� OOOO

n n

�

�
W x˛1

r ˝ 1˝ 1˝ x
˛2

1

7�! .xr C y/˛2
P̨1

pD0

Pp�1

f D0

�
˛1

p

�
.�y/˛1�p.xr C y/p�1�f ˝ 1˝ 1˝ x

f
1

� x˛1
r

P˛2�1

gD0

.xr C y/˛2�1�g ˝ 1˝ 1˝ x
g
1

D .xr C y/˛2
P˛1�1

f D0

x˛1�1�f
r ˝ 1˝ 1˝ .x1 � y/f

� x˛1
r

P̨2

qD0

Pq�1

gD0

�
˛2

q

�
y˛2�qxq�1�g

r ˝ 1˝ 1˝ .x1 � y/g ;

F
0

�

�� ��n n

�

�
W x

˛1

1 ˝ 1˝ 1˝ x˛2
r

7�! x
˛1

1

P̨2

pD0

Pp�1

f D0

�
˛2

p

�
.�y/˛2�px

p�1�f
1 ˝ 1˝ 1˝ .xr C y/f

� .x1 � y/˛2
P˛1�1

gD0

x
˛1�1�g
1 ˝ 1˝ 1˝ .xr C y/g

D x
˛1

1

P˛2�1

f D0

.x1 � y/˛2�1�f ˝ 1˝ 1˝ xf
r

� .x1 � y/˛2
P̨1

qD0

Pq�1

gD0

�
˛1

q

�
y˛1�q.x1 � y/q�1�g ˝ 1˝ 1˝ xg

r ;

F
0

� OOOO

1 n

�

�
W x

˛1

�1
˝ 1˝ x

˛2

1

7�! ..xr C y/˛2 ˝ 1˝ x
˛1C1

�1C1
� .xr C y/˛2C1 ˝ 1˝ x

˛1

�1C1
/¹�1º

D ..xr C y/˛2 ˝ 1˝ x
˛1

�1C1
.x�1C1 � y/

� xr.xr C y/˛2 ˝ 1˝ x
˛1

�1C1
/¹�1º;

F
0

� OOOO

n n�1

�

�
W x˛1

r ˝ 1˝ x
˛2

r��nC1

7�! .x
˛2

r��n
˝ 1˝ .x1 � y/˛1x1

� .xr��n
C y/x

˛2

r��n
˝ 1˝ .x1 � y/˛1/¹�1º

D .x
˛2

r��n
˝ 1˝ .x1 � y/˛1C1 � x

˛2C1

r��n
˝ 1˝ .x1 � y/˛1/¹�1º;
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F
0

�

�� ��1 n

�

�
W x

˛1

�1C1
˝ 1˝ x˛2

r 7�! ..x1 � y/˛2 ˝ 1˝ x
˛1

�1
/¹�1º;

F
0

�

�� ��n n�1

�

�
W x

˛1

1 ˝ 1˝ x
˛2

r��n
7�! .x

˛2

r��nC1
˝ 1˝ .xr C y/˛1/¹�1º;

F
0

� OOOO

n 1

�
�

W x˛1
r ˝ 1˝ x

˛2

�1C1
7�! .x

˛2

�1
˝ 1˝ .x1 � y/˛1/¹1º;

F
0

� OOOO

n�1 n

�

�
W x

˛1

r��n
˝ 1˝ x

˛2

1 7�! ..xr C y/˛2 ˝ 1˝ x
˛1

r��nC1
/¹1º;

F
0

�

�� ��n 1

�

�
W x

˛1

1 ˝ 1˝ x
˛2

�1

7�! .x
˛2C1

�1C1
˝ 1˝ .xr C y/˛1 � x

˛2

�1C1
˝ 1˝ .xr C y/˛1C1/¹1º

D .x
˛2

�1C1
.x�1C1 � y/˝ 1˝ .xr C y/˛1

� x
˛2

�1C1
˝ 1˝ xr.xr C y/˛1/¹1º;

F
0

�

�� ��n�1 n

�

�
W x

˛1

r��nC1
˝ 1˝ x˛2

r

7�! ..x1 � y/˛2x1 ˝ 1˝ x
˛1

r��n
� .x1 � y/˛2 ˝ 1˝ .xr��n

C y/x
˛1

r��n
/¹1º

D ..x1 � y/˛2C1 ˝ 1˝ x
˛1

r��n
� .x1 � y/˛2 ˝ 1˝ x

˛1C1

r��n
/¹1º;

F
0

0
BB@ OO

n

�
�

1
CCA W 1˝ 1 7�! xr ˝ 1 D 1˝ .x1 � y/;

F
0

0
BB@ ��

n

�
�

1
CCA W 1˝ 1 7! .x1 � y/˝ 1 D 1˝ xr :
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Remark 5.7. Let us explain where the shifts in the image of the new 1-morphisms

come from. We will denote by An.�/ the shift appearing in F
0.En1�/ and by

Bn.�/ the one appearing in F
0.E�n1�/. To understand their origin, let us go back

to the decategori�ed level (see Section 3.4), where the embedding of yS.n; r/ into
yS.n C 1; r/ sends En1� to EnEnC11.�;0/ and E�n1� to E�.nC1/E�n1.�;0/. We

want this embedding to have a categorical analogue. Although we will not work

out the details of the corresponding functor in this paper, a necessary condition

for the existence of such a functor is that the shifts satisfy the following recurrence

relations:

An.�/ D kn�1 � 1C AnC1.�/;

Bn.�/ D BnC1.�
0/C 1 � kn;

where �0 D .�1; : : : ; �n�1; �n � 1; 1/. This determines the value of An.�/ and

Bn.�/ up to a constant which does not depend on n. To �x these constants,

we use the fact that we want the triangle of lemma 6.1 to be commutative and

the 2-functor F
0 to be degree preserving. Note that F .�/ has a shift equal to

zero, so F
0.Er : : :E1ErC1 : : :En1r/ D F

0†n;r .�/ should have a shift equal to

zero too. In this way we obtain a constraint on An..1
r// and we deduce that

the aforementioned overall constant is equal to �.r C k1/. Similarly F .C/ has

a shift equal to zero, so F
0.E�n : : :E�r�1E�1 : : :E�r1r / D F

0†n;r.C/ has to

have a zero-shift too. This gives us a constraint on Bn..1
r / C N̨n/ and allows

us to deduce that the aforementioned overall constant is equal to zero. The

reader can verify that this choice of overall constants also �ts with the �1-shift

of F
0.E�n : : :E�rEr : : :En1r/ D F

0†n;r.r/.

It is natural to wonder how the previous images of the 2-morphisms in the

de�nition of F
0 relate to Khovanov and Lauda’s 2-representation �G

r . Indeed,

take a generating 2-morphism with n-strands. By Lemma 5.3, the images of its

source and target 1-morphisms are isomorphic, up to a same shift, to conjugates of

the images of 1-morphisms which do not contain factors E˙n. Here conjugation

means conjugation by certain invertible twisted bimodules. One can thus ask

if the image of the 2-morphism can be obtained by conjugating a 2-morphism

which does not contain strands of color n. Before answering this question in the

“conjugation trick” Proposition 5.8, let us do an example to make things more

concrete (we omit the shifts here). Consider the 2-morphism

OOOO

n j

�
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with jn � j j > 1. The image of its source and target 1-morphisms are

Res�nC1
�n;1

R��1 Ind
1;�1�1

�1
Res

�j C1

�j ;1
Ind

1;�j C1�1

�j C1
.R�1;:::;�n/

and

Res
�j C1

�j ;1
Ind

1;�j C1�1

�j C1
Res

�nC1
�n;1

R��1 Ind
1;�1�1

�1
.R�1;:::;�n/:

These are isomorphic to

R��.�nC1/ Res
�nC1
�n;1

Ind
1;�1�1

�1
Res

�j C1

�j ;1
Ind

1;�j C1�1

�j C1
R��n .R

�1;:::;�n/ (5.1)

and

R��.�nC1/ Res
�j C1

�j ;1
Ind

1;�j C1�1

�j C1
Res

�nC1
�n;1

Ind
1;�1�1

�1
R��n .R

�1;:::;�n/; (5.2)

respectively, where in both cases the isomorphism is given by

a ˝ 1˝ b 7�! a ˝ 1˝ 1˝ ��n.b/ D 1˝ ��nC1.a/˝ ��n.b/˝ 1: (5.3)

The inverse is given by

1˝ a ˝ b ˝ 1 D ��.�nC1/.a/˝ 1˝ ���n.b/ D 1˝ ���n.a/˝ ���n.b/: (5.4)

Note that the tensor factors

Res�nC1
�n;1

Ind
1;�1�1

�1
Res

�j C1

�j ;1
Ind

1;�j C1�1

�j C1
.R�n;�1:::;�n�1/

and

Res
�j C1

�j ;1
Ind

1;�j C1�1

�j C1
Res�nC1

�n;1
Ind

1;�1�1

�1
.R�n;�1:::;�n�1/

in the middle of (5.1) and (5.2) are, up to a same shift, the images of the morphisms

E1Ej C11�n;�1;:::;�n�1
and Ej C1E11�n;�1;:::;�n�1

under F
0.

One can see that if one applies the isomorphism (5.3) to x
˛1
r ˝ 1 ˝ x

˛2

kj C1

followed by the tensor product of the identity on the two twisted bimodules in (5.1)

and of the bimodule map on the central tensor factor given by the image of

OOOO

1 j C1

�0
;
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where �0 D .�n; �1; : : : ; �n�1/, and �nally followed by the inverse isomor-

phism (5.4), one gets

x˛1
r ˝ 1˝ x

˛2

kj C1

7�! 1˝ .x�nC1 � y/˛1 ˝ x
˛2

kj C�nC1
˝ 1

D
P̨1

pD0

�
˛1

p

�
.�y/˛1�p ˝ x

p

�nC1
˝ x

˛2

kj C�nC1
˝ 1

7�!
P̨1

pD0

�
˛1

p

�
.�y/˛1�p ˝ x

˛2

kj C�nC1
˝ x

p

�nC1
˝ 1

D 1˝ x
˛2

kj C�nC1
˝ .x�nC1 � y/˛1 ˝ 1

7�! x
˛2

kj
˝ 1˝ .x1 � y/˛1 ;

which is precisely the image under F
0 of our original 2-morphism with the

n-strand. So in this example one obtains indeed the same result using this conju-

gation trick turning n into 1.

Of course one could have used a similar conjugation trick turning n into n� 1,

i.e. writing everything as conjugatesR��1�1 ˝ �˝R���1 and using the bimodule

map corresponding to OOOO

n�1 j �1

�00
;

where �00 D .�2; : : : ; �n; �1/. In this case one obtains again the image under F
0

of our original 2-morphism.

Proposition 5.8. The image under F
0of any generating 2-morphism containing

n-strands can be obtained by either one of the conjugation tricks, i.e. turning n into

1 or n�1, except for the dotted n-identities. The images of these two 2-morphisms

(up and downward) can be obtained by the conjugation trick which turns n into

n � 1, but not by the one which turns n into 1.

Proof. Let us start with the proof for the dotted n-identities. It is an easy check to

see that applying the conjugation trick which turns n into n � 1 gives indeed the

expressions announced in our de�nition of F
0. While if one writes F

0.E˙n1�/ as

R��.�n˙1/ ˝ F
0.E˙11�0/˝R��n and then apply the image under F

0 of the dotted

1-identity, one obtains

1˝ 1 7�! .xr C y/˝ 1 D 1˝ x1 .resp. x1 ˝ 1 D 1˝ .xr C y//;

which di�ers from the image under F
0 of the oriented upward (resp. downward)

dotted n-identity.
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As for the non-dotted generating 2-morphisms of color n, the proof that both

conjugation tricks give the same bimodule maps is trivial in certain cases and need

some work in some others:

� whenever only one expression was given in our de�nition of F
0, it is because

the expressions obtained from both conjugation tricks were obviously equal;

� whenever two expressions (obtained via the two di�erent conjugation tricks)

were given, let us prove that they are indeed equal.

We start with the image under F
0 of the right n-cup. Note that in the bimodule

Res
�1

1;�1�1
R� Ind

�n;1
�nC1

Res�nC1
�n;1

R��1 Ind
1;�1�1

�1
.R�1����n/we have x1 ˝1˝1˝p D

1˝ .xr C y/˝ 1˝ p, for any polynomial p. Therefore, we have to show that

�nX

f D0

.�1/�n�f ˝ .xr C y/f ˝ 1˝ e�n�f .xr��nC1 C y; : : : ; xr C y/

D

�nX

f D0

.�1/�n�f ˝ xf
r ˝ 1˝ e�n�f .xr��nC1; : : : ; xr/:

For a �xed power of xr , say k, this amounts to showing that

1˝ xk
r ˝ 1˝

�n�kX

iD0

.�1/i
�
k C i

i

�
yie�n�k�i .xr��nC1 C y; : : : ; xr C y/

D 1˝ xk
r ˝ 1˝ e�n�k.xr��nC1; : : : ; xr/:

This follows from Lemma 5.9.

Lemma 5.9. For any 0 � k � n, we have

en�k.a1; : : : ; an/ D

n�kX

iD0

.�1/i
�
k C i

i

�
yien�k�i .a1 C y; : : : ; an C y/:

Proof. By induction with respect to n. For n D 0 there is nothing to prove.

Suppose n > 0. Write

en�k.a1; : : : ; an/ D en�k.a1; : : : ; an�1/C anen�1�k.a1; : : : ; an�1/:

Note that n� k D .n � 1/ � .k � 1/, so by induction the sum above is equal to

n�kX

iD0

.�1/i
�
k � 1C i

i

�
yien�k�i .a1 C y; : : : ; an�1 C y/

C an

n�1�kX

iD0

.�1/i
�
k C i

i

�
yien�1�k�i .a1 C y; : : : ; an�1 C y/:
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Write an D �y C an C y. Then we get

n�kX

iD0

.�1/i
�
k � 1C i

i

�
yien�k�i .a1 C y; : : : ; an�1 C y/ (5.5)

�

n�1�kX

iD0

.�1/i
�
k C i

i

�
yiC1en�1�k�i .a1 C y; : : : ; an�1 C y/ (5.6)

C .an C y/

n�1�kX

iD0

.�1/i
�
k C i

i

�
yien�1�k�i .a1 C y; : : : ; an�1 C y/: (5.7)

After reindexing the sum in (5.6), the di�erence of the sums in (5.5) and (5.6)

becomes

en�k.a1 C y; : : : ; an�1 C y/

C

n�kX

iD1

.�1/i
��
k � 1C i

i

�
C

�
k � 1C i

i � 1

��
yien�k�i .a1 C y; : : : ; an�1 C y/

D

n�kX

iD0

.�1/i
�
k C i

i

�
yien�k�i .a1 C y; : : : ; an�1 C y/:

Together with the sum in (5.7), we now get

n�kX

iD0

.�1/i
�
k C i

i

�
yi .en�k�i .a1 C y; : : : ; an�1 C y/

C .an C y/en�1�k�i .a1 C y; : : : ; an�1 C y//

D

n�kX

iD0

.�1/i
�
k C i

i

�
yien�k�i .a1 C y; : : : ; an�1 C y; an C y/: 4

The proof for the image of the left n-cup is similar, using xr ˝ 1 ˝ 1 ˝ 1 D

1˝ .x1 � y/˝ 1˝ 1 and the lemma above with �y instead of y.

The result for the cups implies the result for the caps, because of the biadjoint-

ness relations (3.3) and (3.4). If two maps corresponding to a cap both satisfy the

biadjointness relations w.r.t. one �xed map associated to the corresponding cup,

then the two maps have to be equal.
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The result for the upward oriented n-crossing follows from the fact that both

bimodule maps satisfy (easy calculations):

(1) f .1˝ 1˝ 1˝ 1/ D 0;

(2) for any ˛1; ˛2 2 N,

.xr ˝ 1˝ 1˝ 1/f .x˛1
r ˝ 1˝ 1˝ x

˛2

1 / � f .x˛1
r ˝ 1˝ 1˝ x

˛2

1 .x1 � y//

D x˛1
r ˝ 1˝ 1˝ x

˛2

1 I

(3) for any ˛1; ˛2 2 N,

f .x˛1C1
r ˝ 1˝ 1˝ x

˛2

1 / � .1˝ 1˝ 1˝ .x1 � y//f .x˛1
r ˝ 1˝ 1˝ x

˛2

1 /

D x˛1
r ˝ 1˝ 1˝ x

˛2

1 :

These three properties determine the maps completely by recursion, so they have

to be equal.

A similar argument proves the result for downward oriented n-crossings and

the remaining cases of the crossings colored .1; n/ and .n; n� 1/ are easy compu-

tations. �

Proposition 5.10. F
0W y�.n; r/�

Œy�
! E�Bim�

yAr�1
is a well-de�ned degree preserv-

ing 2-functor.

Proof. All relations between 2-morphisms which do not have n-colored strands

are satis�ed by the results in Section 6 in [17]. Since no relation in y�.n; r/Œy�

involves all colors at the same time, the proof that F
0 preserves a given relation

can always be reduced to the fact that F
0 preserves the same relation with colors

belonging to ¹1; : : : ; n�1º by using the conjugation trick which turns n into n�1,

except in the case of relations (3.17) and (3.18) for ¹i; j º D ¹1; nº. The proof that

F
0 preserves these relations is straightforward and is left to the reader. �

Remark 5.11. Note that the twisted bimodules B� D R
.1r /
� and B��1 D R

.1r /

��1 are

isomorphic to the images under F
0 of respectively

E�n : : :E�r�1E�1 : : :E�r1r and Er : : :E1ErC1 : : :En1r :

As a matter of fact, any twisted singular bimodule is isomorphic to the image

under F
0 of a certain product of categori�ed divided powers (see [20] and [28]

for more details on divided powers and extended graphical calculus). Indeed, let

n > r and let � 2 ƒ.n; r/ be arbitrary. At least one entry of � is equal to zero,
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let us assume it is �i . Then

R�n�1:::�n�1
� Š F

0.E
.�iC1/

�i�1 : : :E.�n/
�n E

.�1/
�1 : : :E

.�i�1/
�iC1 1�/

and

R
�2:::�n�1

��1 Š F
0.E

.�i�1/
i�2 : : :E

.�2/
1 E

.�1/
n : : :E

.�iC1/

i 1�/:

We now give the proof of Theorem 3.23.

Proof. The fact that the KL basis of U.bsln/ over Q from [17] also generates

U.bsln/Œy� freely over QŒy�, follows from exactly the same arguments as Khovanov

and Lauda’s. To avoid repeating them word by word, we are going to be very

sketchy here and only brie�y recall the main ideas and how they carry over to our

case.

The �rst step required a polynomial representation of the positive half of

U.bsln/, i.e. the algebra formed by the diagrams whose strands are all oriented

upwards (in particular no cups or caps) modulo the relations between such dia-

grams. This was de�ned in Section 2.3 in [16]. This representation easily extends

to the deformed setting in the following way: tensor the polynomial ring Po`�

with ZŒy� (or QŒy�). Then use the same representation, but in the last line add y

if the colors are n and 1, i.e.

f 7�! .xk.ski/C xkC1.ski/C y/.skf /

if ik D n and ikC1 D 1. One just has to check that the deformed relations in

U.bsln/Œy� are preserved, which is straightforward. Note that Khovanov and Lauda

used a di�erent sign convention for the relations in [16], which we have copied

here. In Theorem 2.5 in [16], Khovanov and Lauda proved that their polynomial

representation is faithful and that the positive half of U.bsln/ is freely generated by

the positive half of their basis. Their proof also holds in the deformed case.

In Section 3.2 in [17], Khovanov and Lauda de�ned a spanning set of diagrams

for the whole U.g/ for arbitrary g, but only proved linear independence for g D sln.

In that case, their second step was to construct, for any integer r > 0, a 2-represen-

tation �r of U.sln/ on bimodules, which they did in Section 6 in [17]. The relation

with step 1 is explained in the proof of Lemma 6.16 in [17]: when the positive half

of U.sln/ is considered as a 2-category, its polynomial representation, now seen

as a 2-representation, can be embedded into the bimodule 2-representation �r of

the whole U.sln/ for large enough r > 0. By the faithfulness of the polynomial

representation, this implies that the obvious 2-functor from the positive half of

U.sln/ into the whole U.sln/ is fully faithful.



198 M. Mackaay and A.-L. Thiel

In Proposition 5.10 we gave the analogous 2-representation F
0 of U.bsln/Œy� for

any r < n (to be very precise, we gave the analogue of the equivariant version

of the KL 2-representation, denoted �G
r and de�ned in Section 6.3 in [17]). Our

de�nition of F
0 easily extends to arbitrary integers r > 0, the restriction r < n

in this paper is only needed for the link with the a�ne Schur algebra but not for

the 2-representation. Just as Khovanov and Lauda did in Section 6.4 in [17], we

can now conclude that the KL spanning set of diagrams of U.bsln/ is a basis of

U.bsln/Œy� over QŒy�. Khovanov and Lauda’s arguments are literally the same, so

we won’t repeat them here.

And now the non-triviality of our deformation. Let us suppose, on the contrary,

that there exists a QŒy�-linear degree preserving 2-equivalence

fy W U.bsln/Œy� �! U.bsln/˝Q QŒy�:

Then fy induces a Q-linear degree preserving 2-equivalence f WU.bsln/ ! U.bsln/.
So

.f �1 ˝ 1/fyW U.bsln/Œy� �! U.bsln/˝Q QŒy�

is a QŒy�-linear degree preserving 2-equivalence which is the identity on objects

and 1-morphisms, i.e. sends � and E˙i to themselves for all � 2 Zn�1 and

i D 1; : : : ; n.

So without loss of generality we can assume that the 2-equivalence

f W U.bsln/Œy� �! U.bsln/˝Q QŒy�

is the identity on objects and 1-morphisms. This implies that cups and caps are

sent to Q-multiples of themselves, because they are generators of minimal degree

of their respective 2-HOM-spaces. By rescaling cups and caps, which is also a

QŒy�-linear degree preserving 2-equivalence, we can therefore assume thatf is the

identity on non-dotted bubbles. Since f preserves weights, it induces a 2-equiv-

alence between y�.n; r/Œy� and y�.n; r/˝Q QŒy� satisfying the same assumptions.

But this contradicts the QŒy�-linearity of f , because in y�.n; r/ ˝Q QŒy� equa-

tion (4.10) only holds if we put y D 0. Indeed note that (4.10) can be written,

using (4.14), in terms of non-dotted bubbles only. �

6. The Grothendieck group of y�.n; r/Œy�

The following Lemma is the a�ne analogue of Lemma 6.6 in [28].
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Lemma 6.1. The following diagram commutes

DEBim�
yAr�1

F //

†n;r ((◗◗
◗◗◗

◗◗◗
◗◗◗

◗
E�Bim�

yAr�1

y�.n; r/�
Œy�
..1r/; .1r//

F
0

66♠♠♠♠♠♠♠♠♠♠♠♠

Proof. The proof is straightforward and follows from checking the de�nitions

carefully. �

Note that the 2-hom-spaces of U.bsln/Œy� are �nite-dimensionalQ-vector spaces,

because the original 2-HOM-spaces in U.bsln/� are �nite-dimensional in each de-

gree, their grading is bounded below and deg.y/ D 2 > 0. Therefore, the Karoubi

envelope (or idempotent completion) of U.bsln/Œy�, denoted Kar U.bsln/Œy�, is

Krull–Schmidt. The same holds for U.bgln/Œy� and y�.n; r/Œy�, of course.

By the same arguments, we see that the 2-ideal generated by y is virtually

nilpotent (for virtually nilpotent ideals and basic facts about them, see Section 3.8.1

and 3.8.2 in [17]). This proves that

K
Q.q/
0 .Kar CŒy�/ Š K

Q.q/
0 .Kar C/; (6.1)

where C is U.bsln/, U.bgln/ or y�.n; r/.

Corollary 6.2. The algebra homomorphism

K
Q.q/
0 .†n;r/W �H yAr�1

�! K
Q.q/
0 .Kar y�.n; r/Œy�/

is an embedding.

Proof. We already know thatK
Q.q/
0 .F / is injective, by Theorem 2.10 and the fact

that EBim yAr�1
is a full sub-2-category of E�Bim yAr�1

. The result now follows

from the commutativity of the diagram in Lemma 6.1. �

Theorem 2.10 and Lemma 6.1 also imply that †n;r is faithful. While in the

�nite type A case (Proposition 6.9 in [28]) we know that this functor is also full,

we do not know if it is the case here, but we conjecture that to be true.

Conjecture 6.3. The functor

†n;r W DEBim yAr�1
�! y�.n; r/Œy�..1

r /; .1r//

is an equivalence of 2-categories.
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Theorem 6.4. The algebra homomorphism

 W yS.n; r/ �! K
Q.q/
0 .Kar y�.n; r/Œy�/

de�ned by

.E˙i1�/ WD ŒE˙i1��

is an isomorphism.

Proof. Khovanov and Lauda proved surjectivity of the homomorphism

PU.bsln/ �! K
Q.q/
0 .U.bsln//

in Theorem 1.1 in [17]. The same arguments which proved Lemma 7:7 in [28] can

thus be used to prove that

 W yS.n; r/ �! K
Q.q/
0 .Kar y�.n; r//

is surjective. By (6.1) this implies that the analogous homomorphism

 W yS.n; r/ �! K
Q.q/
0 .Kar y�.n; r/Œy�/

is surjective.

The rest of the proof follows from Lemma 3.15 and Corollary 6.2 with A D

K
Q.q/
0 .Kar y�.n; r/Œy�/. �
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