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Abstract. Kashaev’s invariants for a knot in a three sphere are generalized to invariants

of a knot in a three manifold. A relation between the newly constructed invariants and the

hyperbolic volume of the knot complement is observed for some knots in lens spaces.
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1. Introduction

The Jones polynomial of knots and links is discovered in [15], which is de�ned by

a simple skein relation, and relates to the quantum enveloping algebra Uq.sl2/

through the quantum R-matrix. After the Jones polynomial, a large number

of quantum invariants are constructed from various R-matrices associated with

quantum enveloping algebras, Hopf algebras, and operator algebras. The Jones

1 This work was supported in part by JSPS KAKENHI Grant Nr. 22540236, 25287014.
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polynomial is also extended to invariants of three manifolds and links in three

manifolds by [34] and [33].

On the other hand, from a study of quantum dilogarithm, R. Kashaev intro-

duced an invariant of links in three manifolds in [16]. He also gave an R-matrix

formulation of his invariants for knots in S3, and found in [17] a relation between

his invariants and the hyperbolic volumes of knot complements. Let hKiN be the

Kashaev’s invariant of a knotK for a positive integerN , then the relation he found

is the following.

Conjecture 1 (Kashaev’s conjecture). For a hyperbolic knot K in S3,

2 � lim
N !1

log jhKiN j
N

D Vol.K/;

where Vol.K/ is the hyperbolic volume of the knot complement S3 nK.

Kashaev’s invariant turned out to be a specialization of the colored Jones

invariant in [26], and the above conjecture is re�ned in [27] as follows.

Conjecture 2 (complexi�cation of Kashaev’s conjecture). For a hyperbolic knot

K in S3,

hKiN � exp
N

2�
.Vol.K/C

p
�1 CS.K// .N !1/

where CS.K/ is the Chern–Simons invariant [6] and [24] of the knot complement

S3 nK.

The above conjectures are not proved rigorously yet, but a method to obtain

the hyperbolic volume and the Chern–Simons invariant from Kashaev’s invariants

are established in [8] and [35].

The aim of this paper is to construct certain quantum invariants for knots in

three manifolds which have a relation to the hyperbolic volume as the above con-

jectures. We already have many quantum invariants for knots in three manifolds.

Besides the invariants stated above, such invariants are constructed in [11] and [9]

from �nite-dimensional representations of the quantum group Uq.sl2/ at root of

unity, and in [18] from the in�nite dimensional representations of Uq.sl2/. How-

ever, it is not known about the actual relation between the above invariants and the

hyperbolic volume of the complement of the knots.

Here we construct a family of invariants of a knot zK in a three manifold M

by combining the Hennings invariant [13] of three manifolds and the logarithmic
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invariant [29] of knots in S3. This family contains a generalized Kashaev invariant

GKN . zK/, which coincides with Kashaev’s invariant h zKiN ifM D S3. Moreover,

we introduce GK
SO.3/
N . zK/, which is the SO.3/ version of GKN . zK/, and propose

the following conjecture.

Conjecture 3 (volume conjecture for the generalized Kashaev invariant). Let zK
be a knot in a three manifoldM such that the complementM n zK has the hyperbolic

structure. Then

GK
SO.3/
N . zK/ � exp

N

2�
.Vol. zK/C

p
�1 CS. zK// .N !1/

where Vol. zK/ and CS. zK/ is the hyperbolic volume and the Chern–Simons invari-

ant of the complementM n zK.

We give some examples for this conjecture at the end of this paper.

Remark 1. The invariants GKN . zK/ and GK
SO.3/
N . zK/ are generalizations of

Kashaev’s invariant for knots in S3. So they may have some relation to Kashaev’s

original invariant for knots in three manifolds de�ned in [16]. But any relation is

not observed yet.

As we stated before, we construct invariants of knots in a three manifolds by

combining the Hennings invariant and the logarithmic invariant. Both of these

invariants are related to the universal invariant introduced by Lawrence [23] and

Ohtsuki [30], whose value is in a certain quotient of the small quantum group
xUq.sl2/, which is a �nite dimensional Hopf algebra and is a quotient of the

quantized enveloping algebra Uq.sl2/ where q D e�i=N . The generators and

relations of xUq.sl2/ are given as follows:

xUq.sl2/ D
D
K; K�1; E; F

ˇ̌
ˇ K E K�1 D q2E; K F K�1 D q�2 F;

ŒE; F � D K �K�1

q � q�1
;

EN D FN D 0; K2N D 1
E
:

The Hopf algebra structure of xUq.sl2/ is given by the coproduct

�W xUq.sl2/ �! xUq.sl2/˝ xUq.sl2/;

the counit

"W xUq.sl2/ �! C;
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and the antipode

S W xUq.sl2/ �! xUq.sl2/

satisfying

�.K/ D K ˝K; �.E/ D 1˝E C E ˝K; �.F / D K�1 ˝ F C F ˝ 1;

�.K/ D 1; �.E/ D �.F / D 0;

S.K/ D K�1; S.E/ D �E K�1; S.F / D �K F:

The dimension of xUq.sl2/ is 2N 3 and

¹Ea F b Kc j 0 � a; b � N � 1; 0 � c � 2N � 1º

is a basis of it.

The universal invariant takes its value in the quotient xUq.sl2/=I where I is the

vector space generated by commutators of xUq.sl2/, i.e.

I D ŒxUq.sl2/; xUq.sl2/� D .x y � y xI x; y 2 xUq.sl2//:

The Hennings invariant H.M/ for an oriented closed three manifold M is

constructed by using the right integral �, which is a linear functional on xUq.sl2/

satisfying

.�˝ id/�.x/ D �.x/ 1;

where 1 is the unit of xUq.sl2/. Such functional exists uniquely up to a scalar

multiple since xUq.sl2/ is a �nite dimensional Hopf algebra. The above relation

of � corresponds to the second Kirby move and it allows us to construct a three

manifold invariant by using the right integral, which is the Hennings invariant. Let

�N .M/ be the Witten–Reshetikhin–Turaev (WRT) invariant [34] and [33] of M .

Then it is shown in [4] and [5] that the Hennings invariant can be expressed in

terms of the WRT invariant for almost all cases.

Nagatomo and the author constructed in [29] the logarithmic invariant of a

knotK in S3. Let Z be the center of xUq.sl2/. We study the center c.T / 2 Z which

corresponds to a tangle T obtained from K, and we de�ne knot invariants as the

coe�cients of c.T /with respect to certain basis of Z. A topological quantum �eld

theory (TQFT) based on the center Z is constructed by Kerler [21], and is re�ned

by Feigin, Gainutdinov, Semikhatov, and Tipunin [10] by using the logarithmic

conformal �eld theory. The logarithmic knot invariant corresponds to this TQFT.
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We also showed in [29] that the logarithmic invariant is expressed as a limit

of the colored Alexander invariant, which is de�ned by Akutsu, Deguchi, and

Ohtsuki [1] and is restudied by the author in [28]. It is an invariant of links with

colored components, where the colors are complex numbers except integers. The

logarithmic invariant is obtained as a limit of a sum of two colored Alexander

invariants by taking its colors to certain integers. A relation like Conjectures 1, 2

are observed in [7] between the colored Alexander invariant and the hyperbolic

volume of cone manifolds.

Let M be a three manifold given by the surgery along a framed link L in S3,
zK be a knot in M , and yK be the pre-image of zK in S3. Then, to construct an

invariant of zK, we apply the logarithmic invariant to yK, and apply the Henning

invariant to L.

In Section 2, we recall the construction of the Hennings invariant and extend

it to invariants of knots in three manifolds. In Section 3, we review irreducible

and indecomposable representations of xUq.sl2/. By using these representations,

we describe centers and symmetric linear functions of xUq.sl2/. In Section 4,

we generalize the logarithmic invariants of knots in S3 to invariants of knots

in three manifolds. This family of invariants include the generalized Kashaev

invariant GKN . In Section 5, we investigate the generalized Kashaev invariant by

using its relation to the colored Alexander invariant. In Section 6, we observe the

relation between the generalized Kashaev invariants of certain knots in lens spaces

and the hyperbolic volumes of their complements by numerical computation.

2. Colored Hennings invariants

In this section, we generalize the colored invariants constructed by Hennings [13]

for knots and links in S3 to invariants for those in a three manifold, which we call

the colored Hennings invariant. To do this, we �rst recall the construction of the

universal xUq.sl2/ invariant for a link in S3 introduced in [23] and [30]. Then we

apply Hennings’ idea in [13] to obtain invariants equipped with a color at each

component of the link, where the color is given by a pair of a symmetric linear

function and a center of xUq.sl2/. There is a special symmetric linear function

� corresponding to the right integral �, which assures the compatibility of the

� colored component with the second Kirby move. By using �, we construct

invariants of links in arbitrary oriented three manifolds. If the knot is empty,

then this invariant coincides with the Hennings invariant of the three manifold

introduced in [13], [20], and [31] associated with xUq.sl2/.
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2.1. Notations. Throughout this paper, let N be a positive integer greater than 1

and q D e�i=N . We use the following notations.

¹kº D qk � q�k ; ¹kºC D qk C q�k ; Œk� D ¹kº¹1º ; Œk�Š D Œk�Œk � 1� � � � Œ1�;

¹kºŠ D ¹kº¹k � 1º � � � ¹1º for a positive integer k; ¹0ºŠ D Œ0�Š D 1:

2.2. The right-integral. The right integral of a Hopf algebra is a non-trivial

linear functional � on the Hopf algebra which satis�es

.�˝ id/�.x/ D �.x/ 1: (1)

Any �nite dimensional Hopf algebra has a right integral which is unique up to

nonzero scalar multiplication. For detail, see [32]. For xUq.sl2/, the right integral

� is given by

�.Ei FmKn/ D � ıi;N �1 ım;N �1 ın;N C1; (2)

where we choose the normalization factor as

� D �
r
2

N
.ŒN � 1�Š/2 (3)

for future convenience.

Proposition 1. The right integral satis�es

�.x y/ D �.K1�N y KN �1 x/: (4)

Proof. This comes (2) and the de�ning relations of xUq.sl2/. �

Corollary 1. Let �.x/ D �.KN C1 x/, then

�.x y/ D �.y x/; (5)

.� ˝ id/..1˝KN C1/�.x// D �.x/1: (6)

The above relations come immediately from (4) and (1). The symmetric linear

function � is a fundamental tool for constructing invariants of knots in three

manifolds in this paper.
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2.3. The universal R-matrix. Let A be the Hopf algebra generated by e, f , k

and relations

k e k�1 D q e; k f k�1 D q�1 f; Œe; f � D k2 � k�2

q � q�1
;

eN D f N D 0; k4N D 1; �.e/ D �.f / D 0; �.k/ D 1;

�.e/ D 1˝ e C e ˝ k2; �.f / D k�2 ˝ f C f ˝ 1; �.k/ D k ˝ k;

S.e/ D �e k�2; S.f / D �k2 f; S.k/ D k�1:

Then there is an inclusion map �W xUq.sl2/! A given by

�.E/ D e; �.F / D f; �.K/ D k2: (7)

In what follows, we often identify E with e, F with f , andK with k2. It is known

that A is a ribbon quasitriangular Hopf algebra equipped with the universal R-

matrix

xR D 1

4N

N �1X

mD0

4N �1X

n;j D0

¹1ºm
Œm�Š

qm.m�1/=2Cm.n�j /�nj=2 em kn ˝ f m kj : (8)

2.4. Universal xUq.sl2/ invariant. LetL be a diagram of a k-component framed

oriented link L D L1 [ L2 [ � � �Lr with blackboard framing given by a closed

braid diagram. Assign the universal R matrix or its inverse to each crossing and

K˙.N �1/ or 1 to each maximal and minimal points as in Figure 1.

�
�

�✠

❅❅

❅❅❘
t t

�!
X

j

aj ˝ bj ; ❅
❅
❅❘

��

��✠
t t

�!
X

j

b0
j ˝ a0

j ;

where xR D
P

j aj ˝ bj and xR�1 D a0
j ˝ b0

j ,

! KN C1; ! 1; ! KN �1; ! 1:

Figure 1. Universal invariant for crossings, maximal and minimal points.

Let xj be a point on Lj other than the crossing points nor max/min points, and

we de�ne ‰x1;:::;xr
.L/ in A˝r as

‰x1;:::;xr
.L/ D

X

�

u�
1 ˝ u�

2 ˝ � � � ˝ u�
r ; u�

j D u�
j;1 u

�
j;2 � � �u�

j;p (9)
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for j D 1, 2, : : : , r , where u�
j;1, u�

j;2, : : : , u�
j;p are the elements we meet when we

walk through the component Lj starting from xj to xj along its orientation as in

Figure 2. For detail, see [23] and [31]. It is known that the element ‰x1;:::;xr
.L/

is contained in the subspace �.xUq.sl2//
˝r of A˝r , and depends on the choices of

x1, : : : , xr . Let yxUq.sl2/ be the quotient

yxUq.sl2/ D xUq.sl2/=ŒxUq.sl2/; xUq.sl2/�;

and  .L/ be the image of ‰x1;:::;xr
.L/ in yxUq.sl2/

˝r , then the image  .L/ doesn’t

depend on the choices x1, : : : , xr and is an invariant of L. We call  .L/ the

universal xUq.sl2/ invariant.

�! ‰x1;x2
.L/ D

X

i;j;k;l;m

am a
0
l a

0
j bi K

1�N ˝ bm bk b
0
j K

1�N a0
l bk ai K

1�N

Figure 2. Universal invariant for a link L.

2.5. Hennings invariants colored by symmetric linear functions and centers.

We recall Hennings’ method in [13] to retrieve numerical invariants from  .L/.

De�nition 1. An element f in yxUq.sl2/
� is called a symmetric linear func-

tion on xUq.sl2/. In other words, f is a linear functional on xUq.sl2/ satisfying

f .xy/ D f .yx/. For example, the function � on xUq.sl2/ introduced in Corollary

1 can be considered as an element of yxUq.sl2/
�.
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For f1, f2, : : : , fr 2 yxUq.sl2/
�,

.f1 ˝ f2 ˝ � � � ˝ fr /.‰x1;:::;xr
.L// D

X

�

f1.u
�
1/ f2.u

�
2/ � � �fr.u

�
r /

depends only on  .L/ and is an invariant of L. Moreover, let z1, z2, : : : , zr be

elements of the center Z of xUq.sl2/, then

.f1 ˝ f2 ˝ � � � ˝ fr /..z1 ˝ � � � ˝ zr/‰x1;:::;xr
.L//

is also an invariant of L, which we denote by  .f1;z1/;:::;.fr ;zr /.L/.

Hennings shows that .�;1/;:::;.�;1/.L/ is invariant under the second Kirby move

O2 in Figure 3. A good explanation for this invariance is illustrated by Figure 2 in

p. 87 of [19]. A three manifold invariant is constructed from  .�;1/;:::;.�;1/.L/ by

applying the normalization for the �rst Kirby moveO1. LetU˙ be the unknot with

˙1 framing. Let sC.L/ (resp. s�.L/) be the number of positive (reps. negative)

eigenvalues of the linking matrix ofL. Here, the linking matrixM D .mij /1�i;j �r

of L is given by

´
mij D the linking number of Li and Lj .i ¤ j /;
mi i D the writhe (the number indicating the framing) of Li :

Theorem 1 (Hennings [13]). Let

H.ML/ D
 .�;1/;:::;.�;1/.L/

 .�;1/.UC/
sC.L/  .�;1/.U�/s�.L/

:

Then H.ML/ is an invariant of the three manifold ML obtained from the surgery

of S3 along the framed link L.

%. L [

L

&-
L [ ,

 !

O1 move O2 move

Figure 3. O1 and O2 moves.
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2.6. Colored Hennings invariants for links in three manifolds. Let M

be an oriented three manifold given by the surgery along a framed link

L D L1[L2[� � �[Lp in S3 and zK be a framed link inM whose pre-image in S3

is yK D K1[K2[� � �[Kr which does not intersect with L, whereLi .1 � i � p/,
Kj .1 � j � r/ are the connected components of L and yK respectively. For z1,

: : : , zr in Z and symmetric linear functions f1, : : : , fr in yxUq.sl2/
�, we put

 .f1;z1/;:::;.fr ;zr /. zK/ D
 .f1;z1/;:::;.fr ;zr /;.�;1/:::;.�;1/. yK [ L/
 .�;1/.UC/sC.L/  .�;1/.U�/s�.L/

: (10)

Theorem 2.  .f1;z1/;:::;.fr ;zr /. zK/ be an invariant of the link zK in M where the

i-th component of zK is colored by .fi ; zi/ for i D 1, 2, : : : , r .

Proof. We investigate the isotopy move of zK by its pre-image yK in S3. The

isotropy of zK which does not hit to the image of L corresponds and isotopy of
yK in S3 which does not intersect with L. If a componentKi of yK pass the image

of a component Lj of L in M , then the pre-image of this move in S3 is given by

the handle slide illustrated in Figure 4. Since � is applied to all the components

of L,  .f1;z1/;:::;.fr ;zr /;.�;1/:::;.�;1/. yK [ L/ does not change by this handle slide

move. �

Lj Ki

 !
Lj Ki

O2 move for yK and L

Figure 4. Handle slide of a component Ki of yK along a component Lj of L.

3. Centers and symmetric linear functions of xUq.sl2/

In this section, we recall irreducible and indecomposable representations of
xUq.sl2/ and describe its centers and the symmetric linear functions explicitly.

3.1. Representations of A. To explain representations of xUq.sl2/, we �rst de-

scribe representations of the Hopf algebra A introduced in §2.3. Let U
˛;ˇ
s be

the s-dimensional irreducible representations of A labeled by ˛; ˇ D ˙ and
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1 � s � N . Let t D exp.�
p
�1=2N/. The module U

˙;˙
s is spanned by ele-

ments u
˙;˙
n for 0 � n � s � 1, where the action of A is given by

k u˛;ˇ
n D ˇ

p
˛ t s�1�2n u˛;ˇ

n ;
p
˛ D 1 if ˛ D C and

p
˛ D
p
�1 if ˛ D �;

e u˛;ˇ
n D ˛ Œn�Œs � n� u˛;ˇ

n�1; 1 � n � s � 1; e u
˛;ˇ
0 D 0;

f u˛;ˇ
n D u˛;ˇ

nC1; 0 � n � s � 2; f u
˛;ˇ
s�1 D 0:

Especially, U
C;C
1 is the trivial module for which k acts by 1 and e, f act by 0. The

weights (eigenvalues of k) occurring in U
C;˙
s are

˙t s�1; ˙t s�3; : : : ; ˙t�sC1;

and the weights occurring in U
�;˙
N �s are

˙t2N �s�1; ˙t2N �s�3; : : : ; ˙t sC1:

Let V
˛;ˇ

s .1 � s � N/ be the N dimensional representation with highest-

weight ˇ
p
˛ t s�1 spanned by elements v

˙;˙
n for 0 � n � N � 1, where the action

of A is given by

k v˛;ˇ
n D ˇ

p
˛ t s�1�2n v˛;ˇ

n ;
p
˛ D 1 if ˛ D C and

p
˛ D
p
�1 if ˛ D �;

e v˛;ˇ
n D ˛ Œn�Œs � n� v˛;ˇ

n�1; 1 � n � N � 1; e v
˛;ˇ
0 D 0;

f v˛;ˇ
n D v˛;ˇ

nC1; 0 � n � N � 2; f v
˛;ˇ
N �1 D 0:

Note that V ˙
N D U˙

N . For 1 � s � N � 1, V ˛;ˇ
s satis�es the exact sequence

0 �! U
�˛;�ˇ
N �s �! V ˛;ˇ

s �! U ˛;ˇ
s �! 0;

and there are projective modules P
˛;ˇ
s satisfying the following exact sequence.

0 �! V
�˛;�ˇ

N �s �! P ˛;ˇ
s �! V ˛;ˇ

s �! 0:

Actual description of the structure of A-modules P
˙;˙
s is given in [14], which is

based on the construction in [33]. The module P
C;ˇ
s .ˇ D ˙/ has a basis

¹xC;ˇ
j ; y

C;ˇ
j º0�j �N �s�1 [ ¹aC;ˇ

n ; bC;ˇ
n º0�n�s�1:

The action of k is given by

k x
C;ˇ
j D ˇ t2N �s�1�2j x

C;ˇ
j ; k y

C;ˇ
j D ˇ t�s�1�2j y

C;ˇ
j ; 0 � j � N � s � 1;

k aC;ˇ
n D ˇ t s�1�2n aC;ˇ

n ; k bC;ˇ
n D ˇ t s�1�2n bC;ˇ

n ; 0 � n � s � 1;
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The actions of E and F are given as follows:

E x
C;ˇ
j ; D �Œj �ŒN � s � j � xC;ˇ

j �1 ; 0 � j � N � s � 1 .with x
C;ˇ
�1 D 0/;

E y
C;ˇ
j D

´
�Œj �ŒN � s � j � yC;ˇ

j �1 ; 1 � k � N � s � 1;
a

C;ˇ
s�1 ; j D 0;

E aC;ˇ
n D Œn�Œs � n� aC;ˇ

n�1; 0 � n � s � 1 (with a
C;ˇ
�1 D 0);

E bC;ˇ
n D

´
Œn�Œs � n� bC;ˇ

n�1 C a
C;ˇ
n�1; 1 � n � s � 1;

x
C;ˇ
N �s�1; n D 0;

F x
C;ˇ
j D

´
x

C;ˇ
j C1; 0 � j � N � s � 2;
a

C;ˇ
0 ; j D N � s � 1;

F y
C;ˇ
j D yC;ˇ

j C1; 0 � j � N � s � 2 (with y
C;ˇ
N �s D 0);

F aC;ˇ
n D aC;ˇ

nC1; 0 � n � s � 1 (with aC;ˇ
s D 0);

F bC;ˇ
n D

´
b

C;ˇ
nC1; 0 � n � s � 2;
y

C;ˇ
0 ; n D s � 1:

The A-module P
�;ˇ
N �s is described as follows. P

�;ˇ
N �s has a basis

¹x�;ˇ
j ; y

�;ˇ
j º0�j �N �s�1 [ ¹a�;ˇ

n ; b�;ˇ
n º0�n�s�1:

The action of A is given by

k x
�;ˇ
j D ˇ t�s�1�2j x

�;ˇ
j ; k y

�;ˇ
j D ˇ t�s�1�2j y

�;ˇ
j ; 0 � j � N � s� 1;

k a�;ˇ
n D ˇ t s�1�2n a�;ˇ

n ; K b�;ˇ
n D ˇ t�2N Cs�1�2n b�;ˇ

n ; 0 � n � s � 1;
E x

�;ˇ
j D �Œj �ŒN � s � j � x�;ˇ

j �1; 0 � k � N � s � 1 .with x
�;ˇ
�1 D 0/;

E y
�;ˇ
j D

´
�Œj �ŒN � s � j � y�;ˇ

j �1 C x
�;ˇ
j �1; 1 � j � N � s � 1;

a
�;ˇ
s�1; j D 0;

E a�;ˇ
n D Œn�Œs � n� a�;ˇ

n�1; 0 � n � s � 1 (with a
�;ˇ
�1 D 0);

E b�;ˇ
n D

´
Œn�Œs � n� b�;ˇ

n�1; 1 � n � s � 1;
x

�;ˇ
N �s�1; n D 0;

F x
�;ˇ
j D x�;ˇ

j C1; 0 � j � N � s � 2 (with x
�;ˇ
N �s D 0);

F y
�;ˇ
j D

´
y

�;ˇ
j C1; 0 � j � N � s � 2;
b�

0 ; j D N � s � 1;
F a�;ˇ

n D
´
a

�;ˇ
nC1; 0 � n � s � 2;
x

�;ˇ
0 ; n D s � 1:

F b�;ˇ
n D b�;ˇ

nC1; 0 � n � s � 1 (with b�;ˇ
s D 0):
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3.2. Representations of xUq.sl2/. By composing the inclusion map � from
xUq.sl2/ to A given by (7) to the above representations of A, we get representa-

tions of xUq.sl2/. As representations of xUq.sl2/, X
˙;C
s and X

˙;�
s are the same one

for X D U , V and P . Therefore, we write U˙
s , V ˙

s and P˙
s for U

˙;ˇ
s , U

˙;ˇ
s and

P
˙;ˇ
s respectively.

3.3. Symmetric linear functions. It is shown in [32] that there is a linear

isomorphism between the center Z of xUq.sl2/ and the space of symmetric linear

functions yxUq.sl2/
� given by z 7! �.KN C1 z �/, where � is the right integral of

xUq.sl2/. Hence, the dimension of yxUq.sl2/
� is 3N �1. A symmetric linear function

which is not a trace of any semisimple representation is also called pseudo-trace

in [25]. The actual description of yxUq.sl2/
� is given by Arike in [2], which is

spanned by the following functions T0, TN , T˙
1 , : : : , T˙

N �1, G1, : : : , GN �1.

� T0 is the trace of the representation on U�
N .

� TN is the trace of the representation on UC
N .

� T˙
s is the trace of the representation on U˙

s .1 � s � N � 1/.

� Gs is the sum of the following two traces. One is the trace of the s � s
submatrix of the representation matrix on PC

s at the block of the row for

aC
n and columns for bC

m .0 � n;m � s � 1/, and the another one is the trace

of the .N � s/ � .N � s/ submatrix of the representation matrix onP�
N �s at

rows of x�
k

and columns of y�
l
.0 � k; l � N � s � 1/.

The symmetric linear function � introduced in Corollary 1 is explicitly written

in [2] as follows.

Proposition 2. The symmetric linear function � is given by

� D ˛0 T0 C ˛N TN C
N �1X

sD1

.˛s Ts C ˇs Gs/ ; (11)

where

Ts D TC
s C T �

s ; ˛0 D �
1

N
p
2N

; ˛s D
.�1/s�1 ¹sºC
N
p
2N

;

˛N D
.�1/N

N
p
2N

; ˇs D
.�1/s�1 Œs�2

N
p
2N

:
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Proof. The coe�cients ˛0, ˛N , ˇs .1 � s � N �1/ are obtained from those in [2]

by multiplying the normalization factor � in (3). The coe�cient ˛˙
s .1 � s �

N � 1/ is given in [2] as

˛s D �ˇs

� s�1X

lD1

1

Œl�Œs � l� �
N �s�1X

lD1

1

Œl�ŒN � s � l�
�
:

A computation shows that

1

Œl� Œs � l� D Œs�
�1

�
ql Œl ��1 C ql�sŒs � l��1

�
;

which implies
s�1X

lD1

Œl ��1Œs � l��1 D Œs��1

s�1X

lD1

¹lºCŒl ��1:

Similarly, we have

N �s�1X

lD1

Œl ��1ŒN � s � l��1 D �Œs��1

N �1X

lDsC1

¹lºCŒl ��1:

Since
PN �1

lD1 ¹lºC¹lº�1 D 0, we know that

s�1X

lD1

¹lºCŒl ��1 C
N �1X

lDsC1

¹lºCŒl ��1 D �¹sºCŒs��1;

which implies ˛s D .�1/s�1 ¹sºCN�1
p
2N

�1
. �

3.4. Centers of A. The center Z of xUq.sl2/ is investigated in [10] and the center

ZA of A is obtained similarly as follows.

Proposition 3. The center ZA of A is 5N � 1 dimensional. Its commutative alge-

bra structure is described as follows. There are four special central idempotents

e˙
0 and e˙

N , other central idempotents es, 1 � s � N � 1, and 4.N � 1/ elements

w
˙;˙
s .1 � s � N � 1/ in the radical such that

e˛
s e

˛0

t D ıs;t ı˛;˛0 e˛
s ; s; t D 0; 1; : : : ; N; ˛; ˛0 D ˙ or empty;

es w
˙;˙
t D ıs;t w

˙;˙
t , 0 � s � N; 1 � t � N � 1;

w
˛;ˇ
s w

˛0;ˇ 0

t D 0, 1 � s; t � N � 1.
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The center e˙
N acts on U

C;˙
N as an identity and acts as 0 on the other modules.

e˙
0 acts on U

�;˙
N as identity and acts as 0 on the other modules. es acts on P

C;C
s ,

P
C;�
s , P

�;C
s and P

�;�
N �s as identity and acts as 0 on the other modules. The center

w
C;˙
s acts on P

C;˙
s by w

C;˙
s b

C;˙
n D a

C;˙
n , wC

s a
C;˙
n D 0, w

C;˙
s x

C;˙
k

D 0,

w
C;˙
s y

C;˙

k
D 0, and acts on the other modules as 0. Similarly, w

�;˙
s acts on

P
�;˙
s by w

�;˙
s y

�;˙

k
D x

�;˙

k
, w

�;˙
s x

�;˙

k
D 0, w

�;˙
s a

�;˙
n D 0, w

�;˙
s b

�;˙
n D 0,

and acts on the other modules as 0.

The center Z of xUq.sl2/ is spanned by es, 0 � s � N , w˙
s , 1 � s � N � 1

whose images in A are

�.e0/ D eC
0 C e�

0 ; �.eN / D eC
N C e�

N ;

�.es/ D es; �.w˙
s / D w˙;C

s C w˙;�
s :

Any central element z in Z is a linear combination of es, w
˙
s as follows.

z D
NX

sD0

as.z/ es C
N �1X

sD1

�
bC

s .z/wC
s C b�

s .z/w�
s

�
:

4. Generalized logarithmic invariants

Here we generalize the logarithmic invariant of a knot in S3 to a knot in a three

manifold. The logarithmic invariant is represented by the center corresponding

to a .1; 1/-tangle of the knot, and we extend it by combining with the Hennings

invariant. We show that there are some generalized logarithmic invariants which

cannot be expressed by the colored Hennings invariant.

4.1. Center corresponding to a knot in a three manifold. Let M be a three

manifold obtained by the surgery along a framed link L D L1 [ � � � [ Lp and zK
be a knot or a link in M . Let yK D K1 [ � � � [Kr be the pre-image of zK in S3 as

the setting of §??. Let T be the tangle obtained by cutting the �rst componentK1

ofK1[ � � �[Kr [L1[ � � �[Lp. The universal invariant of knots in [23] and [30]

is generalized to tangles in [31], which we can apply to T . Let x2, : : : , xrCp be

points on K2, : : : , Kr , L1, : : : , Lp and let

‰x2;:::;xpCr
.T / D

X

�

u�
1 ˝ � � � ˝ u�

r ˝ u�
rC1 ˝ � � � ˝ u�

rCp
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‰x2
.T / D

X

i;j;k;l;m

a0
j b

0
i ˝ am bl ak K

1�N bm al bk a
0
j b

0
i K

1�N

Figure 5. Universal invariant for a tangle.

be the element of xUq.sl2/
˝rCp which is de�ned as (9). For the component K1,

it is opened to make a tangle and we read the terms on this component from bottom

to top. Let .f2; z2/, : : : , .fr ; zr/ be pairs of a symmetric linear function which are

colors for the components K2, : : : , Kr and sC.L/ (resp. s�.L/) be the number of

positive (reps. negative) eigenvalues of the linking matrix of L. Then

z.f2;z2/;:::;.fr ;zr /.T /

D  .�;1/.UC/
�sC.L/  .�;1/.U�/

�s�.L/
X

�

� rY

iD2

fi .zi u
�
i /

pY

j D1

�.u�
rCj /

�
u�

1

(12)

is contained in the center Z of xUq.sl2/.

Theorem 3. The center z.f2;z2/;:::;.fr ;zr /.T / is an invariant of the colored knot zK
with a speci�ed componentK1.

De�nition 2. Fix a basis ¹c1; c2; : : : º of the center Z of xUq.sl2/. Then the center

z.f2;z2/;:::;.fr ;zr /.T / is expressed as a linear combination of this basis, and the

coe�cients are also invariants of zK. We call these coe�cients the logarithmic

invariants of zK since they are related to the logarithmic TQFT constructed in [10].

The colored Hennings invariant  .f1;z1/;:::;.fr ;zr /. zK/ is expressed as

 .f1;z1/;:::;.fr ;zr /. zK/ D f1.K
N C1 z1 z.f2;z2/;:::;.fr ;zr /.T //:

Therefore, we have the following result.
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Corollary 2. The colored Hennings invariant with colors .f1; z1/, : : : , .fr ; zr/ is

determined by the logarithmic invariants.

4.2. Simpli�cation of the coloring. For the coloring of each component of a

link, we use a pair .f; z/ where f is a symmetric linear function and z is a

center. However, we know that Gs.w
˙
s u/ D T˙

s .es u/ D T˙
s .u/, Ts.w

˙
s ; u/ D 0,

Gs.es u/ D Gs.u/, and so the coloring by .Gs;w
˙
s /, .T

˙
s ; es/ are equal to the

coloring by .T˙
s ; 1/, the coloring by .Gs ; es/ is equal to the coloring by .Gs; 1/,

and the coloring by .T˙
s ;w

˙
s / vanishes. This means that the invariant with any

coloring can be expressed as a linear combination of invariants with colorings

.T˙
s ; 1/ and .Gs ; 1/. Therefore, from now on, we use the coloring by symmetric

linear functions only. For example,  f1;:::;fr
means  .f1;1/;:::;.fr ;1/.

4.3. Coe�cients of the basis. Let zK be an r component framed link in a

three manifold M given by the surgery along a p component framed link L D
L1[ � � �[Lp, yK D K1[ � � �[Kr be the pre-image of zK, and T be a .1; 1/-tangle

obtained fromK[L by cutting the componentK1 as before. For such yK, we have

constructed the center zf2;:::;fr
.T / (with simpli�ed colorings) in Theorem 3, which

is an invariant of zK with specialized component zK1. This element is expressed as

a linear combination of the basis of Z as

zf2;:::;fr
.T / D ao;f2;:::;fr

.T / e0C aN;f2;:::;fr
.T / eN

C
N �1X

sD1

.as;f2;:::;fr
.T / es C bC

s;f2;:::;fr
.T /wC

s C b�
s;f2;:::;fr

.T /w�
s /:

(13)

From Theorem 3 and the de�nition of the logarithmic invariants, we have the

following.

Corollary 3. The coe�cients

as;f2;:::;fr
.T / .0 � s � N/;

b˙
s;f2;:::;fr

.T / .1 � s � N � 1/

are logarithmic invariants of zK in M .
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Now, let us compare the colored Hennings invariants  f1;:::;fr
. zK/ and the

logarithmic invariants as;f2;:::;fr
.T / .0 � s � N/, b˙

s;f2;:::;fr
.T / .1 � s � N � 1/

coming from zf2;:::;fr
.T /. Since

T0.K
N C1 e0/ D TN .K

N C1 eN / D 0;

T˙
s .K

N C1 es/ D ˙Œs�; Gs.K
N C1 w˙

s / D �.�1/s Œs� for 1 � s � N � 1;
we have

 T0;f2;:::;fr
. zK/ D  TN ;f2;:::;fr

. zK/ D 0;

 
T ˙

s ; f2;:::;fr
. zK/ D ˙Œs� as;f2;:::;fr

.T /;

 Gs ;f2;:::;fr
. zK/ D .�1/sC1 Œs� .bC

s;f2;:::;fr
.T / � b�

s;f2;:::;fr
.T //;

 Gs ;f2;:::;fr
. zK/ D �.�1/s Œs� as;f2;:::;fr

.T /:

These relations imply that the colored Hennings invariants are linear combinations

of as;f2;:::;fr /.T / and bC

s;f2;:::;fr
.T /�b�

s;f2;:::;fr
.T / for s D 1, : : : ,N �1. However,

the above relations don’t determine the invariants a0;f2;:::;fr
.T /, aN;f2;:::;fr

.T /,

b˙
s;f2;:::;fr

.T / of zK from the colored Hennings invariants.

5. Generalized Kashaev invariant

In this section, we show that certain logarithmic invariants for links in a three

manifold are generalizations of Kashaev’s invariants for knots in S3.

5.1. Colored Alexander invariants. The colored Alexander invariant intro-

duced in [1] can be constructed from the quantum R-matrix of the medium quan-

tum group zUq.sl2/ as in [28]. The medium quantum group is de�ned as follows.

zUq.sl2/ D
D
K; K�1; E; F

ˇ̌
ˇ K E K�1 D q2E; K F K�1 D q�2 F;

ŒE; F � D K �K�1

q � q�1
; EN D FN D 0

E
:

To see the relation between the colored Alexander invariant and the logarithmic

invariants, we check the correspondence of the quantum R-matrices for xUq.sl2/

and zUq.sl2/. Let zR be the R-matrix for the colored Alexander invariant, then it is

given in [28] by

zR D q 1
2

H˝H

N �1X

mD0

¹1ºm
¹mºŠ q

m.m�1/
2 .Em ˝ Fm/ ; (14)

where H is a formal element satisfying qH D K.
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De�nition 3. A representation V of zUq.sl2/ is called an integral weight represen-

tation if and only if there are integers �1, : : : , �r such that V D
L

i V�i
where

K vi D q�i for any vi 2 V�i
.

Lemma 1. Let U and V be integral weight representations, then the representa-

tions of zR in (14) and xR in (8) on U ˝ V are equal.

Proof. Let u 2 U and v 2 V be weight vectors such that K u D qr u and

K v D qs . Then q
1
2

H˝H u˝ v D q 1
2

rs u˝ v,

zR.u˝ v/ D
N �1X

mD0

¹1ºm
Œm�Š

qm.m�1/=2 q
1
2

H˝HEm u˝ Fm v

D
N �1X

mD0

¹1ºm
Œm�Š

qm.m�1/=2C.rC2m/.s�2m/=2 Em u˝ Fm v;

and

xR .u˝ v/

D 1

4N

N �1X

mD0

4N �1X

n;j D0

¹1ºm
Œm�Š

qm.m�1/=2C.r=2Cm/nC.s=2�m�n=2/j Em u˝ Fm v

D
N �1X

mD0

¹1ºm
Œm�Š

qm.m�1/=2C.rC2m/.s�2m/=2 Em u˝ Fm v:

Hence the actions of the R-matrices are equal. �

The colored Alexander invariant is de�ned for non-integral representations,

but this lemma shows that zR is also well-de�ned for integral weight representa-

tions. Let zK be a knot in a three manifold M given by the surgery along a framed

link L in S3, yK be the pre-image of zK in S3, and T be a tangle obtained from
yK [L by cutting a componentK1 of yK. Let

P
� u

�
1˝ � � �˝ u�

rCp be the universal

invariant of the tangle T in .zUq.sl2/=ŒzUq.sl2/; zUq.sl2/�/
˝.rCp/ constructed from

zR. In this case we use the element H and in�nite sums which converge on any

�nite dimensional representations.

Remark 2. Another construction of a universal invariant corresponding to the

colored Alexander invariant is given by Ohtsuki in [30] by using colored ribbon

Hopf algebras.
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For � 2 C, let �� be the highest weight representation of zUq.sl2/ with highest

weight � � 1 and �� be the character of ��, i.e. the trace of the representation

matrix of ��. Let X.�/ be the representation space of �� spanned by the weight

vectors v�
0 , v�

1 , : : : , v�
N �1, on which zUq.sl2/ acts by

K v�
n D q��1�2n v�

n ; E v�
n D Œn�Œ� � n� v�

n�1; F v�
n D v�

nC1;

where v�
N D 0. Then the representation X.�/ is irreducible if � 2 .C nZ/[NZ.

For �1, : : : , �r 2 C,

X

�

��1
.u�

1/
� rY

iD2

�i .u
�
i /

pY

j D1

�.u�
rCj /

�
(15)

is a scalar matrix and let A�1;:::;�r ;�;:::;�.T / be the corresponding scalar. The

symmetric linear function � is de�ned for elements in zUq.sl2/ passing through
xUq.sl2/, but is not de�ned for elements containing H yet. For a weight vector v

with weight �, the action ofH on v is de�ned byH v D � v. In (15), � is applied

to the last p components as a linear combination of the symmetric linear functions

Ts , Gs de�ned for the indecomposable representations of zUq.sl2/ through xUq.sl2/

by (11). For these representations, the actions of H are de�ned as above and we

can extend � to the last p components in (15) by using (11) even if they containH .

Therefore, we can apply (15) for zUq.sl2/-valued universal invariant of a link.

Remark 3. If the weights �1, �2, : : : , �r are all specialized to integers, then

A�1;:::;�r ;�;:::;�.T / coincides with the logarithmic invariant as1;Ts2
;:::;Tsr ;�;:::;�.T /

de�ned by (13), where si � �i or 2N � �i .mod 2N/.

If L is empty and yK is a framed link in S3, we know the following for the

tangle T corresponding to yK obtained by cutting the componentK1 of yK.

Theorem 4 ([1] and [28]). For �1, : : : , �r in C n Z, let

ADO�1;:::;�r
.T / D sin.�1 �=N/

p
�1N �1

sin�1�
A�1;:::;�r

.T /:

Then ADO�1;:::;�r
.T / is an invariant of the link yK in S3 which does not depend

on the componentK1.

Remark 4. For a framed link yK in S3, AN;:::;N .T / is equal to Kashaev’s invariant,

which is equal to the colored Jones invariant corresponding to the N dimensional

representation of Uq.sl2/ at q D exp.�
p
�1=N/.
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5.2. Generalized Kashaev invariant. We introduce generalized Kashaev in-

variants for links in three manifolds as a generalization of AN;:::;N .T / combining

with the Hennings invariant.

Theorem 5. Let zK be a link in a three manifold M given by the surgery along a

framed link L and yK be the pre-image of yK in S3. Let T be the tangle obtained

from yK[L, and sC.L/, s�.L/ be the numbers of positive and negative eigenvalues

of the linking matrix of L. Then

 �.UC/
�sC.L/  �.U�/

�s�.L/ aN;TN ;:::;TN„ ƒ‚ …
r�1

; �;:::;�„ƒ‚…
p

.T /

does not depend on the choice of the speci�ed component K1 of zK to make the

tangle T , and is an invariant of zK.

Proof. We show that aN;TN ;:::;TN ;�;:::;�.T / does not depend on the choice of the

component K1. We assume that the number of the components of yK is greater

than one. Let T .2/ be a .2; 2/-tangle obtained from yK as in Figure 6. We associate

the representation V
C;C

N to the components of yK. Then T .2/ corresponds to an

element �.T .2// 2 EndUq.sl2/.V
C;C

N ˝ V C;C
N /, where V

C;C
N ˝ V C;C

N is split into a

direct sum of indecomposable xUq.sl2/ modules as follows.

T2

K1 K2

�W T2

V
.C;C/

N V
.C;C/

N

�! �.T .2// 2 End.V
.C;C/

N ˝ V .C;C/
N /

Figure 6. The tangle T .2/.

V
C;C

N ˝ V C;C
N D

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

.N �2/=2M

sD0

PC;C
s if N is even,

V
C;C

N ˚
.N �3/=2M

sD0

PC;C
s if N is odd.

(16)

Note that this is a multiplicity-free decomposition. Hence the action of �.T .2//

is decomposed into a direct sum of the actions on Ps and V
C;C

N which commute

with the action of xUq.sl2/. Let T
.2/
1 and T

.2/
2 be .1; 1/-tangles obtained by closing
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the right strings of T .2/ and � T .2/ ��1 as in Figure 7. Now compare the scalar

corresponding to T
.2/
1 and T

.2/
2 . The action of � on V

C;C
N ˝ V

C;C
N commutes

with the action of xUq.sl2/. Therefore, the images of � and T .2/ in End.P
C;C
s /

and End.V
C;C

N / are both contained in the commutants with respect to xUq.sl2/.

From the construction of representations of xUq.sl2/, it is easy to see that the

above commutants are all abelian. This implies that the images of T
.2/
1 , T

.2/
2 in

End.P
C;C
s / and End.V

C;C
N / are the same ones, and then we get

aN;TN ;:::;TN ;�;:::;�.T
.2/
1 / D aN;TN ;:::;TN ;�;:::;�.T

.2/
2 /: �

T
.2/
1 W T .2/

K2

K1

T
.2/
2 W T .2/

K1

K2

�

��1

Figure 7. The .1; 1/-tangles T .2/

1
and T .2/

2
.

By using aN;TN ;:::;TN ;�;:::;� , we introduce the generalized Kashaev invariant as

follows.

De�nition 4. Let

�GKN .T / D aN;TN ;:::;TN ;�;:::;�.T /;

and let

GKN . zK/ D  �.UC/
�sC.L/  �.U�/

�s�.L/ �GKN .T /:

We call GKN . zK/ the generalized Kashaev invariant of zK.

To get more computable expression of GKN . zK/, we express the symmetric

linear function Gs by derivatives of the diagonal elements of ��.

5.3. An expression of Gs. We �rst introduce a non-irreducible module of the

medium quantum group zUq.sl2/ which is isomorphic to direct sum of two non-

integral highest weight representations. Let t be an integer with 1 � s � p and

Y.�; s/ be the zUq.sl2/ module which is spanned by weight vectors cj and dj for

0 � j � N � 1. The action of zUq.sl2/ is given by
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K cn D q��1�2n cn; K dn D q��1�2s�2n dn; 0 � n � N � 1;

E cn D
´
0; n D 0;
Œn�Œ� � n� cn�1; 1 � n � N � 1;

E dn D

8
ˆ̂<
ˆ̂:

cs�1; n D 0;
Œn�Œ� � 2s � n� dn�1 C cnCs�1; 1 � n � N � s;
Œn�Œ� � 2s � n� dn�1; p � s C 1 � n � N � 1;

F cn D
´
cnC1; 0 � n � N � 2;
0; n D N � 1;

F dn D
´
dnC1; 0 � n � N � 2;
0; n D N � 1:

Then, for generic�, Y.�; s/ is isomorphic to the direct sumX.�/˚X.��2s/, where

X.�/ is identi�ed with the subspace spanned by ¹c0; : : : ; cN �1º and X.� � 2s/ is

identi�ed with the subspace spanned by

°
d0 �

cs

Œs�Œ� � s� ; : : : ; dN �s�1 �
cN �1

Œs�Œ� � s� ; dN �s ; : : : ; dN �1

±

Let ��.u/ be the representation matrix of u 2 zUq.sl2/ on X.�/ with respect to

the basis ¹v�
0 ; : : : ; v

�
N �1º as before and �.�;s/.u/ be the representation matrix of

u on Y.�; s/ with respect to the above basis ¹c.�;s/
n ; d

.�;s/
n I 0 � n � N � 1º. Let

��.u/n;n be the diagonal element of ��.u/ corresponding to the basis v�
n .

Now we express the symmetric linear function Gs of the small quantum group
xUq.sl2/ by using the derivatives of the diagonal elements of the highest weight

representations of the medium quantum group zUq.sl2/.

Lemma 2. Gs.u/ is given by

Gs.u/ D
N ¹1º
2 � i Œs�

d

d�

�
�

N �1X

nD0

.�2N C��2s.u/n;n � ��.u/n;n/

C
N �s�1X

nD0

.�2N C��2s.u/n;n � ���2s.u/n;n/
�ˇ̌
ˇ
�Ds

:
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Proof. There is a natural projection from zUq.sl2/ to xUq.sl2/ sending K2N to 1,

and let Ou be a pre-image of u in zUq.sl2/. Then the action of �.�;s/. Ou/ to Y.�; s/ is

expressed as follows:

�.�;s/.u/ cn D
N �1X

mD0

��.u/n;m cm;

�.�;s/.u/ dn D
N �1X

mD0

���2s.u/n;m dm C
N �1X

mD0

x.�;s/
n;m .u/ cm:

On the other hand

�.�;s/.u/
�
dn �

cnCs

Œs�Œ� � s�
�

D
N �s�1X

mD0

���2s.u/n;m

�
dm �

cmCs

Œs�Œ� � s�
�
C

N �1X

mDN �s

���2s.u/n;m dm;

for 0 � n � N � s � 1,

�.�;s/.u/ dn D
N �s�1X

mD0

���2s.u/n;m

�
dm �

cmCs

Œs�Œ� � s�
�
C

N �1X

mDN �s

���2s.u/n;m dm;

for N � s � n � N � 1, because

d0 �
cs

Œs�Œ� � s� ; : : : ; dN �s�1 �
cN �1

Œs�Œ� � s� ; ds ; : : : ; dN �1

are identi�ed with the weight vectors v��s
0 , : : : , v��s

N �1 of X.� � 2s/ respectively.

Therefore,

x.�;s/
n;m .u/ D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

��.u/nCs;m � ���2s.u/n;m�s

Œs�Œ� � s� ; 0 � n � N � s � 1;

��
��2s.u/n;m�s

Œs�Œ� � s� ; N � s � n � N � 1;
(17)

where ���2s.u/n;m�s is considered to be 0 if m � s < 0. From (17), we get

lim
�!s

x
.�;s/
n;nCs.u/ D

N ¹1º
2 � i Œs�

d

d�
.��.u/nCs;nCs � ���2s.u/n;n/j�Ds ;

and

lim
�!2N �s

x
.�;N �s/
n;nCs .u/

D � N ¹1º
2 � i Œs�

d

d�
.��.u/nCN �s;nCN �s� ���2N C2s.u/n;n/j�D2N �s

for 0 � n � N � s � 1.
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Since the symmetric linear function Gs.u/ is given by

Gs.u/ D
s�1X

nD0

x
.2N �s;N �s/
n;nCN �s .u/C

N �s�1X

nD0

x
.s;s/
n;nCs.u/;

we have

Gs.u/ D
N ¹1º
2 � i Œs�

d

d�

�
�

s�1X

nD0

�2N C��2s.u/nCN �s;nCN �s

C
N �1X

nD0

��.u/n;n �
N �s�1X

nD0

���2s.u/n;n

�ˇ̌
ˇ
�Ds

D N ¹1º
2 � i Œs�

d

d�

�
�

N �1X

nD0

.�2N C��2s.u/n;n � ��.u/n;n/

C
N �s�1X

nD0

.�2N C��2s.u/n;n � ���2s.u/n;n/
�ˇ̌
ˇ
�Ds

�

5.4. Non-triviality of  �.U˙/

Lemma 3.
ˇ̌
 �.U˙/

ˇ̌
D 1 and is not equal to 0.

Proof. Let T˙ be the tangle corresponding toU˙ andu˙ be the universal invariant

of T˙. Then, Proposition 7 in [28] shows that the scalar corresponding to ��.u˙/ is

q˙
.��1/.�C1�2N/

2 . Let Qu˙ be the universal invariant for U˙, then Qu˙ D KN C1 u˙.

We know that Ts. Qu˙/ D 0 and ��. Qu˙/ D 0, �. Qu˙/ is computed as follows:

�. Qu˙/ D
1

N
p
2N

N �1X

sD1

.�1/s�1 Œs�2 Gs. Qu˙/

D 1

N
p
2N

N �1X

sD1

N ¹sº.�1/s�1

2 � i

d

d�

� N �s�1X

nD0

�
�2N C��2s. Qu˙/n;n

� ���2s. Qu˙/n;n

��̌̌
ˇ
�Ds

;

since ��.KN C1 u˙/ D 0. We know that

��.KN C1 u˙/nn D q˙
.��1/.�C1�2N/

2 q.��2n/.N C1/ D �q˙ �2�2N��1
2 q��2nCN �:
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Hence, by using Lemma 2, we have

�. QuC/ D
1

N
p
2N

N �1X

sD1

N ¹1º .�1/s Œs�
2 i

N �s�1X

nD0

q
s2C2Ns�1

2 q�s�2n�Ns

D � ¹1º
2 i
p
2N

N �1X

sD1

.�1/s Œs�2 q s2C1
2 D i

2
p
2N

g4N q
�N2�N�1

2 ;

where g4N D
P4N �1

j D0 qj 2=2 D 2 .1 C i/
p
N by Corollary 1.2.3 of [3] and

j�. QuC/j D 1. Since �. Qu�/ is the complex conjugate of �. QuC/, its absolute value

is also equal to 1. �

5.5. Quantum SO.3/ version. For the Witten–Reshetikhin–Turaev invariant of

three manifolds, its SO.3/ version is introduced in [22]. Here, we introduce the

SO.3/ version of the generalized Kashaev invariant. For the Hennings invariant,

SO.3/ version is already introduced in [4].

From now on, we assume that N is a positive odd integer. Let

�SO.3/.u/ D
p
2

�
˛N TN .u/C

N�3
2X

sD0

.˛2sC1 T2sC1.u/C ˇ2sC1 G2sC1.u//
�
: (18)

Let MC be a zUq.sl2/ module with even integral weights. In other words, MC has

a basis mi satisfying Kmi D q�mi with � 2 2Z. Let �C be the homomorphism

from zUq.sl2/ to End.MC/.

Proposition 4. For x; y 2 zUq.sl2/,

�SO.3/.x y/ D �SO.3/.y x/; (19)

.�SO.3/ ˝ �C/
�
.1˝KN C1/�.x/

�
D �SO.3/.x/ �C.1/: (20)

Proof. The �rst formula holds since �SO.3/ is a linear combination of symmetric

linear functions as in (18).

To prove the second formula, we split elements of zUq.sl2/ into their even parts

and odd parts. Let zUq.sl2/C (reps. zUq.sl2/�) be the set of all elements in the

kernels of even representations (reap. odd representations). Here a representation

of zUq.sl2/ is said to be even (reps. odd) if it is a integral weigh representation

and the weights are all even (reps. odd). For x 2 zUq.sl2/, x D xC C x� where

xC 2 zUq.sl2/C and x� 2 zUq.sl2/�.
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Then,

�.xC/ D
X

˛

x˛
1;C ˝ x˛

2;C C
X

˛

x˛
1; ˝ x˛

2;�

and

�.x�/ D
X

˛

x˛
1;C ˝ x˛

2;� C
X

˛

x˛
1;� ˝ x˛

2;C:

Since

�SO.3/.x�/ D 0; �C.x�/ D 0;

�SO.3/.x/ D �SO.3/.xC/; �C.x/ D �C.xC/;

we have

�SO.3/.x/ �C.1/

D �SO.3/.xC/ �C.1/

D
p
2�.xC/ �C.1/

D
p
2 .� ˝ �C/

�
.1˝KN C1/

� X

˛

x˛
1;C ˝ x˛

2;C C
X

˛

x˛
1;� ˝ x˛

2;�

��
(by (6))

D
p
2 .� ˝ �C/

�
.1˝KN C1/

� X

˛

x˛
1;C ˝ x˛

2;C

��
(by �C.x

˛
2;�/ D 0)

D .�SO.3/ ˝ �C/
�
.1˝KN C1/

� X

˛

x˛
1;C ˝ x˛

2;C

��
;

and

.�SO.3/ ˝ �C/..1˝KN C1/�.x//

D .�SO.3/ ˝ �C/
�
.1˝KN C1/

� X

"1;"2D˙

X

˛

x˛
1;"1
˝ x˛

2;"2

��

D .�SO.3/ ˝ �C/
�
.1˝KN C1/

� X

˛

x˛
1;C ˝ x˛

2;C

��

since �SO.3/.x˛
1;�/ D �C.x

˛
2;�/ D 0. Therefore, (20) holds. �

For later use, we compute �SO.3/. Qu˙/ and check their non-triviality for the

universal invariant Qu˙ of trivial ˙1 framed knot U˙.

Lemma 4. j�SO.3/. Qu˙/j D 1 and is not equal to zero.
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Proof. We restrict the parameter s to odd integers in the computation in §5.4:

�SO.3/. QuC/D
1

N
p
N

N�3
2X

sD0

�N ¹2s C 1º
2 i

N �2s�2X

nD0

q
.2sC1/2C2N.2sC1/�1

2 q�2s�1�2n�N.2sC1/

D ¹1º
2 i
p
N

N�3
2X

sD0

Œ2s C 1�2 q
.2sC1/2C1

2

D Qg4N q�1=2

2 i
p
N

;

where Qg4N D
P2N �1

sD0 q
.2sC1/2

2 . Since

2N �1X

sD0

q2s2 D 2 gN D 2
p
N .N � 1 mod 4/ or 2 i

p
N .N � 3 mod 4/

by Corollary 1.2.3 of [3], we get

j Qg4N j D jg4N � 2gN j D 2
p
N;

which implies that
ˇ̌
�SO.3/. QuC/

ˇ̌
D 1. Similarly, we get

ˇ̌
�SO.3/. Qu�/

ˇ̌
D 1. �

By using (20) and Lemma 4, we construct SO.3/ version of the generalized

Kashaev invariant GKN .

Theorem 6. Let M be a three manifold obtained by the surgery along a framed

link L in S3, zK be a link in M , and yK be the pre-image of zK in S3. Let T be a

tangle obtained from yK [ L, and sC.L/, s�.L/ are numbers of the positive and

negative eigenvalues of the linking matrix of L. Let

�GK
SO.3/
N .T / D a

N;TN ;:::;TN ;�SO.3/;:::;�SO.3/.T /

and

GK
SO.3/
N .T / D  �SO.3/.UC/

�sC.L/  �SO.3/.U�/
�s�.L/ �GK

SO.3/
N .T /:

Then GK
SO.3/
N . zK/ is an invariant of zK.

We call GK
SO.3/
N .T / the SO.3/ version of the generalized Kashaev invariant.
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5.6. Relation to other invariants. We express the generalized Kashaev invari-

ants GKN . zK/ and GK
SO.3/
N . zK/ by using the colored Alexander invariants and the

colored Jones invariants. GKN . zK/ and GK
SO.3/
N . zK/ are given as follows:

�GKN . zK/

D
X

�

� NX

t1;t2;:::;tpD0

pY

iD1

.˛ti Tti .u
�
rCi/C ˇti Gti .u

�
rCi//

� rY

j D2

TN .u
�
j / u

�
1 eN ;

�GK
SO.3/
N . zK/

D
p
2

X

�

� NX

t1;t2;:::;tpD0

ti Wodd

pY

iD1

.˛ti Tti .u
�
rCi /C ˇti Gti .u

�
rCi //

�

rY

j D2

TN .u
�
j / u

�
1 eN :

From now on, we consider the case that p D 1, i.e. the framed link L de�ning

the three manifold M is a knot. Then �GKN . zK/ and �GK
SO.3/
N . zK/ are given by the

colored Alexander invariants and the colored Jones invariants as in the following

theorem. Here VN;:::;N;t . yK [L/ is the colored Jones invariant at q D exp.� i=N/,

which is normalized to be 1 for the trivial knot.

Theorem 7. Let zK, M , L, yK and T be as in Theorem 6. Then the generalized

Kashaev invariants �GKN . zK/ and �GK
SO.3/
N . zK/ are expressed in terms of the

colored Alexander invariants, their derivatives and the colored Jones invariants

of K [ L as follows:

�GKN . zK/ D �
1p
2N

�
.�i/N �1 ADON;N;:::;N;0. yK [ L/

C iN �1 ADON;N;:::;N;N . yK [ L/

C
N �1X

tD1

.�1/t ¹tºC .�i/N �1 ADON;N;:::;N;t . yK [ L/

C
N �1X

tD1

.�i/N �1.�1/t¹tº
� N

2�i

d

d�
S1.�2t/

ˇ̌
ˇ
�Dt
CS2.t /

��
;

(21)
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where

S1.x/ D .�ADON
N;:::;N;2N C�Cx.

yK [ L/CADON
N;:::;N;�.

yK [ L//;

S2.x/ D f N ADON;:::;N;x. yK [ L/ � iN �1 f VN;:::;N;x. yK [ L/;

�GK
SO.3/
N . zK/ D .�1/N�1

2

p
N

� N�3
2X

tD0

¹2t C 1ºC ADON;N;:::;N;2tC1. yK [ L/

�ADON;N;:::;N;N . yK [ L/

C
N�3

2X

tD0

¹2t C 1º
� N

2�i

d

d�
S1.�4t � 2/

ˇ̌
ˇ
�D2tC1

CS3.t /
��
;

(22)

where

S3.x/ D f N ADON;:::;N;2xC1. yK [ L/ � .�1/
N�1

2 f VN;:::;N;2xC1. yK [ L/:

Proof. Since L is a knot, �GKN . zK/ and �GK
SO.3/
N . zK/ is given as follows:

�GKN . zK/ D �
1

N
p
2N

�
aN;TN ;:::;TN ;T0

.T /

C .�1/N �1 aN;TN ;:::;TN ;TN
.T /

C
N �1X

tD1

.�1/t .¹tºC aN;TN ;:::;TN ;Tt
.T /

C Œt �2 aN;TN ;:::;TN ;Gt
.T //

�
;

�GK
SO.3/
N . zK/ D 1

N
p
N

�
� aN;TN ;:::;TN ;TN

.T /

C
N�3

2X

tD0

.¹2t C 1ºC aN;TN ;:::;TN ;T2tC1
.T /

C Œt �2 aN;TN ;:::;TN ;G2tC1
.T //

�
:
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We know that

aN;TN ;:::;TN ;Tt
.T / D lim

�!N

iN �1 sin��

sin.��=N/
ADO�;N;:::;N;t . yK [ L/

D .�i/N �1N ADON;N;:::;N;t . yK [ L/:
(23)

By using Lemma 2, we have

aN;TN ;:::;TN ;Gt
.T / eN D

N ¹1º
2 � i Œt �

� d

d�
S4j�Dt C

X

�

d

d�
S5

ˇ̌
ˇ
�Dt

�
eN ;

where

S4 D �AN;N;:::;N;2N C��2t .T /C AN;N;:::;N;�.T /;

S5 D
rY

j D2

TN .u
�
j /

N �t�1X

nD0

.�2N C��2t .u�
rC1/n;n � ���2t .u�

rC1/n;n/ u
�
1:

From the de�nition of the R-matrix,
Qr

j D2 TN .u
�
j / �

�.u�
rC1/n;n u

�
1 has period 2N

with respect to the parameter � except the phase factor qf .��N /2=2 where f is the

framing ofL. If the framed link yK[L is given by a link diagram with blackboard

framing, then the framing f ofL is given by the sum of signs of the self-crossings

of L. Let h�.�/ be a function of period 2N satisfying

rY

j D2

TN .u
�
j / �

�.u�
rC1/n;n u

�
1 eN D qf .��N /2=2 h�.�/ eN :

Then we have

d

d�

� rY

j D2

TN .u
�
j / .�

2N C��2t .u�
rC1/n;n � ���2t.u�

rC1/n;n/ u
�
1/

�ˇ̌
ˇ
�Dt

eN

D d

d�
.qf .�CN �2t/2=2 h�.� � 2t/ eN � qf .��N �2t/2=2 h�.� � 2t//j�DteN

D 2 f � i
rY

j D2

TN .u
�
j / �

2N �t .u�
rC1/n;n u

�
1 eN ;
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and

aN;TN ;:::;TN ;Gt
.T / eN D

X

�

rY

j D2

TN .u
�
j / Gt .u

�
rC1/ u

�
1 eN

D N ¹1º
2 � i Œt �

�
.�i/N �1N

d

d�
S1.�2t/

ˇ̌
ˇ
�Dt

C 2 f2 � i
X

�

rY

j D2

TN .u
�
j / T

�
t .u

�
rC1/ u

�
1

�
eN

D N ¹1º
2 � i Œt �

�
.�i/N �1N

d

d�
S1.�2t/j�Dt

C 2 f � i aN;TN ;:::;TN ;T �
t
.T /

�
eN :

(24)

Combining (23) and (24), we can express GKN . zK/ by using ADON;:::;N;�. yK[L/,
its derivatives and aN;TN ;:::;TN ;T �

t
.T /. Since

a
N;TN ;:::;TN ;T

C
t
.T /C aN;TN ;:::;TN ;T �

t
.T / D AN;N;:::;N;t .T /

D .�i/N �1N ADON;:::;N;t . yK [ L/

and a
N;TN ;:::;TN ;T

C
t
.T / is equal to the colored Jones invariant VN;:::;N;t . yK [ L/,

we get (21) and (22). �

6. Volume conjecture for the generalized Kashaev invariant

The invariants GKN , GK
SO.3/
N are generalizations of Kashaev’s invariant, and we

expect that the volume conjecture proposed in [17] and [26] also holds for them.

Since GKN may vanish for some nontrivial cases, it is better to consider GK
SO.3/
N .

In the rest of the paper, we compute the invariant GK
SO.3/
N for some examples and

check Conjecture 3 numerically.

6.1. Hopf link. Let yK [L be a Hopf link in Figure 8 where f is the framing of

L, and zK be the knot corresponding to yK in the lens space obtained by the surgery

along L with framing f . We assume that the framing of yK is 0. Let T be a tangle

obtained from yK [ L by cutting yK, and g.�/ D .�2 � 2N� � 1/=2. The ADO
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invariant of yK [ L is given by

ADON;�. yK [ L/ D iN �1 qf g.�/;

d

d�
ADON;�. yK [ L/ D

� iN

N
.� �N/ qf g.�/:

From the colored Jones invariant, we have

a
N;T

C
t
.T / D qf g.t/ lim

�!N

Œ� t �

Œ��
D qf g.t/ t

for odd t , and

aN;T �
t
.T / D AN;t .T / � aN;T

C
t
.T / D qf g.t/ .N � t /:

Therefore

�GK
SO.3/
N . zK/ D 1p

N

N �1X

tD0

q2tC1 qf g.2tC1/:

This implies jGK
SO.3/
N . zK/j �

p
N and

lim
N !1

2 � log jGK
SO.3/
N . zK/j

N
D 0:

Hopf link. Whitehead link.

Figure 8. Hopf link and Whitehead link.
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6.2. Whitehead link. We do the same thing for a Whitehead link yK [ L in

Figure 8. Let f be the framing of L, and zK be the knot corresponding to yK in the

lens space obtained by the surgery along L with framing f . We assume that the

framing of yK is 0. Let T be a tangle of yK [ L obtained by cutting a point on yK.

The colored Alexander invariant of yK [ L is given in [28]. Let

¹aI ; kº D .qa � q�a/.qa�1 � q�qC1/ : : : .qa�kC1 � q�aCk�1/;

then

ADON;�. yK [ L/

D �i q
f g.�/

2N sin��

N �1X

j D

�
N
2

�
.�1/j q �j 2

2
�

3j
2
.¹j I j º/3 ¹�C j I 2j C 1º
¹2j C 1I 2j C 1�N º :

and, by using l’Hôpital’s rule to obtain the limit �! t for an integer t , we have

ADON;t . yK [ L/

D �i .�1/
t qf g.t/

2N �

N �1X

j D

�
N
2

�
.�1/j q

�j 2

2 �
3j
2

.¹j I j º/3 d

d�
¹�C j I 2j C 1º

ˇ̌
ˇ
�Dt

¹2j C 1I 2j C 1 �N º :

Hence we have

aN;Tt
.T /

D .�i/N .�1/t qf g.t/

2 �

N �1X

j DŒN
2 �

.�1/j q �j 2

2
�

3j
2

¹j I j º3 d

d�
¹�C j I 2j C 1º

ˇ̌
ˇ̌
�Dt

¹2j C 1I 2j C 1� N º

D �i
N .�1/t qf g.t/

2 �

N �1X

j DŒN
2 �

.�1/j q
�j 2

2
�

3j
2

¹j I j º3 d

d�
¹�C j I 2j C 1º

ˇ̌
ˇ̌
�Dt

¹2j C 1� N I 2j C 1� N º :

The colored Jones invariant VN;t . yK [L/ is given in [12] which is reformulated as

follows for q D e�i=N .
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� If t > ŒN
2
�,

VN;t . yK [ L/

D .�1/t�1 qf g.t/

�
N
2

�
�1X

j D0

.�1/j q�
j 2

2
�

3j
2
¹j I j º2 ¹t C j I 2j C 1º
¹2j C 1I j C 1º

C iN .�1/t�1qfg.t/

2 �

t�1X

j D

�
N
2

�
.�1/jq�

j 2

2
�

3j
2

¹j I j º3 d
du
¹�C j I 2j C 1º

ˇ̌
ˇ
�Dt

¹2j C 1� N I 2j C 1�N º I

� if t � ŒN
2
�,

VN;t . yK [ L/ D .�1/t�1 qf g.t/

t�1X

j D0

.�1/j q�
j 2

2
�

3j
2
¹j I j º2 ¹t C j I 2j C 1º
¹2j C 1I j C 1º :

Now we check the following conjecture by substituting the above formulas to (22).

This conjecture is stronger than Conjecture 3.

Conjecture 4. The SO.3/ version of the generalized Kashaev invariant satis�es

the following.

lim
N !1

� log
GK

SO.3/
N . zK/

GK
SO.3/
N �2 .

zK/
� Vol. zK/C i CS. zK/ mod

�2i

2
:

For the knot zK in lens spaces coming from the Whitehead link as above, the

results of numeric computation are exposed in Table 1. The framing f of L varies

from �5 to 10 and N D 83, 123, 183, 245. For the cases f D 0; 1; 2; 3; 4, the knot

complements are not hyperbolic. The volumes and Chern–Simons invariants are

obtained from the software SnapPea and its cusped census table created by Je�

Weeks. The values seems to converge to the complex volume Vol. zK/C i CS. zK/
mod �2=2i when f �n 2 .mod 4/.
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Table 1. Values of � log
GKSO.3/

N
. zK/

GKSO.3/

N �2
. zK/

mod �2i .

f nN 83 123 183 245 VolCi CS

-5
3:52627

C 3:77047 i
3:45119

C 3:77611 i
3:40037

C 3:77866 i
3:37410

C 3:77958 i
3:29690

� 1:15407 i

-4
3:40671

� 0:97724 i
3:33159

� 0:97243 i
3:28077

� 0:97025 i
3:25449 �
0:96946 i

3:17729

� 0:96847 i

-3
3:21855

C 4:19927 i
3:14342

C 4:20327 i
3:09260

C 4:20508 i
3:06632

C 4:20574 i
2:98912

C 4:20662 i

-2
�0:20084
� 3:95382 i

0:64312

� 3:93690 i
�1:15661
� 3:63002 i

0:30569

� 3:968664 i
2:66674

� 0:41123 i

-1
2:25923

C 4:93040 i
2:18415

C 4:93281 i
2:13335

C 4:93391 i
2:10708

C 4:93430 i
2:02988

C 0 i

0
0:30651

� 0:00294 i
0:20601

� 0:00133 i
0:13809

� 0:000609 i
0:10300

� 0:00033 i non-hyperbolic

1
0:22776

C 3:28809 i
0:15482

C 3:29048 i
0:10340

C 3:28898 i
0:07714

C 3:29014 i non-hyperbolic

2
0:23123

� 4:93300 i
0:15525

� 4:93385 i
0:10398

� 4:93430 i
0:07752

� 4:93449 i non-hyperbolic

3
0:35286

� 1:37902 i
0:255233

� 1:361564 i
0:184937

� 1:344945 i
0:00758

C 4:62530 i non-hyperbolic

4
�0:06551
� 4:58143 i

�0:09561
� 4:64719 i

0:31686

C 4:70468 i
0:30301

� 4:75063 i non-hyperbolic

5
2:25936

C 0:00547 i
2:18421

C 0:00247 i
2:13337

C 0:00111 i
2:10709

C 0:00062 i
2:02988

C 4:93480 i

6
�2:74804
� 3:36083 i

�7:77535
� 2:77035 i

�7:74245
� 2:25861 i

3:02484

C 0:87472 i
2:66674

C 4:52357 i

7
3:21829

C 0:73646 i
3:14331

C 0:73195 i
3:09255

C 0:72991 i
3:06629

C 0:72917 i
2:98912

� 4:20656 i

8
3:40638

� 3:95673 i
3:33144

� 3:96200 i
3:28071

� 3:96439 i
3:25446

� 3:96525 i
3:17729

� 3:96634 i

9
3:52592

C 1:16509 i
3:45103

C 1:15904 i
3:40030

C 1:15630 i
3:37406

C 1:15531 i
3:29690

� 3:78074 i

10
2:79822

C 2:69441 i
2:72319

C 2:68751 i
2:67241

C 2:68438 i
2:64615

C 2:68325 i
3:37760

C 3:63406 i
The last column indicate the hyperbolic volumes and the Chern–Simons invariants given

by the cusped census of SnapPea.
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