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Invariance and the knot Floer cube of resolutions

Allison Gilmore1

Abstract. �is paper considers the invariance of knot Floer homology in a purely algebraic

setting, without reference to Heegaard diagrams, holomorphic disks, or grid diagrams. We

show that (a small modi�cation of) Ozsváth and Szabó’s cube of resolutions for knot Floer

homology, which is assigned to a braid presentation with a basepoint, is invariant under

braid-like Reidemeister moves II and III and under conjugation. All moves are assumed

to happen away from the basepoint. We also describe the behavior of the cube of resolu-

tions under stabilization. �e techniques echo those employed to prove the invariance of

HOMFLY-PT homology by Khovanov and Rozansky, and are further evidence of a close

relationship between the theories. �e key idea is to prove categori�ed versions of certain

equalities satis�ed by the Murakami–Ohtsuki–Yamada state model for the HOMFLY-PT

polynomial.
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1. Introduction

Several knot polynomials were originally categori�ed using a “cube of resolu-

tions” construction. Given a projection of a knot with m crossings, one considers

two ways of resolving each crossing and arranges all possible resolutions into an

m-dimensional cube. To each vertex of the cube, one associates a graded alge-

braic object (perhaps a vector space, or a module over some commutative ring),

and to each edge of the cube a map. With the correct choices of objects and maps,

the result is a chain complex whose graded Euler characteristic is the desired knot

polynomial. Khovanov’s categori�cation of the Jones polynomial [3] follows this

model, employing a cube in which the resolutions are the two possible smooth-

ings of a crossing. A complete resolution is then a collection of circles, to which

one associates certain vector spaces. Khovanov and Rozansky’s categori�cation

of the sln polynomials [5] and later the HOMFLY-PT polynomial [6] (see also

Khovanov [4] and Rasmussen [17]) instead use a cube of resolutions built from

singularizations of crossings and oriented smoothings. �e complete resolutions

in this case are a particular type of oriented planar graph. �e associated algebraic

objects are modules over the ring QŒx0; : : : ; xn�, which has one indeterminate for

each edge of the graph. In each of these theories, the chain complex was proved

to be a knot invariant by directly checking invariance under Reidemeister moves.

�at is, one compares the prescribed chain complex before and after a Reidemeis-

ter move is performed on the diagram, and constructs a chain homotopy between

the two complexes.

Knot Floer homology, which categori�es the Alexander polynomial, was

originally developed via an entirely di�erent route. It was de�ned by Ozsváth

and Szabó [13] and by Rasmussen [16] as a �ltration on the chain complex of Hee-

gaard Floer homology [14], a three-manifold invariant whose di�erentials count

holomorphic disks in the symmetric product of a surface. Knots in this theory

are represented by decorating the Heegaard diagram for a three-manifold, so in-

variance was proved by checking invariance under Heegaard moves. A second

description of 1HFK was developed using grid diagrams in [21] and [11]. �is def-

inition is fully combinatorial and its invariance was proved combinatorially in [7]

by checking grid moves.

In 2007, Ozsváth, Szabó and Stipsicz [12] described a version of knot Floer

homology for singular knots that is related to the theory for classical knots by

a skein exact sequence. In general, knot Floer homology for singular knots in-

volves holomorphic disk counts, but it can be made combinatorial with a suitable

choice of twisted coe�cients and a particular Heegaard diagram. Using this ver-

sion of the theory for singular knots and iterating the skein exact sequence allowed
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Ozsváth and Szabó [15] to calculate knot Floer homology using a cube of reso-

lutions. �eir construction is, in the end, fully algebraic. Compared to the grid

diagram formulation of knot Floer homology, it has the advantage of being not

only combinatorial, but conceptually grounded.

�is paper addresses the question of invariance for knot Floer homology within

the algebraic setting of the cube of resolutions. Our invariance result is weaker

than might be expected—the Reidemeister I move is missing and other moves

must avoid a basepoint—but our methods advance the project of understanding

knot Floer homology from an algebraic perspective. We do not rely on Heegaard

diagrams, holomorphic disks, or any of the usual geometric input. We also make

no reference to grid diagrams. �e main idea is to prove categori�ed versions

of certain equalities satis�ed by the Murakami–Ohtsuki–Yamada model of the

HOMFLY-PT polynomial.

A thorough understanding of knot Floer homology from the algebraic per-

spective should have several applications. Perhaps most immediately, it should

clarify the relationship between knot Floer homology and other knot homolo-

gies. It also suggests a relationship between the knot Floer cube of resolutions

and the various constructions of the Alexander polynomial via representation the-

ory [2],[20],[10],[9],[1],[22]. A full categori�cation of such constructions would

extend knot Floer homology to a tangle invariant.

We use a small modi�cation of the cube of resolutions construction described

by Ozsváth and Szabó [15], which still produces chain complexes with homology
1HFK and HFK�. We begin with a projection of a knot as a closed braid, which

we decorate with a number of extra bivalent vertices. We also place a basepoint on

one of the outermost edges. (Equivalently, we cut the outermost strand to obtain a

.1; 1/-tangle in braid position.) �e result is a layered braid diagramD. We form a

cube of resolutions by singularizing or smoothing each crossing of the projection.

We then assign a graded algebra AI .D/ to each resolution and arrange these into

a chain complex C.D/. �ese objects are de�ned precisely in (2.1) and (2.2) of

Section 2. Our main result is an algebraic proof of

�eorem 1.1. Let D be a layered braid diagram for a knot. �e chain complex

C.D/, up to chain homotopy equivalence and twisting by certain endomorphisms

of the ground ring, is invariant under braid-like Reidemeister moves II and III and

under conjugation. All moves are assumed to avoid the basepoint.

�eorem 1.1 holds with coe�cients in Z. It is stated in full detail in Section 2.4.

Changing to Z2 coe�cients, we identify H�.C.D// with HFK� and a reduced

version of C.D/ with 1HFK in Proposition 9.1. We expect that H�.C.D// in fact
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computes knot Floer homology with integer coe�cients, but do not pursue this

point here.

�e proof of �eorem 1.1 is modeled on Khovanov and Rozansky’s invariance

proof for HOMFLY-PT homology in [6]. Speci�cally, we prove categori�ed ver-

sions of the braid-like Murakami–Ohtsuki–Yamada (MOY) relations shown in

Figure 1. Murakami, Ohtsuki, and Yamada [8] present a state sum model for the

sl.n/ polynomials, which extends to a model for the HOMFLY-PT polynomial. To

compute the polynomial invariant of a knot, one sets up a weighted sum of combi-

natorially de�ned states on certain graphs obtained from a projection of the knot.

(Singular knots are equivalent to a subclass of these graphs.) �e MOY model

is purely combinatorial, but is derived from the Reshetikhin–Turaev [19] recipe

for producing polynomial invariants from the representation theory of quantum

groups. Lemma 5.1 and Lemma 6.1 both categorify the top line of Figure 1, with

the q and q�1 to be interpreted as shifts in the Alexander grading onA. Lemma 6.2

categori�es the middle and bottom lines of Figure 1.
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OO OO

C q�1

OO OO

BB☎☎☎☎☎

OO\\✿✿✿

☎☎☎

☎☎☎☎☎
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FF✌✌✌✌✌✌
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C

OO OOOO

☎☎☎☎☎

✿✿✿✿✿

Figure 1. Murakami–Ohtsuki–Yamada relations used in the proof of �eorem 1.1.

Our use of diagrams with basepoints and basepoint-avoiding moves is

unsurprising from the representation theoretic point of view. Although the

HOMFLY-PT polynomial specializes to the Alexander polynomial, the MOY

model does not specialize to a model of the Alexander polynomial. Specializing

the model so that it satis�es the Alexander polynomial’s skein relation produces

the zero polynomial. �is unfortunate fact is not a defect of the MOY model,

but a fundamental feature of the representation theory underlying the polynomial
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knot invariants. �e Reshetikhin–Turaev method for constructing knot polynomi-

als produces the zero polynomial when applied to the quantum groups related to

the Alexander polynomial (Uq.gl.1j1// or Uq.sl.2// at a root of unity).1 �e stan-

dard means of circumventing this dilemma has been to cut a strand and work with

.1; 1/-tangles up to isotopies �xing the endpoints [2],[20],[10],[9],[1],[22], which

correspond exactly to knots with basepoints up to isotopies �xing the basepoint.

Of course, the location of the cut / basepoint should not matter for a construction of

knot Floer homology, but the behavior of C.D/ under movement of the basepoint

appears to be complicated. We hope to return to this issue in future work.

We describe the behavior of C.D/ under stabilization in Proposition 8.1.

�e description is separate from �eorem 1.1 because it requires leaving the lay-

ered braid setting. Unfortunately, the categori�ed MOY relations that underlie

our arguments for Reidemeister moves II and III do not appear to extend to this

more general setting. A new approach will probably be needed to prove that C.D/

(or an appropriate generalization thereof) is invariant under stabilization.

One �nal note is in order regarding the limitations of the cube of resolutions

construction. We are not aware of any intrinsic justi�cation for the use of braid di-

agrams. �ey appear here for the same reason as in Ozsváth and Szabó’s original

construction: the holomorphic disk counting required to link the cube of resolu-

tions to knot Floer homology is tractable only for braid diagrams. Interestingly,

HOMFLY-PT homology also requires braid presentations.

�is paper is organized as follows. Section 2 describes the modi�ed construc-

tion of the cube of resolutions needed to incorporate layered braid diagrams. Sec-

tion 3 examines in detail the non-local relations involved in the de�nition of the

algebra associated to a resolution. �ese relations are a key di�erence between the

cube of resolutions theories for HFK and for HOMFLY-PT homology. Section 4

establishes a technical proposition allowing us to remove sets of bivalent vertices

under certain conditions. �e next sections address Reidemeister II, Reidemeis-

ter III, conjugation, and stabilization in turn. Section 9 veri�es that the cube of

resolutions de�ned here computes knot Floer homology.

Acknowledgments. I would like to thank Peter Ozsváth for suggesting this prob-

lem, for patiently explaining the material in [15], and for always being a support-

ive and encouraging advisor. I am also grateful to Mikhail Khovanov for sev-

eral thought-provoking conversations. I thank Daniel Krasner for illuminating the

technical material in [6] and John Baldwin for helpful conversations about an ear-

1 �ese observations go back at least to Reshetikhin [18] in the early 1990s. �e problem

appears to be related to the fact that the Alexander polynomial vanishes on split links.
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lier version of this paper. Finally, I am grateful to an anonymous referee for a

very thorough review of that prior version, and to Robert Lipshitz and Ciprian

Manolescu for their encouragement during revisions.

2. De�nitions: Cube of Resolutions for HFK

We begin with an oriented braid-form projection D of an oriented knot K in S3.

Let b refer to the number of strands inD (which is not necessarily the braid index

of K). Subdivide one of the outer edges of D by a basepoint �. Isotoping D

as necessary, �x an ordering on its crossings so that D is the closure of a braid

diagram that is a stack ofmC1 horizontal layers, each containing a single crossing

and b � 2 vertical strands. Label the horizontal layers s0; : : : ; sm. �is amounts to

choosing a braid word forD. In each horizontal layer, add a bivalent vertex to each

strand that is not part of the crossing. Finally, label the edges of D by 0; : : : ; n,

where n D .mC 1/b, such that 0 is the edge coming out from the basepoint and n

is the edge pointing into the basepoint. A braid diagram in this form will be called

a layered braid diagram for K. See Figure 2 for an example of a layered braid

diagram of the �gure 8 knot. Although Ozsváth and Szabó [15] use closed braid

diagrams with basepoints in their de�nition of the knot Floer cube of resolutions,

they do not require diagrams to be layered. �is re�nement appears to be critical

to our proof of Proposition 4.1 and necessary for the proofs of the categori�ed

MOY relations (Lemmas 5.1, 6.1, 6.2) that underlie Reidemeister moves II and III.

Each crossing in a knot projection can be singularized or smoothed. To sin-

gularize the crossing in layer si , replace it by a 4-valent vertex and retain all edge

labels. To smooth the crossing in layer si , replace it with two vertical strands with

one bivalent vertex on each, and retain all edge labels. Figure 3 illustrates these

labeling conventions.

A resolution of a knot projection is a diagram in which each crossing has been

singularized or smoothed. Alternatively, it is a planar graph in which each vertex

is either (1) 4-valent with orientations as in Figure 3, or (2) bivalent with one

incident edge oriented towards the vertex and the other oriented away from the

vertex. For a positive crossing, declare the singularization to be the 0-resolution

and the smoothing to be the 1-resolution. For a negative crossing, reverse these

labels. A resolution of a knot projection can then be speci�ed by a multi-index of

0s and 1s, generically denoted �0 : : : �m, or simply I , which we will think of as a

vertex of a hypercube. Considering all possible singularizations and smoothings

of all crossings, we obtain a cube of resolutions for the original knot projection.
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�e homological grading on the cube will be given by collapsing diagonally; that

is, by summing �0 C � � � C �m.

s0

⑧⑧⑧⑧⑧⑧⑧⑧⑧
❄❄❄❄

❄❄❄❄
�

x0 x1 x2

s1 ⑧⑧⑧⑧

⑧⑧⑧⑧
❄❄❄❄❄❄❄❄❄

�

x3 x4 x5

s2

⑧⑧⑧⑧⑧⑧⑧⑧⑧
❄❄❄❄

❄❄❄❄
�

x6 x7 x8

s3 ⑧⑧⑧⑧

⑧⑧⑧⑧
❄❄❄❄❄❄❄❄❄

�

x9 x10 x11

x12 x1 x2

�

��

Figure 2. A layered braid diagram for the �gure 8 knot.
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1

Figure 3. Notation for the singularization and smoothing of a positive (respectively nega-

tive) crossing.

Let R D ZŒt�1; t � and x.D/ denote a set of formal variables x0; : : : ; xn cor-

responding to the edges of D. De�ne the edge ring of D to be RŒx.D/�, which

we will abbreviate to RŒx� if D is clear from context. To each vertex of the cube

of resolutions, we will associate an R-algebra AI .D/, which is a quotient of the

edge ring by an ideal de�ned by combinatorial data in the I -resolution of D. To

each edge of the cube, we will associate a map. Together with proper choices

of gradings, these data de�ne a chain complex of graded algebras over RŒx.D/�.

We will sometimes need to complete R or RŒx.D/� with respect to t , meaning
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that we will allow Laurent series in t with coe�cients in Z or ZŒx.D/�, respec-

tively. Denote these completions yR and 3RŒx.D/�, respectively. More speci�cally,

the description of the cube of resolutions’ behavior under stabilization requires

extending the ground ring to yRŒx.D/� and the identi�cation of the homology of

C.D/with knot Floer homology requires extending to 3RŒx.D/� (as well as passing

to Z2 coe�cients).

2.1. Algebra associated to a resolution. �e algebra associated to the I -reso-

lution of the knot projection D, which we will denote AI .D/, is the quotient of

the edge ring by the ideal generated by the following three types of relations.

(1) Linear relations associated to each vertex.

t .xa C xb/ � .xc C xd / to �

??⑧⑧⑧⑧⑧⑧⑧

__❄❄❄❄❄❄❄

xa xb

xc xd

txa � xc to �

OO xa

xc

(2) Quadratic relations associated to each 4-valent vertex.

t2xaxb � xcxd to �

??⑧⑧⑧⑧⑧⑧⑧

__❄❄❄❄❄❄❄

xa xb

xc xd

Note that this relation can always be rewritten in four di�erent ways by com-

bining with the linear relation corresponding to the same vertex:

.txa � xc/.xd � txa/ or .txb � xc/.xd � txb/ or

.txa � xc/.txb � xc/ or .txa � xd /.txb � xd /:

(3) Non-local relations associated to sets of vertices in the resolved diagram.

�ese have several equivalent de�nitions, which will be explored in detail in

Section 3. Denote the ideal generated by non-local relations in I -resolution

of D by NI .D/ or simply NI .
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We refer to the linear and quadratic relations as the local relations. Let L

denote the ideal they generate together, and Li denote the ideal generated by the

local relations in layer si . �en the algebras that belong at the corners of the cube

of resolutions are

AI .D/ D
RŒx0; : : : ; xn�

L C NI
: (2.1)

�roughout this paper, we will use “�” to indicate that two polynomials in the

edge ring are equivalent up to multiplication by units in RŒx.D/�=L. Such polyno-

mials are equivalent in the sense that they generate the same ideal in RŒx.D/�=L.

We will represent generating sets for ideals as single-column matrices. �e entries

of the matrices are elements of the edge ring. �e matrices can be manipulated

using row operations without changing the ideal they generate because the ideal

.a; b/ is identical to the ideal .a; b C sa/ for any unit s 2 R and a; b 2 RŒx.D/�.

Also, when we see a row of the form a�b in a matrix, we can replace b by a in all

other rows and eliminate b from the edge ring. �is will not change the quotient

of the edge ring by the ideal of relations. Although the matrix manipulations in

the following sections look very similar to those in [6] and [17], the matrices here

do not formally represent matrix factorizations.

Let S denote the I -resolution of D, treated as a singular knot. �e algebra

AI .D/ is a twisted version of the singular knot Floer homology of S . More pre-

cisely, there is a chain complex C 0.S/ over Z2Œx.D/� mentioned in [12, Section

4] that is de�ned using Heegaard diagrams for singular knots and a di�erential

that counts holomorphic disks. With appropriately twisted coe�cients, the ho-

mology of C 0.S/ with respect to the holomorphic disk counting di�erential is

AI .D/˝Z Z2 [15, �eorem 3.1]. �e complex C 0.S/ is a generalization of those

that are the focus of [12]. Setting xa D xb at each 4-valent vertex and x0 to zero

in C 0.S/, then taking homology with respect to the same di�erential, gives the

theory called HFS in [12] while setting all of the edge variables to zero before

taking homology gives the theory they call AHFS . It is proved in [12, �eorem 1.3,

Section 5] that HFS is completely determined by its Euler characteristic, while
AHFS contains additional information.

2.2. Di�erential. An edge of the cube of resolutions goes between two resolu-

tions that di�er at exactly one crossing. To an edge that changes the i th crossing,

we associate a map A�0:::0:::�m
.D/ �! A�0:::1:::�m

.D/. If si was positive in the

original knot projection, then the edge goes from a diagram containing the sin-

gularization of si to a diagram containing its smoothing. �e ideal of relations

associated to the singularized crossing is contained in the ideal of relations asso-

ciated to the resolved crossing (see Observation 3.7), so A�0:::1:::�m
.D/ is a quo-
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tient of A�0:::0:::�m
.D/. �e corresponding map in this case will be the quotient

map. If si was negative in the original knot projection, then the edge goes from

the smoothing to the singularization of si . �e corresponding map in this case

will be multiplication by txa�xd , or equivalently by txb �xc, where the crossing

si is labeled as in Figure 3.

We assign signs to the edge maps according to the following procedure. First,

for each edge we have a choice of two maps, txa � xd or txb � xc, which are

equal up to a sign. We assign a negative sign to those of the form txa � xd and

a positive sign to those of the form txb � xc . �is produces a cube in which

all squares commute. We then change signs on certain edges to turn commuting

squares into anti-commuting squares. Let �0; : : : ; �m 2 ¹0; 1º, �i D 0, and O�i D 1.

�en the arrow from vertex �0 : : : �i : : : �m to �0 : : : O�i : : : �m keeps its existing sign

if �0 C � � � C �i�1 � 0 mod 2 and changes sign otherwise.

We have now assembled all of the pieces needed to de�ne the chain complex

.C.D/; d/ referred to in �eorem 1.1. Let

C.D/ D
M

I2¹0;1ºmC1

AI .D/ (2.2)

with total di�erential d the sum of all edge maps and homological grading given

by �0 C � � � C �m. �is is the chain complex that computes HFK� (see Proposi-

tion 9.1). �ere is also a reduced version of this chain complex obtained by setting

x0 to zero in each AI .D/. Its homology computes 1HFK.

2.3. Gradings. �e chain complex C.D/ comes equipped with an additional

grading called the Alexander grading. LetR be in grading 0 and each edge variable

xi in grading -1. �e relations used to form AI .D/ are homogeneous with respect

to this grading, so it descends from the edge ring to a grading on AI .D/ (called

A0 in [15]). To symmetrize, adjust upwards by a factor of 1
2
.m� � b C 1/, where

m� is the number of singular points in the I -resolution of D and b is the number

of strands in D. Call this the internal grading, AI , on AI .D/.

�e Alexander grading on AI .D/ as a summand of the cube C.D/ is further

adjusted from the internal grading by

A D AI C
1

2

�

�m� C

m
X

iD0

�i

�

;

where �0; : : : ; �m are the components of the multi-index I and m� is the number

of negative crossings in D. �is grading A is the �nal Alexander grading on the

complex C.D/.
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2.4. Invariance. With these de�nitions in place, we may now state �eorem 1.1

precisely.

�eorem 2.1. LetD andD0 be layered braid diagrams that are related by a �nite

sequence of braid-like Reidemeister moves II and III and conjugation. Assume

that all such moves avoid the basepoint. Let x0 be the initial edge of D and D0.

Let  i be the endomorphism of R that takes 1 to 1 and t to t i .

Consider C.D/ and C.D0/ as complexes of graded RŒx0�-modules. �ere is a

complex C.D;D0/ of graded RŒx0�-modules such that C.D/ and C.D0/ are each

chain homotopy equivalent to twistings of C.D;D0/ by a composition of �nitely

many  i .

Alternatively, there is a collection of positive integers m1; : : : ; mN such that

C.D/ ˝R RŒt1=m1; : : : ; t1=mN � and C.D0/ ˝R RŒt1=m1; : : : ; t1=mN �, considered

as complexes of graded RŒt1=m1 ; : : : ; t1=mN �Œx0�-modules, are related by chain

homotopy equivalence and twisting by various  i and their inverses.

3. Non-local Relations

We collect here three equivalent de�nitions of the non-local relations used in the

description of the algebra AI .D/, along with several straightforward observations

that will nonetheless be very useful in later arguments. Figure 4 will serve as a

source of examples throughout.

First, we may generateNI by associating a relation to each cycle (simple closed

path) in the resolved diagram that does not pass through the basepoint and that is

oriented consistently with D.

De�nition 3.1 (Cycles). Let Z be a simple closed path in the I -resolution of D

that does not pass through the basepoint and is oriented consistently with D. Let

RZ be the region it bounds in the plane, containing the braid axis. �e weight

w.Z/ of Z is twice the number of 4-valent vertices plus the number of bivalent

vertices in the closure of RZ . �e non-local relation associated to Z is

tw.Z/wout �win;

where wout (respectively win) is the product of the edges incident to exactly one

vertex of Z that lie outside of RZ and that point out of (respectively into) the

region.

Figure 4 shows a cycle in the singularized �gure 8 knot with associated relation

t8x1x9 � x4x6.
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Figure 4. Singularization of the minimal braid presentation of the �gure 8 knot with edges

labeled x0; : : : ; x12 and orientations consistent with those in Figure 2. �e bold line shows

a cycle whose corresponding non-local relation is t8x1x9 � x4x6. Elementary regions are

labeled E1; : : : ; E4. �e coherent region E1 [ E2 produces the same non-local relation

as the cycle in bold, as does the subset consisting of the bivalent vertex in s0, the 4-valent

vertex in s1, all vertices in s2, and the 4-valent vertex in s3.

A slightly di�erent de�nition derives a generating set for NI from certain re-

gions in the complement of the I -resolution of D. First de�ne the elementary

regions in the I -resolution of D to be the connected components of its comple-

ment in the plane, except for the two components that are adjacent to the basepoint.

For example, there are four elementary regions in the singularized �gure 8 shown

in Figure 4.

Since D is assumed to be in braid position, the elementary regions can be

partially ordered based on which two strands of D they lie between. Label the

strands of D from 1 (innermost, nearest the braid axis) to b (outermost, nearest

the non-compact region). �en Ei < Ej with respect to the partial order if Ei

is closer to the braid axis than Ej ; that is, if Ei lies between lower-numbered

strands than Ej does. Let E1 denote the innermost elementary region, containing

the braid axis. Label the other elementary regions E2; : : : ; Em so that whenever

i < j , Ei is less than or not comparable to Ej with respect to the partial order.

De�nition 3.2 (Coherent Regions). A coherent region in the I -resolution ofD is

the union of a set of non-comparable elementary regions, along with all elemen-

tary regions less than these under the partial order described above. �e weight
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w.R/ of a coherent region R is twice the number of 4-valent vertices plus the

number of bivalent vertices in the closure ofR. �e non-local relation associated

to R is

tw.R/wout �win;

where wout (respectively win) is the product of the edges outside R, but incident

to exactly one vertex of @R and pointing out from (respectively into) R.

�ere are �ve coherent regions in the singularized �gure 8 example of Figure 4,

with associated relations as follows. Notice that, for example,E1[E2[E4 is not

a coherent region because E3 < E4.

coherent region non-local relation

E1 t6x1x7 � x4x10

E1 [E2 t8x1x9 � x4x6

E1 [E3 t8x3x7 � x0x10

E1 [E2 [ E3 t10x3x9 � x0x6

E1 [E2 [ E3 [E4 t11x9 � x0

Finally, we may think of non-local relations as arising from subsets of vertices

in the I -resolution of D.

De�nition 3.3 (Subsets). Let V be a subset of the vertices in the I -resolution of

D. �e weight w.V / of V is twice the number of 4-valent vertices plus the number

of bivalent vertices in V . �e non-local relation associated to V is

tw.V /wout � win;

wherewout is the product of edges from V to its complement andwin is the product

of edges into V from its complement.

Any of these three de�nitions gives a generating set for NI .D/. We will prove

that the three de�nitions are equivalent in Proposition 3.6. First, we record some

observations about the e�ciency of the generating sets prescribed by the di�erent

de�nitions.

A priori, the generating set obtained from subsets is much larger than those ob-

tained from cycles or coherent regions. However, it actually su�ces to consider

a smaller collection of subsets whose associated relations still generate the same
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ideal in RŒx0; : : : ; xn�=L. First, we may restrict to connected subsets of vertices,

meaning those whose union with their incident edges is a connected graph. If a

subset V is disconnected as V D V 0
`

V 00, then the outgoing (respectively incom-

ing) edges from V are exactly the union of the outgoing (respectively incoming)

edges from V 0 and V 00. �erefore, the non-local relation associated to V has the

form

tw.V
0/Cw.V 00/w0

outw
00
out � w0

inw
00
in:

However, this is already contained in the ideal generated by

tw.V
0/w0

out �w0
in and tw.V

00/w00
out �w00

in;

which are the non-local relations associated to V 0 and V 00.

Second, we may ignore a subset V if the union of V with its incident edges is a

graph with no oriented cycles. In Figure 4, the two vertices in layer s0 along with

the 4-valent vertex in layer s1 form such a subset. �e non-local relation associ-

ated to this subset is t5x3x7x8 � x0x1x2, but simple substitutions using the local

relations associated to the three vertices in the subset show that this supposedly

non-local relation is actually contained in L.

Observation 3.4. �e ideal of non-local relations NI can be generated in

RŒx.D/�=L by the non-local relations associated to connected subsets that contain

oriented cycles.

We prove this statement inductively. �e base case is a subset with a single

vertex and no oriented cycles, which has associated non-local relation identical

to its associated quadratic local relation. Any connected subset V D ¹v1; : : : ; vkº

with no oriented cycles can be constructed from a single vertex (v1, renumbering

as necessary) by adding vertices one at a time such that each Vi D ¹v1; : : : ; viº

is a connected subset with no oriented cycles and viC1 is connected to Vi only

by edge(s) outgoing from Vi . Let N0
I be the ideal generated by non-local relations

associated to connected subsets that contain oriented cycles. Assume that the non-

local relation associated to Vi is in the ideal sum L C N0
I .

Suppose �rst that viC1 is a bivalent vertex. Let xout be the edge from Vi

to viC1 and xv is the edge pointing out from viC1. If tw.Vi /woutxout � win is

the non-local relation associated to Vi , then the relation associated to ViC1 is

tw.Vi /C1woutxv � win. Using the local relation txv � xout to replace xv recov-

ers the non-local relation associated to Vi . So the non-local relation associated to

ViC1 is contained in the ideal sum of L with the non-local relation associated to

Vi , hence in L C N0
I .



Invariance and the knot Floer cube of resolutions 121

Suppose instead that viC1 is a 4-valent vertex with edges xa and xb pointing

out and edges xc and xout pointing in. Suppose that xout connects to a vertex in

Vi and that xc is not incident to any vertex in Vi . �e local relation associated to

viC1 is then t2xaxb �xcxout, while the non-local relation associated to Vi is of the

form tw.Vi /woutxout �win. �e non-local relation associated to ViC1 is

tw.Vi /C2woutxaxb � winxc � tw.Vi /woutxcxout � winxc

D xc.t
w.Vi /woutxout �win/:

�erefore, the non-local relation associated to ViC1 is again contained in the ideal

sum of L with the non-local relation associated to Vi , hence in L C N0
I .

Finally, it may be that viC1 is a 4-valent vertex connected to Vi by two edges.

Let xa and xb be the edges pointing out from viC1 and xc and xd the edges point-

ing into viC1. �en the quadratic relation associated to viC1 is t2xaxb � xcxd .

�e non-local relation associated to Vi is of the form tw.Vi /woutxcxd � win.

�e non-local relation associated to ViC1 is

tw.Vi /C2woutxaxb � win D tw.Vi /wout.t
2xaxb � xcxd /C tw.Vi /woutxcxd �win:

�e second observation of this section concerns redundancy in the generat-

ing sets for NI de�ned by cycles and coherent regions arising from certain ele-

mentary regions that can be removed from a coherent region without producing

an independent non-local relation. For instance, in Figure 4, the coherent region

E1[E2[E3[E4 speci�es the non-local relation t11x9�x0 as a generator for NI .

�en x6.t
11x9 � x0/ is also in NI . It can be modi�ed to t10x3x9 � x0x6 using the

relation tx6 � x3, which is the linear relation associated to the bivalent vertex in

layer s1. We have obtained the non-local relation associated to E1 [ E2 [ E3,

showing that it is redundant once the non-local relation for E1 [ E2 [ E3 [ E4

is included in the generating set of NI . More formally, we have the following

observation.

Observation 3.5. Suppose a coherent region R has an adjacent elementary re-

gion E and that @E n @R \ @E is a path of edges through bivalent vertices only.

�en the non-local relation associated toR is contained in the ideal sum of L with

the non-local relation associated to R [E.

Label the edges in the path in @E n @R \ @E by xout; x1; : : : ; xp; xin consistent

with the orientation of the overall diagram. �e linear relations associated to each

vertex in this path are tx1 � xout, txin � xp , and txiC1 � xi for 1 � i � p � 1.

�e non-local relation associated to R has the form

tw.R/woutxout �winxin;
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which can be rewritten using the linear relations above to give

tw.R/CpC1woutxin �winxin D .tw.R/CpC1wout �win/xin;

which is a multiple of the non-local relation associated to R [ E. �erefore, to

form a minimal generating set for NI , we need only consider R [ E.

As these observations begin to indicate, the de�nitions of non-local relations

via cycles, coherent regions, and subsets are equivalent. In the example of Fig-

ure 4, the cycle shown in bold produces the same non-local relation as the coherent

region E1 [E2 or the subset of vertices contained in E1 [E2. �ese correspon-

dences between cycles, coherent regions, and subsets hold in general.

Proposition 3.6. De�nitions 3.1, 3.2, and 3.3 produce the same ideal in

RŒx0; : : : ; xn�=L, where L is the ideal generated by local relations associated to

each vertex in the I -resolution of D.

Proof. �e equivalence between de�nitions 3.1 (cycles) and 3.2 (coherent regions)

is clear: the boundaries of coherent regions are exactly the cycles that avoid the

basepoint and have orientations matching that of D. (Consider, for example, the

boundary ofE1[E2[E3 compared to that ofE1[E2[E4 in Figure 4.) Weights

and the edge products wout and win are identical for a coherent region R and the

cycle @R, so the associated non-local relations are the same.

Let N denote the ideal generated by non-local relations associated to cycles or

coherent regions in RŒx.D/�=L. Let NS denote the ideal generated by non-local

relations associated to subsets. Suppose R is a coherent region and VR the set of

vertices in its closure. �en w.R/ D w.VR/ D w.@R/ and the words wout and

win de�ned with respect to R, @R, or VR are the same. �erefore, we have the

inclusion N � NS .

For the opposite inclusion, consider a subset V . We appeal �rst to Observa-

tion 3.4, which allows us to assume that the union of V and its incident edges

forms a connected graph containing an oriented cycle Z. Assume that Z is the

outermost cycle contained in V , and let RZ be the coherent region it bounds. If V

contains all of the vertices in the closure ofRZ, then the arguments about connect-

edness and subsets just after Observation 3.4 allow us to remove all vertices from

V that are not contained in the closure of RZ, thereby showing that the non-local

relation associated to V can be constructed from the non-local relation associated

to RZ.

Suppose now that V does not contain all of the vertices in RZ . �en the com-

plement of V is disconnected, with one component inside Z and one component

outside. Denote these components V 0 and V 00, respectively. �en V [V 0 contains
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Z and all of the vertices in the closure of RZ, so the argument above shows that

its associated non-local relation is contained in N. �e subset V 0 may not contain

any oriented cycles or it may contain an oriented cycle Z0 and all vertices in the

closure of RZ0 . �erefore, its associated non-local relation is contained in either

L or N.

Finally, we show that the non-local relation associated to V is in the ideal

generated by the non-local relations associated to V 0 and V [ V 0. �e words wout

and win de�ned with respect to V are products wout D w0
inw

00
in and win D w0

outw
00
out

of edges into and out from V 0 and V 00.

tw.V /w0
inw

00
in �w0

outw
00
out non-local relation from V

� tw.V /Cw.V 0/w0
outw

00
in � w0

outw
00
out by substituting non-local

relation from V 0

D .tw.V /Cw.V 0/w00
in � w00

out/w
0
out a multiple of the non-local

relation V [ V 0

Since the non-local relation associated to V can be constructed from those asso-

ciated to V 0 and V [ V 0, it is contained in N. �erefore, any non-local relation

associated to a subset can be generated from non-local relations associated to co-

herent regions, meaning that NS � N.

�ree further observations related to the non-local relations are worth record-

ing for later use.

Observation 3.7. Let D� and Dk be resolutions of a diagram in which a cer-

tain crossing is singularized and smoothed, respectively, and that are otherwise

identical. �en N.D�/ � N.Dk/.

Let v be the 4-valent vertex inD� corresponding to the given crossing and v1,

v2 the two bivalent vertices in Dk corresponding to the same crossing. Let V be

a subset of the vertices in D� that does not contain v. �en the non-local relation

associated to V is the same in D� and in Dk. �e non-local relation associated to

V [ ¹vº in D� is the same as the non-local relation associated to V [ ¹v1; v2º in

Dk. �erefore, N.D�/ � N.Dk/, as claimed. �e opposite inclusion is false in

general because V [ ¹v1º and V [ ¹v2º may have associated relations in N.Dk/

that are not contained in N.D�/.
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Observation 3.8. Let w.D/mean the weight of the set of all vertices in any resolu-

tion ofD. �is weight does not depend on the resolution ofD under consideration.

�e relation tw.D/xn � x0, where xn is the edge entering the basepoint and x0 is

the edge leaving it, holds in AI .D/ for any I and any D. It is associated to the

subset containing all vertices or the outermost cycle in the diagram that does not

pass through the basepoint.

In a sense, then, the � behaves like a bivalent vertex with weight �w.D/,

balancing out the weight in the rest of the diagram.

Observation 3.9. If I is a disconnected resolution of D, and we choose to work

over a completed ground ring, then the algebra associated to the I -resolution ofD

will vanish. In a disconnected resolution, there are cycles that do not contain the

basepoint and have no ingoing or outgoing edges. In this situation, we interpret

the products wout and win to be 1, which makes the associated relation tk � 1 for

some k. In yR or bRŒx�, tk � 1 is a unit. �erefore, including tk � 1 in our ideal of

relations makes AI .D/˝R
yR or AI .D/˝RŒx�

bRŒx� vanish.

�e fact that AI .D/ D 0 for any disconnected resolution of D is a signi�cant

distinction between this construction and the HOMFLY-PT homology of [6], but

is appropriate in light of the fact that the Alexander polynomial vanishes on split

links.

4. Removing bivalent vertices

�is section is devoted to a technical result allowing us to remove a horizontal layer

of a diagram with a bivalent vertex on each strand and no 4-valent vertices. Such

a layer is obtained each time a crossing is resolved. Suppose the I -resolution of

D is a diagram with mC 1 layers, and that layer k contains only bivalent vertices.

Let xD denote the diagram obtained by removing layer k. �e proposition below

shows that adding or removing layer k corresponds to twisting the action of the

ground ring via a non-trivial endomorphism. We may either describe AI .D/ and

AxI .
xD/ each as twistings of a common RŒx. xD/�-module, or we may describe them

as twistings of each other after enlarging the ground ring to include appropriate

roots of t . Applying any of these twistings to every summand of a chain complex

C.D/ would not change the homology of the complex because R is �at when

considered as an R-module via any of the relevant endomorphisms. We refer to

the notation in Figure 5 throughout.
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Figure 5. Diagrams for the proof of Proposition 4.1 (part I). �e maps ' on AI .D/ and N'

on AxI .
xD/ are de�ned to be multiplication by the factor shown in the rightmost column of

each diagram.
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Figure 5. Diagrams for the proof of Proposition 4.1 (part II). �e maps ' on AI .D/ and N'

on AxI .
xD/ are de�ned to be multiplication by the factor shown in the rightmost column of

each diagram.



Invariance and the knot Floer cube of resolutions 127

Proposition 4.1. Let D and xD be de�ned as above. Let xI denote the index I

with its kth component deleted. �en there is an RŒx. xD/�-module AI;xI .D;
xD/

and RŒx. xD/�-module isomorphisms

AI .D/ Š AI;xI .D;
xD/˝.R; mC1/ R

AxI .
xD/ Š AI;xI .D;

xD/˝.R; m/ R;

where  i is the endomorphism of R taking 1 to 1 and t to t i .

Let

A
.i/
I .D/ D AI .D/˝R RŒt1=i �

and

A
.i/
xI
. xD/ D AxI .

xD/˝R RŒt1=i �:

�ere is an RŒt1=m�Œx. xD/�-module isomorphism

A
.m/
I .D/ Š A

.m/
xI
. xD/˝.RŒt1=m�; mC1ı �1

m / RŒt
1=m�

and an RŒt1=.mC1/�Œx. xD/�-module isomorphism

A
.mC1/
xI

. xD/ Š A
.mC1/
I .D/˝.RŒt1=.mC1/�; mı �1

mC1
/ RŒt

1=.mC1/�:

Proof. We �rst de�ne automorphisms ' of AI .D/ and N' of AI . xD/ that transform

our original presentations of these algebras into presentations in which t appears

very rarely.

De�ne ' to be multiplication by t�.j�1/ on edges x.kCj /bCi for 0 � j � m

and 1 � i � b (treating the k C j portion of the subscript modulo m C 1), and

multiplication by t�.m�k/ on edge x.mC1/bC1 D xn. �at is, ' is the identity

on the edges connecting layer k to layer k C 1 (edges x.kC1/bC1; : : : ; x.kC2/b),

multiplication by t�1 on the edges connecting layer k C 1 to layer k C 2 (edges

x.kC2/bC1; : : : ; x.kC3/b), multiplication by t�2 on the edges connecting layer kC2

to layer kC 3, and so on, until it is multiplication by t�m on the edges connecting

layer k � 1 to layer k (edges xkbC1; : : : ; x.kC1/b).

We may continue to use x0; : : : ; xn as generators of '.AI .D//, but must ex-

amine carefully the e�ect of ' on the generating sets of L and NI .D/. Consider

�rst the generators of LkCj for any j ¤ 0. �ese have one of the following forms,

where 1 � i � b:

tx.kCjC1/bCi C tx.kCjC1/bCiC1 � x.kCj /bCi � x.kCj /bCiC1;

t2x.kCjC1/bCix.kCjC1/bCiC1 � x.kCj /bCix.kCj /bCiC1;

tx.kCjC1/bCi � x.kCj /bCi :
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After applying ', they become

t�jC1x.kCjC1/bCi C t�jC1x.kCjC1/bCiC1

� t�.j�1/x.kCj /bCi � t�.j�1/x.kCj /bCiC1

� x.kCjC1/bCi C x.kCjC1/bCiC1 � x.kCj /bCi � x.kCj /bCiC1;

(4.1)

t�2jC2x.kCjC1/bCix.kCjC1/bCiC1 � t�2.j�1/x.kCj /bCix.kCj /bCiC1

� x.kCjC1/bCix.kCjC1/bCiC1 � x.kCj /bCix.kCj /bCiC1;

t�jC1x.kCjC1/bCi � t�.j�1/x.kCj /bCi

� x.kCjC1/bCi � x.kCj /bCi :
(4.2)

�e price of eliminating powers of t from most local relations is that t appears

with higher powers in relations that do involve layer k. Since layer k has only

bivalent vertices, its associated relations are all of the form tx.kC1/bCi � xkbCi .

Applying ', we obtain

tx.kC1/bCi � t�mxkbCi � tmC1x.kC1/bCi � xkbCi :

Non-local relations are similarly a�ected. Consider the generating set for

NI .D/ given by coherent regions. We will show that ' applied to any relation

in this generating set produces a relation of the form tp.mC1/wout � win for some

integer p. Begin with the innermost elementary region E1. Suppose it has v

4-valent vertices along its boundary in layers k C j1; : : : ; k C jv . �en

w.E1/ D mC 1C v:

Each 4-valent vertex contributes one edge to the product wout and an edge one

layer lower to win. If ji ¤ 0 for 1 � i � v, then

'.wout/ D t�j1�����jvwout

and

'.win/ D t�.j1�1/�����.jv�1/win D t�j1�����jvCvwin;

so

'.tmC1Cvwout �win/ � tmC1wout �win:
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Suppose instead (without loss of generality) that j1 D 0. �en ' is the identity

when applied to the outgoing edge of the vertex in layer kCj1, but multiplication

by t�m on the incoming edge. �erefore,

'.wout/ D t�j2�����jvwout

and

'.win/ D t�m�.j2�1/�����.jv�1/win D t�m�j2�����jvCv�1win;

so

'.tmC1Cvwout �win/ � t2.mC1/wout �win:

So ' has the claimed e�ect on the non-local relation associated to the innermost

coherent region.

Next consider an elementary region E ¤ E1 with bottommost vertex in layer

k C j and topmost vertex in layer k C j C s. Suppose @E meets v0 additional

4-valent vertices in layers k C j1; : : : ; k C jv0 . Assume for now that E does not

meet layer k. �en w.E/ D 2.sC 1/C v0. Let t2.sC1/Cv
0

eout � ein denote the non-

local relation associated to E. �e topmost vertex of E contributes two outgoing

edges to eout and the bottommost vertex contributes two incoming edges to ein.

�e other v0 4-valent vertices contribute one edge each to eout and ein. �erefore,

'.eout/ D t�2.jCs/�j1�����jv0 eout D t�2j�j1�����jv0 �2seout;

and

'.ein/ D t�2.j�1/�.j1�1/�����.jv0 �1/ein D t�2j�j1�����jv0 Cv0C2ein;

so

'.t2.sC1/Cv
0

eout � ein/ � eout � ein:

If E does meet layer k, a then modi�cation of the calculation above (similar

to that used for E1) veri�es the claim that '.t2.sC1/Cv
0

eout � ein/ has the form

tp.mC1/eout � ein for some integer p.

Finally, consider a coherent region R0 that is not elementary. We can write R0

asR[E, whereR is a coherent region andE is an elementary region. Suppose the

non-local relations associated to R and E are tw.R/wout �win and tw.E/eout � ein;

respectively. Let y be the product of edges that connect vertices in R to vertices

in E. �e non-local relation associated to R0 can be obtained by combining the

non-local relations associated to R and E, then factoring out y as follows:

tw.R/Cw.E/wouteout �winein D y.tw.R/Cw.E/w0
oute

0
out � w0

ine
0
in/:
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�e non-local relation associated to R0 is tw.R/Cw.E/w0
oute

0
out � w0

ine
0
in. We will

assume inductively that ' applied to the non-local relations for R and E produces

tp.mC1/wout � win and tq.mC1/eout � ein, respectively for some integers p and q.

�en

'.tw.R/Cw.E/wouteout �winein/ � t .pCq/.mC1/wouteout �winein

D y.t .pCq/.mC1/w0
oute

0
out �w0

ine
0
in/

and on the other hand

'.tw.R/Cw.E/wouteout �winein/ � '.y/'.tw.R/Cw.E/w0
oute

0
out � w0

ine
0
in/

� y'.tw.R/Cw.E/w0
oute

0
out �w0

ine
0
in/:

We have veri�ed that applying' to the non-local relation associated toR0 produces

a relation in which the power of t is an integer multiple of mC 1.

So far, we have relations of the following forms in our presentation

of '.AI .D//:

x.kCjC1/bCi C x.kCjC1/bCiC1 � x.kCj /bCi � x.kCj /bCiC1;

x.kCjC1/bCix.kCjC1/bCiC1 � x.kCj /bCix.kCj /bCiC1;

x.kCjC1/bCi � x.kCj /bCi ;

tmC1x.kC1/bCi � xkbC1; (4.3)

tp.mC1/wout �win:

It will be convenient to make one �nal modi�cation: use the relations in (4.3) to

eliminate the variables for edges connecting layer k � 1 to layer k. �e result is a

presentation in which t appears only in the following types of relations:

tmC1x.kC1/bCi C tmC1x.kC1/bCiC1 � x.k�1/bCi � x.k�1/bCiC1; (4.4)

t2.mC1/x.kC1/bCix.kC1/bCiC1 � x.k�1/bCix.k�1/bCiC1; (4.5)

tmC1x.kC1/bCi � x.k�1/bCi ; (4.6)

tp.mC1/wout �win: (4.7)
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�e second map, N', allows us to present AxI .
xD/ in a similar way, with powers

of t appearing only in certain relations, and only as tpm for various integers p.

De�ne N' in exactly the same way as ' on edges x.kCj /bCi for 1 � j � m and

0 � i � b and for edge x.mC1/bC1. Diagram xD has no kth layer, so N' is the

identity on the edges connecting layer k � 1 to layer k C 1, multiplication by t�1

on the edges connecting layer k C 1 to layer k C 2, multiplication by t�2 on the

edges connecting layer k C 2 to k C 3, and so on, until it is multiplication by

t�.m�1/ on the edges connecting layer k � 2 to layer k � 1.

Again, for most relations, N' eliminates all powers of t . Similar calculations to

those above show that N' removes t from the generating set for LkCj for j ¤ 0,

leaving relations identical to those in (4.1) to (4.2) above.

All powers of t end up in generators of Lk�1 and NI , but this time with multi-

ples of m instead of mC 1. �e relations that involve t have one of the following

forms:

tmx.kC1/bCi C tmx.kC1/bCiC1 � x.k�1/bCi � x.k�1/bCiC1;

t2mx.kC1/bCix.kC1/bCiC1 � x.k�1/bCix.k�1/bCiC1;

tmx.kC1/bCi � x.k�1/bCi ;

tpmwout � win:

�e calculation proceeds as follows, where p is the number of edges connect-

ing layer k � 1 used by a subset:

N'.tx.kC1/bCi C tx.kC1/bCiC1 � x.k�1/bCi � x.k�1/bCiC1/

D tx.kC1/bCi C tx.kC1/bCiC1 � t�.m�1/x.k�1/bCi � t�.m�1/x.k�1/bCiC1

� tmx.kC1/bCi C tmx.kC1/bCiC1 � x.k�1/bCi � x.k�1/bCiC1;

N'.t2x.kC1/bCix.kC1/bCiC1 � x.k�1/bCix.k�1/bCiC1/

D t2x.kC1/bCix.kC1/bCiC1 � t�2.m�1/x.k�1/bCix.k�1/bCiC1

� t2mx.kC1/bCix.kC1/bCiC1 � x.k�1/bCix.k�1/bCiC1;

N'.tx.kC1/bCi � x.k�1/bCi /

D tx.kC1/bCi � t�.m�1/x.k�1/bCi

� tmx.kC1/bCi � x.k�1/bCi ;

N'.t2swout � win/

� tmpwout �win:
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We now have presentations of AI .D/ and AxI .
xD/, both over the smaller edge

ring RŒx. xD/�, that di�er only by whether t appears with a power of mC 1 or with

m. Here are two ways to describe the relationship between AI .D/ and AxI .
xD/.

First, let AI;xI .D;
xD/ be the RŒx. xD/�-algebra obtained by setting m D 1 in the

presentation of N'.AxI .
xD// above (or, equivalently, setting m C 1 D 1 in the pre-

sentation of '.AI .D// above). Let  i be the endomorphism of R that sends 1

to 1 and t to t i . �en AI .D/ and AxI .
xD/ are each obtained from AI;xI .D;

xD/ by

twisting by an endomorphism of R:

AI .D/ Š AI;xI .D;
xD/˝.R; mC1/ R;

AxI .
xD/ Š AI;xI .D;

xD/˝.R; m/ R:

Alternatively, we may enlarge the ground ring su�ciently to make m or mC1

(or both) invertible and describeAI .D/ andAxI .
xD/ over the enlarged ground rings

as twistings of each other rather than twistings of a third algebra. It follows directly

from the preceding paragraph that

A
.m/
I .D/ Š A

.m/
xI
. xD/˝.RŒt1=m�; mC1ı �1

m / RŒt
1=m�;

A
.mC1/
xI

. xD/ Š A
.mC1/
I .D/˝.RŒt1=.mC1/�; mı �1

mC1
/ RŒt

1=.mC1/�:

5. Braid-like Reidemeister Move II

Suppose D and xD are two knot projections that di�er by a Reidemeister II move

with labels as in Figure 6. �e edge rings of D and xD are related by

RŒx.D/� D RŒx. xD/�Œx3; x4; x5; x6�:

We will show that C.D/ and C. xD/ are chain homotopy equivalent as complexes

of RŒx. xD/�-algebras, but will work over the larger edge ring RŒx.D/� for as long

as possible. �roughout this section, we will abbreviate indices of resolutions to

two entries, showing only the states of the crossings in layers si and siC1.

�ere are two oriented Reidemeister II moves, depending on which crossing in

D is positive and which is negative, but the arguments are very similar in the two

cases. �e relevant portion of C.D/ is shown in Figure 7. �e two variants of the

Reidemeister II move exchange A00.D/ with A11.D/ and A01.D/ with A10.D/.
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OO OO

si

siC1

1 2

3 4

5 6

D

OO OO

1 2

D

Figure 6. Projection D layers si and siC1 and the corresponding portion of xD, which has

no vertices. Technically, xD does not have layers corresponding to si and siC1; it is identical

to D in all other layers. Assume that the braid axis is to the right of each diagram.
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x5 x6
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g 99tttttt

0 //

OO OO

� �

� �

x1 x2

x3 x4

x5 x6

01

// 0

Figure 7. �e top chain complex is a portion of C.D/. Lemma 5.1 shows that it is chain

homotopy equivalent to the bottom chain complex. Assume that the braid axis is to the

right of each diagram.
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�e key step in proving that the chain homotopy type of C.D/ is unchanged

by a Reidemeister II move is to show the equivalence of the two complexes in Fig-

ure 7. It su�ces to prove the statement in Lemma 5.1, which is a categori�cation

of the MOY relation in the top line of Figure 1. Applying the direct sum splitting

and an appropriate isomorphism of complexes,

A00.D/
f

�! A10.D/
g

�! A11.D/

becomes an acyclic subcomplex. Removing that subcomplex leaves the bottom

complex of Figure 7. Removing the bivalent vertices in layers si and siC1 (applying

Proposition 4.1 and reverting to the edge ring RŒx. xD/�) leaves the corresponding

portion of C. xD/.

Lemma 5.1. As RŒx. xD/�Œx3; x4�-modules,

A10.D/ Š A00.D/˚ A11.D/;

f is an isomorphism onto the �rst summand, and g is an isomorphism when re-

stricted to the second summand.

Proof. �e following matrix is a generating set for Li CLiC1 in the 10-resolution

of D:
0

B

B

B

@

t .x1 C x2/ � .x5 C x6/

.tx1 � x6/.tx2 � x6/

t .x5 C x6/ � .x3 C x4/

.tx6 � x4/.x3 � tx6/

1

C

C

C

A

Use row I to eliminate x5, then rewrite to limit the appearance of x6 to a single

row:

0

@

.tx1 � x6/.tx2 � x6/

t2.x1 C x2/ � .x3 C x4/

.tx6 � x4/.x3 � tx6/

1

A

IIICt2ICtx6II
����������!

0

@

.tx1 � x6/.tx2 � x6/

t2.x1 C x2/ � .x3 C x4/

t4x1x2 � x3x4

1

A :

Let xL denote the ideal generated by the last two rows of the matrix above and L

denote the ideal generated by local relations in layers other than i and i C 1. Note

that x5 and x6 do not appear in the generating set for L. By Observation 3.5, they

need not appear in a generating set for N10 either. �erefore, these ideals survive

the manipulations above unchanged. De�ne

S D
RŒx0; : : : ; x4; x7; : : : ; xn�

xL C L C N10
:
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We have simpli�ed the presentation of A10 so that x6 appears only in one relation,

which is quadratic in x6. Using that relation, we may split A10 as follows:

A10.D/ Š
SŒx6�

.tx1 � x6/.tx2 � x6/
Š S.1/˚ S.tx1 � x6/:

It remains to show that these two summands correspond to A11.D/ and A00.D/.

In the 11-resolution, the linear relations tx5 � x3 and tx6 � x4 may be used

to replace x5 and x6 throughout the presentation. �e resulting local relations in

layers i and i C 1 exactly match those in xL. �e de�nition by coherent regions

and Observation 3.5 give matching generating sets for N10 and N11. �erefore,

A11.D/ has a presentation identical to that of S given above. Since g is de�ned to

be the quotient map, it is an isomorphism when restricted to the �rst summand of

A10.D/ above.

Similarly, in the 00-resolution, the linear relations tx1�x5 and tx2�x6 can be

used to replace x5 and x6 throughout the presentation of A00.D/. For local rela-

tions in layers i and i C 1, the resulting ideal is exactly xL. For non-local relations,

the de�nition by coherent regions along with Observation 3.5 again gives the same

generating set for N00 as for N10. �erefore, A00.D/ has a presentation identical

to S. Since f is de�ned to be multiplication by tx1�x6, it is an isomorphism onto

the second summand of A10.D/ above.

6. Braid-like Reidemeister Move III

In this section, we will consider projectionsD1 andD2 that di�er by a Reidemeis-

ter III move with all negative crossings and labeling as in Figure 8. Invariance

under the other braid-like versions of Reidemeister III follows because all such

moves are compositions of the negative Reidemeister III move and Reidemeister

II moves.

Figures 9 and 10 show the relevant portion of the cubes of resolutions asso-

ciated to D1 and D2, respectively. �roughout this section, we will abbreviate

indices to three places, relabeling the diagrams as necessary so that the Reide-

meister III move occurs in layers s1, s2, and s3, and using the index to indicate the

states of the crossings in those layers only.
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Figure 8. Diagrams D1 and D2 in layers s1, s2, and s3.
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Figure 9. Portion of the cube of resolutions for D1 in layers s1, s2, and s3.



Invariance and the knot Floer cube of resolutions 137

\\✿✿✿✿✿

OO BB☎☎☎☎☎
�

� �

� �

�

�

�

100

//

��✿
✿✿

✿✿
✿✿

✿

\\✿✿✿✿✿

OO BB☎☎☎☎☎✿✿✿✿✿
☎☎☎☎☎

� �

�

�

�

�

�

110

��✿
✿✿

✿✿
✿✿

✿

OOOOOO
� �

� �

� �

�

�

�

000

BB✆✆✆✆✆✆✆✆

//

��✿
✿✿

✿✿
✿✿

✿

OOOOOO

✿✿✿✿✿
☎☎☎☎☎

�

� �

� �

�

�

�

010

BB✆✆✆✆✆✆✆✆

��✿
✿✿

✿✿
✿✿

✿

\\✿✿✿✿✿

OO BB☎☎☎☎☎

✿✿✿✿✿
☎☎☎☎☎

� �

�

�

�

�

�

101

//

\\✿✿✿✿✿

OO BB☎☎☎

✿✿✿

✿✿✿✿✿

☎☎☎☎☎

☎☎☎☎☎

✿✿✿
☎☎☎

�

�

�

�

�

�

111

OOOO OO

✿✿✿✿✿
☎☎☎☎☎

� �

� �

�

�

� �

001

BB✆✆✆✆✆✆✆✆

//

OOOO OO

✿✿✿✿✿
☎☎☎☎☎

✿✿✿✿✿
☎☎☎☎☎

� �

�

�

�

�

�

011

BB✆✆✆✆✆✆✆✆

Figure 10. Portion of the cube of resolutions for D2 in layers s1, s2, and s3.

�e goal is to prove that the chain complexes C.D1/ and C.D2/ are chain ho-

motopy equivalent. �e strategy will be to prove that they are each chain homotopy

equivalent to simpli�ed complexes: C.D1/ will be homotopic to

A010.D1/ //

$$■
■■

■■
■■

■■
■■

■■
A110.D1/

((PP
PPP

PP

xC.D1/ D A000.D1/

33❤❤❤❤❤❤❤❤

++❱❱❱❱
❱❱❱❱

❱
B

A001.D1/

::✉✉✉✉✉✉✉✉✉✉✉✉✉
// A011.D1/

66♥♥♥♥♥♥♥

and C.D2/ will be homotopic to

A001.D2/ //

$$■
■■

■■
■■

■■
■■

■■
A011.D2/

((PP
PPP

PP

xC.D2/ D A000.D2/

33❤❤❤❤❤❤❤❤

++❱❱❱❱
❱❱❱❱

❱
B

A010.D2/

::✉✉✉✉✉✉✉✉✉✉✉✉✉
// A110.D2/

66♥♥♥♥♥♥♥

and we will exhibit an isomorphism between the simpli�ed complexes.
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�e module B is a direct summand common to A111.D1/ and A111.D2/. It is

naturally associated to the diagram D�, in which the crossings in the Reidemeis-

ter III move and their nearby bivalent vertices are replaced by the 6-valent vertex

shown in Figure 11. We de�ne B as a module over RŒx0; : : : ; x6; x13; : : : ; xn� as

follows. First, de�ne the local relations associated to a 6-valent vertex using ele-

mentary symmetric polynomials:

L123sym D

�

t3.x1 C x2 C x3/ � .x4 C x5 C x6/

t6�2.x1; x2; x3/ � �2.x4; x5; x6/

�

:

Next, de�ne non-local relations for diagrams containing a 6-valent vertex using

coherent regions, just as in De�nition 3.2, with the 6-valent vertex contributing a

weight of 3 to the total weight of a coherent region. LetN123sym be the ideal generated

by non-local relations associated to coherent regions in D� that contain or have

on their boundary the 6-valent vertex. Let N0 be generated by non-local relations

associated to all other coherent regions. Note that such regions and their associated

relations are the same for D� as for D1 and D2 with any choice of resolution in

layers s1, s2, and s3.

De�ne B by

B D
RŒx0; : : : ; x6; x13; : : : ; xn�

L0 C L123sym C .t9x1x2x3 � x4x5x6/C N0 C N123sym

;

where L0 is generated by the local relations associated to layers si for i > 3. Note

that L0 is also the same for D� as for D1 or D2 with any choice of resolution in

layers s1, s2, and s3.

�e other modules in the simpli�ed complexes xC.Di/ correspond to resolu-

tions of D1 and D2 that are identical after moving a layer of bivalent vertices.

Speci�cally, the 010-resolution of D1 matches the 001-resolution of D2 and vice

versa; and the 110-resolution of D1 matches the 011-resolution of D2 and vice

versa. �e 000-resolutions of D1 and D2 are identical.

�e argument for simplifying C.Di/ to xC.Di / proceeds in two parts. In Sec-

tion 6.1, we establish direct sum splittings of A111.Di / and A101.Di/ for i D 1; 2,

which categorify the MOY relations in the top and bottom lines of Figure 1, re-

spectively. �ese splittings show that C.D1/ and C.D2/ both have the following

form:
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A100 //

##●
●●

●●
●●

●
A110

$$❏
❏❏

❏❏
❏❏

❏❏

A000

<<③③③③③③③③
//

""❉
❉❉

❉❉
❉❉

❉
A010

;;✇✇✇✇✇✇✇✇

##●
●●

●●
●●

●
C ˚ Cx // B ˚ Bx

A001

;;✇✇✇✇✇✇✇✇✇
// A011

::ttttttttt

After a series of changes of basis carried out in Section 6.2, we identify con-

tractible summands A100.Di/ ! Cx.Di / and C.Di / ! Bx.Di/ in C.Di/ for

i D 1; 2. Removing these subcomplexes yields the simpli�ed complexes xC.Di /.

Section 6.2 also exhibits an isomorphism between xC.D1/ and xC.D2/.

OO FF✌✌✌✌✌✌

XX✶✶✶✶✶✶
✌✌✌✌✌✌

✶✶✶✶✶✶

�
� � �

� � �

1 2 3

4 5 6

Figure 11. �e summand B that appears in the simpli�cations of C.D1/ and C.D2/ is natu-

rally associated to this diagram with a 6-valent vertex. See the beginning of Section 6 and

the last part in the proof of Lemma 6.2 for more details.

6.1. Splittings for Reidemeister Move III. �is section establishes four direct

sum splittings: two each for D1 and D2. In each case, the basic outline of the

proof is similar for D1 and D2. We argue in full detail for the D1 splittings, with

periodic indications about how to modify these arguments for the D2 cases. For

arguments that apply equally well to D1 and D2, we typically omit Di from the

notation (e.g. using A101 rather than A101.Di/).

Lemma 6.1. �e algebras associated to the 101-resolutions of D1 and D2 split

as direct sums of RŒx0; : : : ; x6; x13; : : : ; xn�-modules

A101.Di / Š C.Di /˚ Cx.Di/;

where Cx.Di/ Š A100.Di/ and the edge map A100.Di/ ! A101.Di/ is an iso-

morphism onto the Cx.Di/ summand.



140 A. Gilmore

Lemma 6.2. �e algebras associated to the 111-resolutions of D1 and D2 split

as direct sums of RŒx0; : : : ; x6; x13; : : : ; xn�-modules

A111.Di / Š B ˚ Bx.Di/;

where B is the module described above, Bx.Di/ Š C.Di /, and the edge map

A101 ! A111 restricted to the C.Di / summand is an isomorphism onto Bx.Di/.

Proof of Lemma 6.1. We know from Lemma 5.1 that A101 splits as a direct sum

of modules isomorphic to A100 and A001. However, it will be useful to establish

a particular splitting so that we may see directly the isomorphisms

A100.Di/ �! Cx.Di /

and (in the proof of Lemma 6.2)

C.Di / �! Bx.Di/:

�e idea is similar to that of Lemma 5.1. We �rst manipulate the local relations

from the vertices in Di to a convenient form, then obtain direct sum splittings by

eliminating all quadratic and higher-order appearances of one variable, and keep

track throughout of how these manipulations a�ect the non-local relations.

We begin with the presentation of A101 as

A101 Š
RŒx0; : : : ; xn�

L123101 C L0 C N101
;

whereL123101 is generated by local relations from layers s1, s2, and s3,L
0 is generated

by local relations associated to other layers, and N101 is generated by non-local

relations. Note that L0 is generated by relations that do not use any of x7; : : : ; x12

and that it is identical for any resolution of layers s1, s2, and s3 in either D1 or

D2 and for D�. It will not be a�ected by any of the calculations below. �inking

of non-local relations as coming from coherent regions, and applying Observa-

tion 3.5, notice that x7; : : : ; x12 need not ever appear in a generating set for N101.

In D1, any coherent region containing the elementary region to the right of x7

and x9 can be assumed to include the bigon bounded by edges x7, x8, x9, and

x10. Similarly, inD2, any coherent region containing the elementary region to the

right of x8 and x10 may be assumed to include the bigon bounded by x7, x8, x9,

and x10. �e manipulations below will not a�ect such a generating set for N101.

�e following matrix is a generating set for L123101.D1/, with x11 and x12 already

eliminated using linear relations tx3�x11 and tx12�x6. �e analogous generating

set for L123101.D2/ can be produced by using tx1 � x11 and tx12 � x4 to eliminate
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x11 and x12. It is related to the matrix forD1 below by exchanging x3 with x1 and

x6 with x4 throughout:

0

B

B

B

B

B

B

B

B

B

@

t .x1 C x2/ � .x7 C x8/

t2x1x2 � x7x8
t3x3 � x6
tx7 � x9

t .x9 C x10/ � .x4 C x5/

.tx9 � x5/.x4 � tx9/

tx8 � x10

1

C

C

C

C

C

C

C

C

C

A

:

Use row IV to eliminate x7, row VII to eliminate x8, and row V to eliminate x10,

then rearrange:

0

B

B

B

@

t .x1 C x2/ � t�2.x4 C x5/

t2x1x2 C t�2x29 � t�3x9.x4 C x5/

t3x3 � x6

.tx9 � x5/.x4 � tx9/

1

C

C

C

A

ICt�2III and IICt�4IV
��

0

B

B

B

@

t .x1 C x2 C x3/ � t�2.x4 C x5 C x6/

t2x1x2 � t�4x4x5
t3x3 � x6

.tx9 � x5/.x4 � tx9/

1

C

C

C

A

:

Clear negative powers of t from all rows and symmetrize the presentation as

follows:
0

B

B

B

@

t3.x1 C x2 C x3/ � .x4 C x5 C x6/

t6x1x2 � x4x5
t3x3 � x6

.tx9 � x5/.x4 � tx9/

1

C

C

C

A

:

IICt3.x1Cx2/IIICx6I�x6III

��
0

B

B

B

@

t3.x1 C x2 C x3/ � .x4 C x5 C x6/

t6�2.x1; x2; x3/ � �2.x4; x5; x6/

t3x3 � x6
.tx9 � x5/.x4 � tx9/

1

C

C

C

A

:

where �2 is the second elementary symmetric polynomial.
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Apply the same sequence of operations to the presentation for L123101.D2/,

except replace x1 with x3 and x6 with x4 in the �nal row operation. �e result

is the following new presentation for L123101.D2/:

0

B

B

B

@

t3.x1 C x2 C x3/ � .x4 C x5 C x6/

t6�2.x1; x2; x3/ � �2.x4; x5; x6/

t3x1 � x4
.tx9 � x5/.x6 � tx9/

1

C

C

C

A

:

Notice that the �rst two rows in the new presentations of L123101.D1/ and

L123101.D2/ above are familiar as the generators of L123sym in the de�nition of B. No-

tice also that L123sym is generated by relations that do not use any of x7; : : : ; x12.

De�ne

T D
RŒx0; : : : ; x6; x13; : : : ; xn�

L0 C L123sym

:

�is de�nition works equally well for D1, D2, and D�.

Let

q1 D .tx9 � x5/.x4 � tx9/

and

q2 D .tx9 � x5/.x6 � tx9/:

�ese are the only relations in the presentations of L123101.Di / above that use any

of x7; : : : ; x12. Let

r1 D t3x3 � x6

and

r2 D t3x1 � x4:
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So far, we have established that

A101.Di/ Š
TŒx9�

.qi /C .ri /C N101.Di/

and that x9 appears only in qi . Since qi is quadratic in x9, we could use it to re-

place any appearance of xk9 for k � 2 in a presentation of A101.Di/ with some

polynomial that was linear in x9. However, we have already eliminated all appear-

ances of x9 from the rest of the presentation. �erefore, we may instead forget the

relation qi , and split A101.Di / into a summand generated by 1 and a summand

generated by a polynomial that is linear in x9:

A101.D1/ Š
T.1/

.r1/C N101.D1/
˚

T.tx9 � x4/

.r1/C N101.D1/

and

A101.D2/ Š
T.1/

.r2/C N101.D2/
˚

T.tx9 � x6/

.r2/C N101.D2/
:

With the �rst summand in each case as C.Di/ and the second as Cx.Di/, this is

the splitting asserted in the statement of the lemma.

We now check that

A100 Š Cx

via the edge map A100 ! A101, which is multiplication by tx9 � x4 for D1 and

by tx9 � x6 for D2. �e edge map de�nitely takes the generator (1) of A100 to

the generator of the Cx summand of A101. To check that this is an isomorphism

of T-modules (hence of RŒx0; : : : ; x6; x13; : : : ; xn�-modules), we simplify the pre-

sentation of A100 and match it with that of Cx.

Begin with the presentation of A100 as

A100 Š
RŒx0; : : : ; xn�

L123100 C L0 C N100
;

with notation for the ideals analogous to that used in the presentation of A101.

Note that x7; : : : ; x12 do not appear in the standard generating set for L0, since it

concerns only layers si for i > 3. �ese variables also need not appear in a minimal

generating set for N100. If a subset had one of these as an outgoing or incoming

edge, we could use the relations associated to bivalent vertices to eliminate it.
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Turning to L123100.D1/, the local relations from layers s1, s2, and s3, eliminate

x11 and x12 immediately using the linear relations on the rightmost strand, then

remove x7; : : : ; x10 as follows:

0

B

B

B

B

B

B

B

B

B

@

tx1 C tx2 � x7 � x8

.tx2 � x7/.x8 � tx2/

t3x3 � x6
tx7 � x9
tx8 � x10
tx9 � x5
tx10 � x4

1

C

C

C

C

C

C

C

C

C

A

ICt�2IIICt�1IVCt�1VCt�2VICt�2VII
��

0

B

B

B

B

B

B

B

B

B

@

t .x1 C x2 C x3/ � t�2.x4 C x5 C x6/

.tx2 � x7/.x8 � tx2/

t3x3 � x6

tx7 � x9

tx8 � x10

tx9 � x5

tx10 � x4

1

C

C

C

C

C

C

C

C

C

A

:

Simplify by multiplying the �rst row by t2, using row IV to eliminate x7, row V to

eliminate x8, row VI to eliminate x9, and row VII to eliminate x10. �en multiply

the second row by t4:

0

@

t3.x1 C x2 C x3/ � .x4 C x5 C x6/

.t3x2 � x5/.x4 � t3x2/

t3x3 � x6

1

A

IICt3.x2Cx3/IC.x4Cx5�t3.x2Cx3//III
��

0

@

t3.x1 C x2 C x3/ � .x4 C x5 C x6/

t6�2.x1; x2; x3/ � �2.x4; x5; x6/

t3x3 � x6

1

A :

A similar computation in the D2 case produces the following presentation

for L123100.D2/:
0

@

t3.x1 C x2 C x3/ � .x4 C x5 C x6/

t6�2.x1; x2; x3/ � �2.x4; x5; x6/

t3x1 � x4

1

A :
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In each case, the top two rows generate L123sym and the bottom row is ri as pre-

viously de�ned. �erefore, we have established that

A100.Di/ Š
T

.ri/C N100.Di /
:

It remains to check that N100 D N101. Figure 12 shows how the cycles that pass

through the 101-resolution of D1 pair up with the cycles that pass through the

100-resolution ofD1 to give equivalent non-local relations. �ere is an analogous

way of pairing cycles in the 101- and 100-resolutions of D2. Any cycle that does

not pass through this region certainly has the same associated non-local relation

in N101 and N100. We have identi�ed identical generating sets for N101 and N100.

�erefore, A100 and Cx have identical presentations as T-modules. As previously

noticed, the edge map from A100 to A101 sends the generator .1/ of A100 to the

generator .tx9 � x4/ or .tx9 � x6/ of Cx.Di/, as appropriate. We conclude that

this edge map is an isomorphism onto Cx.Di /.

�e proof of Lemma 6.2 is similar, except that more work is required to keep

track of the non-local relations. As before, we use local relations associated to

layers s1, s2, and s3 in A111 to eliminate several edge variables, then use a qua-

dratic relation to split A111 as a direct sum, and �nally check that one of the direct

summands is isomorphic to C via the appropriate edge map while the other is iso-

morphic to B. As before, we omitDi from the notation when an argument applies

to both D1 and D2.

BB☎☎☎
OO

✿✿✿

\\

☎☎☎✿✿✿

� �

�

�

�
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BB OO\\✿✿✿✿✿

☎☎☎✿✿✿

� �

�

�

�
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BB☎☎☎
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�

�
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Figure 12. Pairing of cycles (dotted lines) that pass through the 101-resolution (top row)

and the 100-resolution (bottom row) of D1. Assume that the braid axis is to the right of

each picture. We use w to denote the weight, w1 the product of outgoing edges, and w2

the product of incoming edges for the portion of the cycle away from the Reidemeister

III move. An analogous matching can be made for cycles passing through the 101- and

100-resolutions of D2.
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Proof of Lemma 6.2. Let L123111 denote the ideal generated by local relations asso-

ciated to layers s1, s2, and s3, while L0 denotes the ideal generated by local rela-

tions associated to all other layers as before. Let N111 denote the ideal generated

by non-local relations in the 111-resolution. So we begin with

A111 Š
RŒx0; : : : ; xn�

L123111 C L0 C N111
:

�e general strategy will be to eliminate x7, x8, x10, x11, and x12 from the

presentation of A111 and limit use of x9 as much as possible. We will then rewrite

A111 in the form TŒx9�=I for an appropriate ideal I, where T is the RŒx0; : : : ; x6,

x13; : : : ; xn�-algebra de�ned in the proof of Lemma 6.1. Finally, we will use the

quadratic relation associated to layer s3, denoted qi as in the proof of Lemma 6.1,

to split A111 into direct summands generated by 1 and a linear polynomial in x9.

Note �rst that no part of this strategy will a�ect the ideal L0. Edges x7; : : : ; x12

connect layer s1 to layer s2 or layer s2 to layer s3, so they do not appear in local

relations associated to any other layers.

Analysis of Local Relations. For the presentation of L123111, �rst use relations

associated to bivalent vertices to replace x11 and x12. �en the following matrix

is a generating set for L123111.D1/. �e analogous generating set for L123111.D2/ is

related to the matrix below by exchanging x1 with x3 and x4 with x6:

0

B

B

B

B

B

B

B

B

B

@

t .x1 C x2/ � .x7 C x8/

.tx2 � x7/.x8 � tx2/

t .tx3 C x7/ � .t�1x6 C x9/

.t3x3 � x6/.t
�1x9 � tx3/

t .x9 C x10/ � .x4 C x5/

.tx9 � x5/.tx9 � x4/

tx8 � x10

1

C

C

C

C

C

C

C

C

C

A

ICt�1IIICt�2VCt�1VII
��

0

B

B

B

B

B

B

B

B

B

@

t .x1 C x2 C x3/ � t�2.x4 C x5 C x6/

.tx2 � x7/.x8 � tx2/

t .tx3 C x7/ � .t�1x6 C x9/

.t3x3 � x6/.t
�1x9 � tx3/

t .x9 C x10/ � .x4 C x5/

.tx9 � x5/.tx9 � x4/

tx8 � x10

1

C

C

C

C

C

C

C

C

C

A

:
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Multiply row I by t2, use row III to eliminate x7, use row V to eliminate x10, and

use row VII to eliminate x8, then multiply row II by t4:

0

B

B

B

@

t3.x1 C x2 C x3/ � .x4 C x5 C x6/

.t3.x2 C x3/ � x6 � tx9/.x4 C x5 � tx9 � t3x2/

.t3x3 � x6/.t
�1x9 � tx3/

.tx9 � x5/.tx9 � x4/

1

C

C

C

A

:

Use row IV to replace t2x29 in row II, then add t2III and t3.x2 C x3/I to row II,

and then multiply row III by t to obtain

0

B

B

B

@

t3.x1 C x2 C x3/ � .x4 C x5 C x6/

t6�2.x1; x2; x3/ � �2.x4; x5; x6/

.t3x3 � x6/.x9 � t2x3/

.tx9 � x5/.tx9 � x4/

1

C

C

C

A

;

where �2 is the second elementary symmetric polynomial.

We may apply an analogous sequence of transformations to the presentation of

L123111.D2/, at each step maintaining the property that the presentations ofL123111.Di/

are related by exchanging x1 with x3 and x4 with x6. �is analogous sequence of

transformations is in fact identical until the last step, in which we should add t2III

and t2.x1 C x2/I to row II. To be explicit, we obtain the following presentation

for L123111.D2/:
0

B

B

B

@

t3.x1 C x2 C x3/ � .x4 C x5 C x6/

t6�2.x1; x2; x3/ � �2.x4; x5; x6/

.t3x1 � x4/.x9 � t2x1/

.tx9 � x5/.tx9 � x6/

1

C

C

C

A

:

In both presentations, the �rst two relations generate the familiar ideal L123sym.

�e last relation in both presentations is familiar as qi from the proof of Lemma 6.1.

Let p1 D .t3x3 � x6/.x9 � t2x3/ and p2 D .t3x1 � x4/.x9 � t2x1/. �en we have

expressed L123111 as the sum of an ideal whose generating set does not involve x9,

the quadratic relation qi that will be used to split A111 as a direct sum, and the

relation pi , which we will have to follow up carefully. We may retain the de�nition

of T from the proof of Lemma 6.1, and write

A111.Di / Š
TŒx7; : : : ; x12�

.pi /C .qi /C N111.Di/
:
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Analysis of Non-local Relations: �e D1 Case. We turn next to an examination

of the ideal N111 of non-local relations, which will require separate arguments for

D1 and D2. Label the elementary regions in the vicinity of the Reidemeister III

move as in Figure 13. As usual, assume that the braid axis is to the right of each

diagram.

BB☎☎☎☎☎

OO\\✿✿✿✿✿

☎☎☎☎☎

✿✿✿✿✿

☎☎☎

☎☎☎✿✿✿

✿✿✿
�

�

�

�

�

�

1 2 3

4 5 6

78

910

11

12

E1

E2

E3

E4

D1

OO BB☎☎☎☎☎

\\✿✿✿✿✿
☎☎☎☎☎

✿✿✿✿✿
☎☎☎☎☎

✿✿✿✿✿

�

�

�

1 2 3

4 5 6

7 8

9 10

11

12

E1E2

E3

E4

D2

Figure 13. Elementary regions in the vicinity of the Reidemeister III move in the 111-reso-

lution of D1 (left) and D2 (right).

Using De�nition 3.2 for the generators of N111.D1/, we can split N111.D1/

into a sum of �ve ideals based on types of coherent regions. Let N0 be the ideal

generated by the relations from coherent regions that do not use any ofE1,E2,E3,

or E4. Notice that this ideal is identical for D1 and D2, even though Ei actually

refers to di�erent elementary regions in each diagram. Moreover, none of the

relations associated to such coherent regions use edge variables x7; : : : ; x12, so

they will carry through all of our calculations unchanged.

Let E1234.D1/ be generated by relations from coherent regions that use all

of E1, E2, E3, and E4. �ese relations may involve x1 and x4, but not any

of x7; : : : ; x12, so they carry through our calculations unchanged. �e ideal

E1234.D1/ also accounts for relations associated to coherent regions that contain

E1,E2; andE3. AddingE4 to such a region would add only the bivalent vertex be-

tween edges 8 and 10, which is exactly the situation described in Observation 3.5.

�erefore, we need not consider coherent regions that contain E1, E2; and E3

without E4 in a minimal generating set for N111.D1/.

Let E12.D1/ (respectively E13.D1/) be generated by non-local relations from

coherent regions that useE1 andE2, but notE3 orE4 (respectivelyE1 andE3 but

not E2 or E4). Some of the edge variables x7; : : : ; x12 do appear in the relations

associated to such regions, but can be easily eliminated using the quadratic relation

from layers s1 or s3 as appropriate. Figure 14 shows the necessary calculations in

each case.
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Figure 14. Relations that generate E12.D1/ and E13.D1/, along with modi�cations to avoid

the use of x7; : : : ; x12. Assume that the braid axis is to the right of each picture. Brackets

around xi denote an edge variable that may or may not occur in a relation depending on

whether the coherent region under consideration contains an elementary region immedi-

ately above or below E4. Dotted lines show the boundary of the relevant coherent region

when such adjacent elementary regions are not included. In each diagram, w,wout, andwin

come from the portions of the region not shown in these local pictures.

Finally, let E1.D1/ be generated by relations from coherent regions that useE1

but none of E2, E3, or E4, as shown in Figure 15. �ese relations have the form

t4Cwwoutx7�winx9, where w,wout, andwin come from the portions of the coherent

region not shown in Figure 15. We will not be able to simultaneously eliminate

x7; : : : ; x12 from such a relation, but we can eliminate all except x9 using the linear

relations from the crossing in layer s2 and linear relations associated to bivalent

vertices. In fact, we can write any generator of E1.D1/ in the form

t2Cwwout.x6 � t3x3/C x9.t
3Cwwout � win/;

where wout and win are words in x0; : : : ; x6; x13; : : : ; xn only.

BB☎☎☎☎☎

OO\\✿✿✿✿✿

☎☎☎☎☎

✿✿✿✿✿

☎☎☎

✿✿✿
�

�

�

�

�

�

t4Cwwoutx7 �winx9

� t4Cwwout.t
�2x6 C t�1x9 � tx3/ �winx9

� t2Cwwout.x6 � t3x3/C x9.t
3Cwwout �win/

Figure 15. Removing x7 from relations that generate E1.D1/.
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We have exhausted the possible combinations of elementary regionsE1; : : : ;E4

that can appear in a coherent region, so we may now express N111.D1/ as

N111.D1/ D N0 C E1234.D1/C E12.D1/C E13.D1/C E1.D1/:

Moreover, we have eliminated all appearances of x7; : : : ; x12 from the generating

sets of N0, E1234.D1/, E
12.D1/; and E13.D1/: De�ning T0

1 by

T0
1 D

T

N0 C E12.D1/C E13.D1/C E1234.D1/

we then have a presentation of A111.D1/ as

A111.D1/ Š
T0
1Œx9�

.p1/C .q1/C E1.D1/
:

�e next step will be to use q1 to split A111.D1/ as a direct sum of mod-

ules over RŒx0; : : : ; x6; x13; : : : ; xn�, one of which is generated by (1) and one of

which is generated by .t2x3 � x9/. In other words, we would like to �nd ideals

P.D1/;P
x.D1/;E.D1/; and Ex.D1/ in T0

1 such that

T0
1Œx9�

.p1/C .q1/C E1.D1/
Š

T0
1.1/

P.D1/C E.D1/
˚

T0
1.t

2x3 � x9/

Px.D1/C Ex.D1/

as RŒx0; : : : ; x6; x13; : : : ; xn�-modules.

As in the proof of Lemma 6.1, we may use qi to replace any appearance of

xk9 for k � 2 with a polynomial that is linear in x9. �is procedure has no ef-

fect on the ideals from which x9 has been eliminated, but it does a�ect .p1/ and

E1.D1/. To analyze how, think of the ideal that p1 generates in T0
1Œx9�=.q1/ as the

sum of the ideals generated by p1 and x9p1. If we use q1 to eliminate any appear-

ances of x29 in these generating sets, then we can �nd appropriate generators for

P.D1/ and Px.D1/ by writing p1 and x9p1 in terms of 1 and t2x3 � x9. Actually,

p1 D .t3x3 � x6/.x9 � t2x3/ is already in the correct format, so let t3x3 � x6 be

one of the generators of Px.D1/. For x9p1, we calculate as follows, replacing x29
using q1, then eliminating a term using p1,

x9.x9 � t2x3/.t
3x3 � x6/

D .t�1x9x4 C t�1x9x5 � t�2x4x5 � t2x3x9/.t
3x3 � x6/

D .x9 � t2x3/.t
�1x4 C t�1x5 � t2x3/.t

3x3 � x6/

� .t�2x4x5 C t4x23 � tx3x4 � tx3x5/.t
3x3 � x6/

� .t6x23 C x4x5 � t3x3x4 � t3x3x5/.t
3x3 � x6/

D .t3x3 � x4/.t
3x3 � x5/.t

3x3 � x6/:

(6.1)
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�erefore, the ideal generated by p1 and x9p1 in T0
1Œx9�=.q1/ is equal to the ideal

generated by p1 and .t3x3 � x4/.t
3x3 � x5/.t

3x3 � x6/, which no longer uses x9.

It will be convenient to express this relation more symmetrically by modifying it

using generators of L123sym. (Recall that the original T, of which T0
1 is a quotient,

was a quotient by L123sym, among other ideals.)

.t3x3 � x4/.t
3x3 � x5/.t

3x3 � x6/

� .t3x3 � x4/.t
3x3 � x5/.t

3x3 � x6/

C t3x3.t
6�2.x1; x2; x3/ � �2.x4; x5; x6//

� t6x23.t
3.x1 C x2 C x3/ � .x4 C x5 C x6//

D t9x1x2x3 � x4x5x6:

Let P.D1/ be the ideal generated by t9x1x2x3 � x4x5x6 in T0
1. Adding the gen-

erator of P.D1/ to Px.D1/ would not change the ideal, since Px.D1/ already has

t3x3 � x6 as a generator.

We use the same strategy to �nd appropriate generators for E.D1/ and Ex.D1/.

Generators of E1.D1/ have the form f1 D t4Cwwoutx7 �winx9. We would like to

write f1 and x9f1 in terms of 1 and t2x3 � x9. We have already seen that

f1 � t2Cwwout.x6 � t3x3/C x9.t
3Cwwout �win/;

where wout and win are words in x0; : : : ; x6; x13; : : : ; xn only. Factoring out

x9 � t2x3 yields

f1 � .x9 � t2x3/.t
3Cwwout �win/C t2.twwoutx6 �winx3/:

Conveniently, the second term is a multiple of a generator of N0 obtained as

follows. Suppose f1 came from a coherent region R. Let VR be the set of vertices

contained in the closure of R, so that f1 is the relation associated to VR under the

subset interpretation of the non-local relations. Delete from VR the 4-valent vertex

in layer s2, the bivalent vertex between edges 3 and 11, and the bivalent vertex

between edges 12 and 6. �ese deletions drop the weight of VR by 4. �e resulting

set of vertices has the same incoming and outgoing edges as VR except that x7

has been replaced by x6 and x9 has been replaced by x3. �erefore, the relation

associated to this subset, which must appear in N0, is exactly twwoutx6 � winx3.

As an element of T0
1, the above expression for f1 then simpli�es to

f1 � .x9 � t2x3/.t
3Cwwout �win/: (6.2)

We conclude that a generating set for Ex.D1/ should include t3Cwwout �win.
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Next consider x9f1, using the expression for f1 obtained in Equation 6.2 and

the expression for x9.x9 � t2x3/ obtained in the third line of the calculation pre-

ceding Equation 6.1,

x9f1 D x9.x9 � t2x3/.t
3Cwwout �win/

D .x9 � t2x3/.t
�1x4 C t�1x5 � t2x3/.t

3Cwwout �win/

� t�2.t3x3 � x4/.t
3x3 � x5/.t

3Cwwout �win/

� .t3x3 � x4/.t
3x3 � x5/.t

3Cwwout � win/:

(6.3)

�e last equivalence follows because the term we have eliminated is a multiple

of f1 as expressed in Equation 6.2. �ese calculations eliminate all appearances

of x7; : : : ; x12 from x9f1. We may again use relations in L123sym to rewrite this

expression in a more convenient form:

.t3x3 � x4/.t
3x3 � x5/.t

3Cwwout �win/

� .t3x3 � x4/.t
3x3 � x5/.t

3Cwwout �win/

� t6Cwwoutx3.t
3x1 C t3x2 C t3x3 � x4 � x5 � x6/

C t3Cwwout.t
6x1x2 C t6x1x3 C t6x2x3 � x4x5 � x4x6 � x5x6/

D t3.t3x3 � x4 � x5/.t
wwoutx6 �winx3/C .t9Cwwoutx1x2 �winx4x5/:

�e �nal expression above has x9f1 as a linear combination of two relations that

are actually already accounted for in the splitting. �e �rst relation,

twwoutx6 � winx3;

arose during our analysis of f1 above and was seen to be contained in N0.

�e second relation,

t9Cwwoutx1x2 � winx4x5;

is associated to a disconnected subset of vertices. If f was associated to a region

R with corresponding subset of vertices VR, then the second relation above is as-

sociated to the union of VR with the bivalent vertex between x8 and x10. Since that

union is a disconnected subset, its associated relation is not needed in a minimal

presentation of N111.D1/ (as noted just after De�nition 3.3 in Section 3). �ere-

fore, it turns out that x9f1 does not add any new generators to E.D1/ or Ex.D1/.

In fact, we did not need to put any generators in E.D1/ at all.
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We have now split A111.D1/ as a direct sum of RŒx0; : : : ; x6; x13; : : : ; xn�-

modules:

A111.D1/ Š
T0
1.1/

P
˚

T0
1.t

2x3 � x9/

Px.D1/C Ex.D1/
:

De�ne B.D1/ to be the �rst summand and Bx.D1/ to be the second.

Analysis of Non-local Relations: �e D2 Case. Next, we analyze the non-local

relations in the 111-resolution of D2. Referring back to the labels in Figure 13, let

E1.D2/, E
12.D2/, E

123.D2/, E
124.D2/, and E1234.D2/ denote the ideals gener-

ated by non-local relations associated to coherent regions using the super-scripted

elementary regions. Coherent regions cannot contain other combinations of ele-

mentary regions E1; : : : ; E4, so

N111.D2/ D N0 C E1.D2/C E12.D2/C E123.D1/C E124.D2/C E1234.D2/:

For all of these ideals except E1.D2/, there is a generating set that does not use

any of x7; : : : ; x12. Simply use the relations tx1 � x11 and tx12 � x4 associated

to bivalent vertices to eliminate x11 and x12 whenever they appear in one of the

standard generators.

As was the case for D1, we cannot simultaneously eliminate all of x7; : : : ; x12

from a generating set of E1.D2/, but we can eliminate all except x9. �e standard

generator in E1.D2/ has the form

f2 D t5Cwwoutx9Œx2��winx7Œx5�;

where Œxi � indicates edge variables that may or may not appear depending on

whether the coherent region under consideration contains the elementary regions

immediately above and below E2. Replace x7 using the linear relation

t .tx1 C x7/ � .t�1x4 C x9/;

which comes from the vertex in layer s2 together with the bivalent vertices on the

leftmost strand. �en regroup and clear negative powers of t to obtain

f2 D t5Cwwoutx9Œx2�� winx7Œx5�

� .t3x1 � x4/winŒx5�C tx9.t
6CwwoutŒx2�� winŒx5�/:
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De�ne T0
2 to be the T-module

T0
2 D

T

N0 C E12.D2/C E123.D2/C E124.D2/C E1234.D2/
:

�en we have a presentation of A111.D2/ as

A111.D2/ Š
T0
2Œx9�

.p2/C .q2/C E1.D2/
:

As in the D1 case, we would now like to �nd ideals P.D2/, P
x.D2/, E.D2/,

and Ex.D2/ in T0
2 such that

T0
2Œx9�

.p2/C .q2/C E1.D2/
Š

T0
2.1/

P.D2/C E.D2/
˚

T0
2.t

2x1 � x9/

Px.D2/C Ex.D2/

as RŒx0; : : : ; x6; x13; : : : ; xn�-modules.

�e analysis is analogous to that of the D1 case. We examine the polynomials

p2, x9p2, f2, and x9f2, using q2 to replace any appearance of x29 and writing each

polynomial in terms of 1 and t2x1 � x9. We already have

p2 D .t3x1 � x4/.x9 � t2x1/

in the correct format, so we add t3x1 � x4 as a generator of Px.D2/. It turns out

that

x9p2 � .t3x1 � x4/.t
3x1 � x5/.t

3x1 � x6/

in T0
2Œx9�=.q2/. A quick modi�cation by relations in L123sym recovers the same nicely

symmetric relation that we found in the D1 case,

.t3x1 � x4/.t
3x1 � x5/.t

3x1 � x6/

� .t3x1 � x4/.t
3x1 � x5/.t

3x1 � x6/

C t3x1.t
6�2.x1; x2; x3/ � �2.x4; x5; x6//

� t6x21.t
3.x1 C x2 C x3/ � .x4 C x5 C x6//

D t9x1x2x3 � x4x5x6:

Let

P.D2/ D .t9x1x2x3 � x4x5x6/

in T0
2. Although technically de�ned as ideals in T0

i , the P.Di/ are contained in

RŒx0; : : : ; x6; x13; : : : ; xn�, so we will abuse notation slightly in referring to them

as P D P.Di / � T.
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For the ideals coming from E1.D2/, we have so far that the typical generator

can be rewritten as

f2 � .t3x1 � x4/winŒx5�C tx9.t
6CwwoutŒx2�� winŒx5�/:

Factoring out t2x1 � x9 yields

f2 � .x9 � t2x1/.t
6CwwoutŒx2�� winŒx5�/C .t8Cwwoutx1Œx2� � t

�1winx4Œx5�/:

If f2 is associated to a coherent region R (assumed to contain elementary region

E1), then the second term above is an element of E12.D2/ associated to V [ E2,

after eliminating x11 and x12 using the bivalent vertices on the left strand of D2.

�erefore, as an element of T0
2,

f2 � .x9 � t2x1/.t
6CwwoutŒx2� �winŒx5�/: (6.4)

�is means that we should use polynomials of the form t6CwwoutŒx2��winŒx5� as

the generators for Ex.D2/.

Using the expression for f2 obtained in Equation 6.4 and a computation of

x9.x9� t2x1/ analogous to that preceding Equation 6.1 in the analysis of x9f1, we

may express x9f2 as

x9f2 � .t3x1 � x5/.t
3x1 � x6/.t

6CwwoutŒx2� �winŒx5�/:

�is expression no longer contains any of x7; : : : ; x12. As in the D1 case, we may

use relations from L123sym to rewrite this expression in a more convenient form. We

exhibit the computation for the case when x2 and x5 do not appear. A similar

method works for t6Cwwoutx2 � winx5.

.t3x1 � x5/.t
3x1 � x6/.t

6Cwwout �win/

� .t3x1 � x5/.t
3x1 � x6/.t

6Cwwout �win/

C t3x1win.t
3x1 C t3x2 C t3x3 � x4 � x5 � x6/

� win.t
6x1x2 C t6x1x3 C t6x2x3 � x4x5 � x4x6 � x5x6/

� .t3x1 � x5 � x6/.t
9Cwwoutx1 � winx4/C t6.twwoutx5x6 �winx2x3/

�e �nal expression above is a linear combination of relations that already

hold in T0
2. Suppose that f2 comes from a coherent region R, which we assume

contains E1 and the elementary regions immediately above and below E2, with

associated subset VR. �en the �rst relation, t9Cwwoutx1 � winx4, is obtained by

taking the union of VR with the 4-valent vertex in layer s2 and the bivalent vertices

immediately above and below it. �erefore, it is contained in E12.D2/. �e second
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relation above, twwoutx5x6 � winx2x3, is associated to the subset obtained from

VR by removing the 4-valent vertices in layers s1 and s3 and the bivalent vertex

between edges x8 and x10. �erefore, it is contained in N0. As in the D1 case,

x9f2 contributes no new generators to E.D2/ or Ex.D2/.

Having computed the appropriate generators for P.D2/, P
x.D2/, E.D2/, and

Ex.D2/, we have now established the following splitting of A111.D2/ as a direct

sum of RŒx0; : : : ; x6; x13; : : : ; xn�-modules:

A111.D2/ Š
T0
2.1/

P

M T0
2.t

2x1 � x9/

Px.D2/C Ex.D2/

De�ne the �rst summand to be B.D2/ and the second summand to be Bx.D2/.

Analysis of Summands and Edge Maps. We claimed that theB.Di/ are isomor-

phic as RŒx0; : : : ; x6; x13; : : : ; xn�-modules to B, the module de�ned at the begin-

ning of Section 6 and assigned to the diagramD� obtained from Di by replacing

the region near the Reidemeister III move with the 6-valent vertex in Figure 11.

Recalling that

T D
RŒx0; : : : ; x6; x13; : : : ; xn�

L0 C L123sym

;

and comparing to the de�nition of B, we have a presentation of B as

B Š
T

.t9x1x2x3 � x4x5x6/C N0 C N123sym

:

Unwrapping the de�nitions of T0
i , our �nal presentations of the B.Di/ were

B.D1/ Š
T

N0 C E12.D1/C E13.D1/C E1234.D1/C P

and

B.D2/ Š
T

N0 C E12.D2/C E123.D2/C E124.D2/C E1234.D2/C P
:

Since P D .t9x1x2x3 � x4x5x6/, we only need to check that

N123sym D E12.D1/C E13.D1/C E1234.D1/

D E12.D2/C E123.D2/C E124.D2/C E1234.D2/:

�is is done by comparing generating sets in Figure 16.
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XX
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Figure 16. �e non-local relations generating N123
sym (shown in the �rst two rows) are the same as those associated to certain regions in the

111-resolutions ofD1 (row 3) andD2 (row 4). Assume that the braid axis is to the right of each picture. Brackets around xi denote an edge

variable that may or may not occur in a relation depending on whether the coherent region under consideration contains an elementary

region immediately above or below one of the elementary regions in the vicinity of the Reidemeister III move. Dotted lines show the

boundary of the relevant coherent region when such adjacent elementary regions are not included. In each diagram, w, wout, and win come

from the portions of the region not shown in these local pictures.
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It remains only to check that Bx Š C via the appropriate edge map. Our �nal

presentations of the Bx.Di/ were

Bx.D1/ Š
T0
1.t

2x3 � x9/

Px.D1/C Ex.D1/

and

Bx.D2/ Š
T0
2.t

2x1 � x9/

Px.D2/C Ex.D2/
;

while our �nal presentations of the C.Di / were

C.Di / Š
T.1/

.ri/C N101.Di /

Comparing to the notation in the proof of Lemma 6.1, we see that Px.Di / D .ri /,

so the work is entirely in matching the generators of N101.Di/ with Ex.Di/ and

the various other ideals of non-local relations hidden in the de�nitions of the T0
i .

Speci�cally, we need to show that

N101.D1/ D Ex.D1/C N0 C E12.D1/C E13.D1/C E1234.D1/

and

N101.D2/ D Ex.D2/C N0 C E12.D2/C E123.D2/C E124.D2/C E1234.D2/:

Since the 101- and 111-resolutions of Di di�er only by whether the crossing in

layer s2 is singular or smooth, Observation 3.7 implies thatN111.Di/ � N101.Di /.

Excepting Ex.Di/, the ideals involved in the sums on the right hand side above

are all contained in N111.Di/, so we have

N101.D1/ � N0 C E12.D1/C E13.D1/C E1234.D1/

and

N101.D2/ � N0 C E12.D2/C E123.D2/C E124.D2/C E1234.D2/:

We can check directly that N101.Di/ � Ex.Di / as well. Label the elementary

regions in the 101-resolution of Di as in Figure 17. Coherent regions in the 101-

resolution ofD1 that use F1 but not F2 or F3 correspond to coherent regions in the

111-resolution of D1 that use E1 but not any of the other Ei . Similarly, coherent

regions in the 101-resolution of D2 that use F1 and F2 but not F3 correspond to

coherent regions in the 111-resolution of D2 that use E1 but not any of the other

Ei . In N101.Di /, such regions have associated non-local relations of the form

t3Cwwout �win for i D 1



Invariance and the knot Floer cube of resolutions 159

or

t6CwwoutŒx2� �winŒx5� for i D 2

with the presence of x2 and/or x5 depending on whether the elementary regions

immediately above and below F2 are part of the coherent region under consider-

ation. �e corresponding regions in the 111-resolution have associated non-local

relations in Ex.Di/ which are exactly the same. �erefore, we have the full inclu-

sions

N101.D1/ � Ex.D1/C N0 C E12.D1/C E13.D1/C E1234.D1/

and

N101.D2/ � Ex.D2/C N0 C E12.D2/C E123.D2/C E124.D2/C E1234.D2/:
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Figure 17. Elementary regions in the 101-resolution of D1 (left) and D2 (right).

To prove the opposite inclusion, we use the coherent regions de�nition to clas-

sify the generators of N101.Di / based on which of the Fi are used, just as we did

to understand N111 earlier. Figure 18 shows the general form of relations using

various combinations of the Fi in the 101-resolution of eachDi , and shows corre-

sponding coherent regions in the 111-resolutions that produce the same non-local

relations in one of the summands on the right-hand side of our desired equalities.

We have now shown that C and Bx are quotients of T by the same ideals. �e

edge map A101 ! A111 is multiplication by t2x3 � x9 for D1 and multiplication

by t2x1�x9 forD2, so it maps the generator (1) of A101 to the generator of Bx in

either case. �is completes the proof that the edge map is an isomorphism when

restricted to C ! Bx .

6.2. Simplifying Complexes for Reidemeister Move III. Figures 19 and 20

show preferred generating sets for the ideals of local relations L123
jk`
.Di/ associ-

ated to layers s1, s2, and s3 in each resolution and preferred expressions for the

di�erentials in C.D1/ and C.D2/.
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Figure 18. �e top row shows the general form of relations in N101.Di / associated to coherent regions containing various combinations

of the elementary regions Fi , with w, wout, and win coming from the portions of the region not shown in these local pictures. �e bottom

row identi�es corresponding coherent regions in the 111-resolution ofDi that have the same associated non-local relation. Assume that the

braid axis is to the right of each picture. Brackets around xi denote an edge variable that may or may not occur in a relation depending on

whether the coherent region under consideration contains an elementary region immediately above or below one of the elementary regions
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Figure 19.C.D1/ as a complex of modules over TŒx7; x9�=N
0 with preferred di�erentials. �e column vectors below each diagram should be

read as preferred generating sets for the ideal of local relations associated to the layers shown in that diagram. Choices made in constructing

these preferred generating sets are explained at the beginning of Section 6.2.
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Figure 20. C.D2/ as a complex of modules over TŒx7; x9�=N
0 with preferred di�erentials. �e column vectors below each diagram should

be read as preferred generating sets for the ideal of local relations associated to the layers shown in that diagram. Choices made in

constructing these preferred generating sets are explained at the beginning of Section 6.2.
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�e preferred generating sets should be viewed as presentations for the various

Ajk`.Di/ as modules over TŒx7;x9�
N0 , where N0 is generated by non-local relations

associated to coherent regions not containing any of the elementary regions in the

vicinity of the Reidemeister III move. We de�ned T in Section 6.1 as

T D
RŒx0; : : : ; x6; x13; : : : ; xn�

L0 C L123sym

;

where L0 is generated by local relations associated to vertices away from the vicin-

ity of the Reidemeister III move and L123sym is generated by di�erences of certain

elementary symmetric polynomials. In the process of proving the splitting lem-

mas of Section 6.1, we established that the relations in L123sym hold in A101.Di / and

A111.Di/. One can check that they hold for the other resolutions by comparatively

straightforward manipulations of local relations. Since the relations in L0, L123sym,

and N0 hold in all resolutions, we have omitted them from Figures 19 and 20.

In building the preferred generating sets, we have eliminated x10, x11, and

x12 using the relations associated to bivalent vertices that appear in all of the

resolutions: tx8�x10 in bothC.D1/ andC.D2/; tx3�x11 and tx12�x6 in C.D1/;

and tx1 � x11 and tx12 � x4 in C.D2/. Except in the 101- and 111-resolutions, it is

possible to eliminate x7, x8, and x9 as well in terms of x1; : : : ; x6. In these cases,

we have listed linear relations used to do so for x7 and x9. �ose used to eliminate

x8 can be inferred.

For all except the 101- and 111-resolutions, we have then listed quadratic rela-

tions in formats chosen to demonstrate the well-de�nedness of the isomorphism

exhibited in Figure 26 and of incoming edge maps. Finally, we have listed repre-

sentative non-local relations associated to coherent regions that use the elementary

regions in the vicinity of the Reidemeister III move.

For the 101- and 111-resolutions, we have listed the linear relations that were

used to eliminate x7 in the proofs of Lemmas 6.1 and 6.2. We have then listed the

quadratic relations that appear in the �nal presentations of these modules before

the splitting step in the proofs of Lemmas 6.1 and 6.2. We have omitted the non-

local relations in these resolutions because they were already analyzed extensively

in Section 6.1.

�e top lines of Figures 21 and 22 show condensed versions of C.D1/ and

C.D2/ as presented in Figures 19 and 20. �e next step is to incorporate the split-

tings established in Section 6.1 and adjust matrix entries in the di�erentials accord-

ingly. �e bottom lines of Figures 21 and 22 showC.D1/ andC.D2/, respectively,

after the splittings have been introduced and matrix entries adjusted.
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Figure 21. �e top line is the complex C.D1/, condensed from Figure 19 to emphasize di�erentials rather than module presentations.

�e bottom line incorporates the splittings from Section 6.1 into C.D1/ and adjusts matrix entries in the di�erentials accordingly. Recall

that Cx.D1/ is generated by tx9 � x4 and Bx.D1/ is generated by t2x3 � x9.
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Figure 22. �e top line is the complex C.D2/, condensed from Figure 20 to emphasize di�erentials rather than module presentations.

�e bottom line incorporates the splittings from Section 6.1 into C.D2/ and adjusts matrix entries in the di�erentials accordingly. Recall

that Cx.D2/ is generated by tx9 � x6 and Bx.D2/ is generated by t2x1 � x9.
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For C.D1/ we adjust matrix entries as follows. In the rightmost matrix,

we replace x7 using the relation t .tx3 C x7/ � .t�1x6 � x9/, as we did when es-

tablishing the splitting of A111.D1/. We then arrange the entries in the rightmost

matrix such that the row operation Ir C .t2x3 � x9/IIr applied to the new matrix

recovers the previous matrix. In the third column, this row operation produces

.t2x3 � x9/.tx9 � x4/, which is the image of the generator of Cx in A111. To see

the equality directly, one must replace x29 using the relation .tx9 � x5/.tx9 � x4/,

as we did when establishing the splitting of A111.D1/ in Section 6.1. For the

middle matrix, we have arranged the entries such that applying the row operation

IIr C .tx9 � x4/IIIr to the new matrix recovers the previous matrix.

For C.D2/, we handle the splitting in the same way. In the rightmost matrix,

we replace x7 in A111.D2/ using t .tx1 C x7/ � .t�1x4 C x9/ as we did when

splitting A111.D2/. �en, we arrange matrix entries such that applying the row

operation Ir C .t2x1 � x9/IIr to the new matrix on the right recovers the previous

matrix on the right. �is entails replacing x29 using the relation .tx9�x5/.tx9�x6/

as we did when establishing the splitting of A111.D2/. In the middle matrix, the

row operation IIr C .tx9�x6/IIIr applied to the new matrix recovers the previous

matrix.

We are now prepared to perform the changes of basis necessary to identify

contractible summands in C.D1/ and C.D2/. Figure 23 exhibits the operations

step by step in the case of C.D1/. We may use almost the same row and column

operations in the case of C.D2/. Simply exchange x4 with x6 and x1 with x3,

but leave everything else the same. For example, the second change of basis per-

formed on C.D1/ used row operation Ir�.t2x3�t�1x5/IIIr on the middle matrix.

�e second change of basis on C.D2/ should instead use row operation

Ir � .t2x1 � t�1x5/IIIr on the middle matrix.

Figures 24 and 25 show C.D1/ and C.D2/ after the changes of basis are

complete (top two lines), and then the complexes obtained by removing the con-

tractible summands A100.Di/ ! Cx.Di / and C.Di / ! Bx.Di/ (bottom two

lines). �e bottom two complexes are xC.D1/ and xC.D2/ as described at the be-

ginning of Section 6. We have now indicated the induced edge maps as well.

�e last step is simply to exhibit an isomorphism between the simpli�ed com-

plexes we have obtained for C.D1/ and C.D2/. Figure 26 shows the appropriate

chain map from xC.D1/ to xC.D2/. �e map identi�es the summandA010.D1/with

A001.D2/; A001.D1/ with A010.D2/; A110.D1/ with A011.D2/; and A011.D1/

with A110.D2/. It also multiplies some summands by a power of t , which

(1) directly maps the relevant presentations from Figure 19 to the corresponding

presentations from Figure 20; (2) accounts for the di�erences in exponents of t
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Figure 23. Beginning with C.D1/ as presented in the bottom line of Figure 21, we change basis several times. �e change of basis occurs

in the boxed homological grading, with corresponding row and column operations on incoming and outgoing maps indicated below the

arrows. �e result is a complex with contractible summands A100 ! Cx and C ! Bx .
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Figure 24. �e top line showsC.D1/ after the changes of basis shown in Figure 23. �e bottom line shows the result of removing contractible

summands A100 ! Cx and C ! Bx , which is xC.D1/ as described at the beginning of Section 6.
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Figure 25. �e top line shows C.D2/ after changes of basis analogous to those shown in Figure 23 for xC.D1/. �e bottom line shows the

result of removing contractible summands A100 ! Cx and C ! Bx , which is xC.D2/ as described at the beginning of Section 6.
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in the edge maps of the simpli�ed complexes; and (3) e�ectively moves layers of

marked points past layers of 4-valent vertices to match the resolutions ofD1 with

the resolutions ofD2 that remain in the simpli�ed complexes. Finding the inverse

of the map in Figure 26 is a straightforward computation.

7. Conjugation

In this section we demonstrate that AI .D/ is invariant under conjugation of the

layered braid diagramD away from the basepoint. �at is, conjugation is allowed

only by braid generators �1; : : : ; �b�2 and not by �b�1. (Our convention is to label

the braid generators from right to left.) �is limitation arises because the basepoint

has a role in determining which cycles, subsets, or regions are used to de�ne non-

local relations. (Since conjugation is a planar isotopy of a braid diagram, it does

not change the edge ring or the local relations.) Proving that AI .D/ is invariant

under conjugation by one of �1; : : : ; �b�2 is equivalent to proving that it is invari-

ant under moving the basepoint past a bivalent vertex, as in Figure 27. We do so

in Lemma 7.1. Proving that AI .D/ is invariant under conjugation by �b�1 would

require moving the basepoint past a crossing, as in Figure 28. We have so far been

unable to do this.

Lemma 7.1. LetD be the layered braid diagram for a braid word of the form �i� ,

where i ¤ b� 1 and � is any braid word. LetD0 be the layered braid diagram for

��i . Fix edge labels as in Figure 27 with p > n. �en for any index I ,

AI .D/ Š AI .D
0/

as RŒx�-algebras, where x acts as the variable associated to the vertex outgoing

from the basepoint in each diagram.

Proof. Whether �i is resolved or singularized in the I -resolution ofD, Figure 27

indicates that it su�ces to prove that we can move the basepoint across a biva-

lent vertex on the leftmost strand. Let x0; : : : ; xn; xp denote the variables in the

edge ring for D and y0; : : : ; yn; yp denote the variables in the edge ring for D0.

Edge labels are shown in Figure 27 for edges xi and yi when i 2 ¹0; n; pº. �e

remaining edges are labeled such that the position of xi in the diagram on the left

of Figure 27 matches the position of yi in the diagram on the right of Figure 27.
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Figure 26. An isomorphism from xC.D1/ (top) to xC.D2/ (bottom).
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Figure 27. Diagram for Lemma 7.1: moving the basepoint across a bivalent vertex is equiv-

alent to conjugating �i� to ��i for i ¤ b � 1. �ese diagrams should be viewed as closed

braids, although the closure strands are not shown. Assume that all strands are oriented

upwards and that the braid axis is to the right of each picture.
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Figure 28. Conjugating �b�1� to ��b�1 would be equivalent to moving the basepoint

across �b�1. �ese diagrams should be viewed as closed braids, although the closure

strands are not shown. Assume that all strands are oriented upwards and that the braid

axis is to the right of each picture.
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We will view AI .D/ and AI .D
0/ as RŒx�-modules by equating x with x0 and

with yp, respectively. De�ne an RŒx�-module map

' W AI .D/ �! AI .D
0/

by

x0 7�! yp;

xi 7�! tyi for 1 � i � n,

xp 7! yn:

To see that it is well-de�ned and an isomorphism, �rst notice that ' maps the

linear relation txp � xn (coming from the bivalent vertex nearest the basepoint

in D) to 0 in AI .D
0/. Now use the relation txp � xn to �nd a presentation of

AI .D/ in which xp does not appear. Suppose that f .x0; : : : ; xn/ is one of the re-

lations in this presentation. Since all of the relations in the original presentation of

AI .D/ were homogeneous in the xi , f will be as well. �en '.f .x0; : : : ; xn// D

f .yp; ty1; : : : ; tyn/ � f .ty0; ty1; : : : ; tyn/ � f .y0; y1; : : : ; yn/; where “�” here

means “generates the same ideal in RŒy0; : : : ; yn; yp�=.ty0 � yp/.” Since ty0 � yp
is a relation in AI .D

0/ (associated to the bivalent vertex nearest the basepoint),

this calculation says that ' identi�es each relation in the chosen presentation of

AI .D/ with a relation in AI .D
0/. �e map de�ned by yi 7! t�1xi for (0 � i � n)

and yp 7! x0 is an inverse for ', which one can check is well-de�ned by a similar

argument.

8. Stabilization / Reidemeister Move I

�roughout this section, we work over yRŒx.D/�. �e arguments presented here

require the completion of the ground ring because we invert an element of the

form 1 � tk, and because the completion is required to make Observation 3.9

about disconnected resolutions hold.

Let D and DC (respectively D�) be closed braid projections that di�er by

a positive (respectively negative) stabilization in layer s on the innermost strand

as in Figure 29. Ideally, we would like to show that C.D/, C.DC/, and C.D�/

are chain homotopy equivalent. Figure 30 shows the two possible resolutions of

the crossing on the innermost strand. Any resolution in which the crossing on

the innermost strand is smoothed is disconnected, so the corresponding algebra

AI11I2
.DC/ or AI10I2

.D�/ vanishes by Observation 3.9. It would su�ce, then, to
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show that

AI10I2
.DC/ Š AI11I2

.D�/ Š AI1I2
.D/

for any resolutions Ij 2 ¹0; 1ºnj .

D

� � �
�

B2

� � �

B1

�
� � �

� � �
�

�n2B2

⑧⑧⑧⑧⑧
❄❄

❄❄
� �� � �

�n1B1

�
� � �

DC

� � �
�

�n2B2

⑧⑧

⑧⑧
❄❄❄❄❄� �� � �

�n1B1

�
� � �

D�

Figure 29. Diagrams D, DC, and D�.�ese diagrams should be viewed as closed braids,

although the closure strands are not shown. Assume that all strands are oriented upwards

and that the braid axis is to the right of each picture.

� � � y5

�

�n2B2

y1 y2

y3 y4
� � � �� � �

�n1B1

�
� � � y5

� � � y5

�

�n2B2

⑧⑧⑧⑧⑧

❄❄❄❄❄
y1 y2

y3 y4
� �� � �

�n1B1

�
� � � y5

� � �
�

B2

�n1Cn2C1

y1

y4� � �
� � �

y3

B1

�
� � �

Figure 30. From left to right: the smoothed resolution of layer s inDC ofD�; the singular

resolution of layer s in DC of D�; the diagram D�. �ese diagrams should be viewed

as closed braids, although the closure strands are not shown. Assume that all strands are

oriented upwards and that the braid axis is to the right of each picture.

However, the behavior of the algebras under stabilization is not so straightfor-

ward. Instead, the algebras associated to the resolutions in which the crossing on

the innermost strand is singularized are isomorphic to the algebras associated to

the corresponding resolutions of D� (shown on the right in Figure 30). In other

words, stabilizing once on the innermost strand is equivalent to adding a marked

point to the edge where the stabilization occurs. �e marked point has weight

equal to the total weight of the strand being added, plus one. Equivalently, it has

weight equal to the total number of crossings in the diagram, plus one.
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�e diagramD� is not a layered braid, but the de�nition of A extends easily to

encompass this case. Use the same local relations for crossings and other bivalent

vertices, along with a relation tn1Cn2C1y4 � y3 associated to the new marked

point. De�ne the non-local relations as before, but adjust their weights upwards

by n1 C n2 C 1 if they are associated to a subset, cycle, or region encompassing

the new marked point.

With this de�nition, AI .D
�/ is still isomorphic to singular knot Floer homol-

ogy with twisted coe�cients, as described in Section 2.1. It still �ts into the skein

exact sequence described in [15]. (�ese facts are not proved here, but would

follow from arguments similar to those in [15] and those in Section 9.) Unfor-

tunately, our proofs of the categori�ed MOY relations underlying Reidemeister

moves II and III do not extend to diagrams like D� that have bivalent vertices

with di�erent weights on di�erent strands. It may be that a more subtle version of

the MOY calculus, taking into account bivalent vertices of various weights, could

unify our proofs of the categori�ed braid-like MOY moves with our description

of stabilization. We are not currently aware of such a model.

Proposition 8.1. LetDC andD� be the diagrams in Figure 29 with ni crossings

in Bi . Figure 30 shows the .I10I2/-resolution of DC, which is identical to the

.I11I2/-resolution of D�. Let D� be the diagram on the right in Figure 30 with

edge labels as shown. Let x0; : : : ; xk be the edges in the unlabeled portion of all of

these diagrams. �en there are isomorphisms of yRŒx0; : : : ; xk; y1; y3; y4�-modules

AI10I2
.DC/ Š AI11I2

.D�/ Š AI1I2
.D�/

for all resolutions Ij 2 ¹0; 1ºnj .

Proof. �e .I10I2/-resolution of DC is identical to the .I11I2/-resolution of D�,

so we will refer to the .I10I2/-resolution ofDC throughout this proof without loss

of generality. �e edge ring of the .I10I2/-resolution ofDC is yRŒx0; : : : ; xk; y1; y2,

y3; y4; y5�. Let n D n1 C n2. �e marked points on the innermost strand give

relations tn2y4 � y5 and tny4 � y2. Use these relations to eliminate y2 and y5

from the edge ring, leaving yRŒx0; : : : ; xk; y1; y3; y4�, which is the edge ring forD�.

We will work in the context of yRŒx0; : : : ; xk; y1; y3; y4�-modules for the remainder

of this proof.

�e local relations for crossings not on the innermost strand do not use y2, y4,

or y5, and are the same for the singular resolutions of DC and D� as they are

for D�. Let L be the ideal generated by these local relations.
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Non-local relations associated to coherent regions in D� have the form

tw
0CnC2wout �win;

where y1, y3, and y4 do not divide wout or win, and w0 is the contribution to the

region’s weight from vertices other than those pictured on the innermost strand.

Let N be the ideal generated by such relations. Each of these relations corresponds

to a non-local relation in the singular resolution of DC and D� as follows. Let

E1, E2; : : : ; Ep be the elementary regions in D� with E1 the region containing

the braid axis. �en the elementary regions in the singular resolution of DC and

D� are E2; : : : ; Ep along with two others: the region containing the braid axis,

which we will call Ea, and the region adjacent to Ea, which we will call Eb. Any

coherent region inD� containsE1, so can be written asR D E1[Ei1 [ � � �[Eir .

�e region Ea [ Eb [ Ei1 [ � � � [ Eir in the singular resolution of DC and D�

has the same associated non-local relation as R does.

�e relations de�ning AI10I2
.DC/ Š AI11I2

.D�/ that we have not yet ac-

counted for are as follow (Recall that we have eliminated y2 using the relation

tny4 � y2.),

J D

0

@

ty1 C tnC1y4 � y3 � y4
tnC2y1y4 � y3y4
tnC2y1 � y3

1

A :

�e �rst two lines come from local relations associated to the singular crossing

on the innermost strand. �e third line is the non-local relation associated to the

coherent region Ea. So far, we have established that

AI10I2
.DC/ Š AI11I2

.D�/ Š
yRŒx0; : : : ; xk; y1; y3; y4�

L C N C J

We now simplify the presentation of J. Perform the row operation I � III to

transform the �rst line into .tnC1 � 1/.y4 � ty1/. Since tnC1 � 1 is a unit in yR, we

may remove that factor. �en factor out y4 from the second line in the presentation

of J to see that the second line is a multiple of the �rst, hence can be discarded.

we then obtain the following alternative presentation of J,

J D

�

y4 � ty1
tnC2y1 � y3

�
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�e generators in this alternative presentation of J can also be viewed as the

local relations associated to marked points visible on the innermost strand ofD�,

which are exactly the relations de�ning AI1I2
.D�/ that we had not yet accounted

for above. �at is,

AI1I2
.D�/ Š

yRŒx0; : : : ; xk; y1; y3; y4�

L C N C J
:

9. Identi�cation with knot Floer homology

�e set-up of the cube of resolutions in Section 2 of this paper di�ers somewhat

from Ozsváth and Szabó’s original formulation [15], so it does not follow formally

from their work that C.D/, as de�ned in (2.2) of this paper, computes knot Floer

homology. However, an adaptation of the arguments in Sections 3–5 of [15], suf-

�ces to prove the following result, which is an analogue of [15, �eorem 1.2].

Proposition 9.1. LetD be a layered braid diagram with initial edge x0. �en there

is an isomorphism of graded Z2Œx0�-modules

H�.C.D/˝RŒx.D/�
3RŒx.D/�˝ Z2/ Š HFK�.K/˝Z2

Z2Œt
�1; t ��

and an isomorphism of graded Z2-vector spaces

H�.C.D/=.x0/˝RŒx.D/�
3RŒx.D/�˝ Z2/ Š 1HFK.K/˝Z2

Z2Œt
�1; t ��:

�e two key di�erences between our set-up and that of [15] are the use of

layered braid diagrams and the ground ring over which we de�ne the cube of

resolutions chain complex. Ozsváth and Szabó use a knot projection in braid form

with a basepoint �, but do not require the additional bivalent vertices that we add

parallel to each crossing when forming a layered braid diagram. Consequently, in

their diagrams, bivalent vertices arise only when a crossing is smoothed, which

means they come in pairs that lie on adjacent strands. A layered braid diagram

has these sorts of bivalent vertices, but also others. �is di�erence will require us

to modify the Heegaard diagrams used in the proof of [15, �eorem 1.2].

�e second di�erence between our set-up and that of [15] is in the ground

rings over which the cube of resolutions complexes are de�ned. We de�ne the

algebras AI .D/ over RŒx.D/� D ZŒt�1; t �Œx.D/�, and pass to the completion
yRŒx.D/� D ZŒt�1; t ��Œx.D/� only when describing the behavior of the chain com-

plex under stabilization. Ozsváth and Szabó set up their algebras overZ2Œx.D/; t �,

then pass toZ2Œx.D/�Œt
�1; t �� to identify the homology of their cube of resolutions
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chain complex with knot Floer homology [15, �eorem 1.2]. �eir algebras are de-

�ned as the singular knot Floer homology with particular choices of twisted coef-

�cients. �ey require power series in t with coe�cients in Z2Œx.D/� to make the

singular knot Floer homology well-de�ned (by ensuring that its di�erential is a �-

nite sum). �ey need to invert t to apply their Lemma 2.2, which shows that knot

Floer homology with twisted coe�cients is isomorphic to the usual knot Floer

homology tensored with an extended ground ring. �ese choices of rings in each

case allow results to be stated in the greatest possible generality, but a profusion

of tensor products will be required to bring the two approaches into alignment.

Proof. Ozsváth and Szabó prove [15, �eorem 1.2] in three steps: calculate a par-

ticular twisting of singular knot Floer homology to verify that it is identical to the

algebra they de�ne as a quotient of the edge ring [15, Section 3]; establish a spec-

tral sequence from the cube of resolutions de�ned algebraically to knot Floer ho-

mology [15, Section 4]; show that the spectral sequence collapses [15, Section 5].

We mirror each of these arguments in turn, pointing out where modi�cations are

required to address the di�erences between our set-up (Section 2 of this paper)

and that of [15].

Let S be a layered braid diagram with all crossings singularized or smoothed.

�e twisted version of singular knot Floer homology needed to recover the algebra

A.S/ as de�ned in (2.1) in Section 2.1 of this paper is speci�ed by the “initial

diagram” in [15, Figure 3] with the additional rule that near a bivalent vertex that

does not arise from smoothing a crossing, the diagram has the form shown on the

left in Figure 31.

Near a pair of bivalent vertices that arise from smoothing a crossing, we use the

same diagram as in [15, Figure 3], which is shown in the middle in Figure 31. Call

this the modi�ed initial diagram. Let CFK�.S/ denote the chain complex coming

from the modi�ed initial diagram. �at is, CFK�.S/ is the Z2Œx.S/�ŒŒt ��-module

whose generators are given by intersection points and di�erentials by counting

holomorphic disks with respect to the twisting in the modi�ed initial diagram.

See [12] for a precise de�nition of singular knot Floer homology, [15, Section 2.1]

for details on twisted coe�cients in knot Floer homology generally, and [15, Sec-

tion 3.1] for details on combining singular knot Floer homology with twisted coef-

�cients. �e completion of the ground ring with respect to t is necessary to make

the di�erential on twisted singular knot Floer homology well de�ned, as detailed

in [15, Section 3.1]. We will continue to work overZ2Œx.S/�ŒŒt �� for the �rst section

of this proof, so abbreviate this ring by R0.
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Figure 31. From left to right: the modi�ed initial diagram near an extra bivalent vertex;

the modi�ed initial diagram near a bivalent vertex arising from a smoothing; the planar

diagram or the master diagram near any bivalent vertex. �e bold dots in each picture show

the marking that speci�es our particular twisted version of singular knot Floer homology.

Let M denote the Koszul complex on the linear relations for each vertex.

M D
O

v2V4

.R0
tx

.v/
a Ctx

.v/

b
�x

.v/
c �x

.v/

d
���������������! R0/˝

O

v2V2

.R0 tx
.v/
a �x

.v/
c

�������! R0/;

where V4 and V2 denote the set of 4-valent and bivalent vertices, respectively, in S .

Let C 0.S/ D CFK�.S/˝M . �en the claim, an analogue of [15, �eorem 3.1],

is that we can identify H�.C
0.S// with A.S/ after appropriately changing the

ground rings. Recall that A.S/ was de�ned in (2.1) of Section 2.1 of this paper as

an RŒx.S/� D ZŒt�1; t �Œx.S/�-module. �erefore, the precise claim is that

H�

�

C 0.S/
�

˝R0 R0Œt�1� Š A.S/˝RŒx.S/�
2RŒx.S/�˝ Z2: (9.1)

�e reduced version of the statement,

H�

�

C 0.S/=.x0/
�

˝R0 R0Œt�1� Š A.S/=.x0/˝RŒx.S/�
2RŒx.S/�˝ Z2; (9.2)

then follows immediately.

�e arguments required to prove [15, Proposition 3.4] apply essentially un-

changed to show thatH�.C
0.S/=.x0// is free as a Z2ŒŒt ��-module, generated by the

generalized Kau�man states de�ned in [15, Figure 4], and concentrated in a single

algebraic grading. �e unreduced H�.C
0.S// is also concentrated in a single al-

gebraic grading. To calculate the structure ofH�.C
0.S// as an R0-module, we use

a planar Heegaard diagram for S de�ned exactly as in [15, Figure 9] with extra bi-

valent vertices of the layered diagram treated as if they had come from smoothing
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a crossing. So, the diagram looks like that on the right in Figure 31 near any bi-

valent vertex. �e chain complex coming from the planar diagram is well-de�ned

over Z2Œx.S/; t � (no completions required) because the planar diagram satis�es

a stronger admissibility property than the modi�ed initial diagram. However, we

consider it over the larger ring R0 because we need to compare its homology to

the homology of the chain complex coming from the modi�ed initial diagram.

�e same procedure of handleslides and destabilizations described in the proof of

[15, Lemma 3.7] shows that the two chain complexes are quasi-isomorphic. �e

planar diagram has a canonical generator, which is a cycle, de�ned by making the

same choice of intersection point near each vertex as Ozsváth and Szabó do in

[15, Proposition 3.10]. Incoming di�erentials from chains with algebraic grading

one higher than the canonical generator produce all of the quadratic local rela-

tions, the linear local relations associated to bivalent vertices, and the non-local

relations that appear in the de�nition of A.S/. Since H�.C
0.S// is concentrated

in a single algebraic grading, this completes the calculation and establishes the

isomorphisms claimed in (9.1) and (9.2).

Now consider a layered braid diagramD with m crossings, and let DI denote

its I -resolution. �e spectral sequence constructed in [15, Section 4] comes from

a �ltration on

V.D/ D
M

I2¹0;1ºm

H�.CFK�.DI /˝MI / ;

whereMI is the Koszul complex on linear relations coming from all vertices in di-

agramDI . To de�ne the �ltration, Ozsváth and Szabó consider a planar Heegaard

diagram that simultaneously encodes each possible state (positive, negative, sin-

gularized, smoothed) of a crossing [15, Figure 12]. To adapt this Heegaard diagram

toD, we need only add a small piece like that shown on the right in Figure 31 near

any bivalent vertex. Call the diagram from [15, Figure 12] so adapted the master

diagram.

Using particular choices of generators near crossings in the master diagram,

Ozsváth and Szabó de�ne a �ltration on V.D/. �ey also de�ne maps that count

holomorphic disks intersecting certain regions near crossings in the master di-

agram [15, Section 4]. In [15, Proposition 5.2], they verify that some of these

maps (those with the appropriate gradings) are the same as the edge maps in Sec-

tion 2.2 of this paper, under the identi�cation of H�.C
0.DI // with AI .D/. �e

description of all of the maps on V.D/ and the proof of [15, Proposition 5.2] de-

pend only on the form of their Heegaard diagram near crossings, so they apply

unchanged to our master diagram. Taken together, the maps de�ned by counting

appropriate holomorphic disks near crossings in the master diagram form an endo-
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morphism of V.D/. Lemma 4.6 of [15] shows that V.D/with this endomorphism

is quasi-isomorphic to the chain complex CFK�.D/, which is the twisted knot

Floer homology of the classical knot D, de�ned via the traditional holomorphic

disks construction and regarded as an Z2Œx0�ŒŒt ��-module. Again, the arguments

depend only on the properties of the master diagram near crossings in D, so they

carry through unchanged to our situation. �erefore, as in [15, �eorem 4.4], the

�ltration on V.D/ gives rise to a spectral sequence with E1 page

M

I2¹0;1ºm

H�.CFK�.DI /˝MI / ;

with d1 di�erential the zip and unzip maps de�ned algebraically, and converging

to HFK�.D/.

Finally, in Section 5, Ozsváth and Szabó argue that this spectral sequence col-

lapses after theE1 stage for grading reasons. �e gradings in this paper are de�ned

identically to those in [15], so the same argument shows that the spectral sequence

here collapses. �e immediate result is an isomorphism of Z2Œx0�ŒŒt ��-modules,

H�

�

M

I2¹0;1ºm

H�.CFK�.DI //˝MI

�

Š H�.CFK�.D//:

Inverting t in the ground ring throughout the spectral sequence, then applying

the isomorphism from (9.1) allows us to identify the left side with the cube of

resolutions complex C.D/ used in this paper:

H�.C.D/˝RŒx.D/�
3RŒx.D/�˝ Z2/ Š H�.CFK�.D/˝Z2ŒŒt�� Z2Œt

�1; t ��/

A standard theorem about twisted coe�cients in knot Floer homology, stated as

[15, Lemma 2.2], completes the identi�cation withH�.CFK�.D//˝Z2
Z2Œt

�1; t ��.

�e reduced statement follows similarly.
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