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1. Introduction

The Witten–Reshetikhin–Turaev quantum invariants of 3-manifolds fit into a Topo-
logical Quantum Field Theory (TQFT) in the sense of Atiyah and Segal. This means
in particular that they give rise to finite-dimensional complex representations of (cer-
tain central extensions of) mapping class groups of surfaces. While these quantum

1The first author was partially supported by NSF-DMS-0905736.
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representations of mapping class groups are in general not irreducible (some decom-
positions into invariant subspaces were already described in Blanchet et al. [4]), it
was shown by Roberts [17] that in the case of surfaces without boundary, the repre-
sentations arising from the SU.2/-theory at level k are irreducible provided k D p�2

where p is a prime. This irreducibility plays an important role in Andersen’s work
on whether mapping class groups have Kazhdan’s property T [1].

It is a well-known phenomenon in representation theory that “natural” represen-
tations of a group can often be defined both in characteristic zero and in positive
characteristic. Typically, though, a representation which is irreducible in character-
istic zero gives rise in positive characteristic to a representation which may no longer
be irreducible. It is the purpose of this paper to study this question for mapping class
group representations coming from a TQFT. Specifically, we consider the SO.3/-
TQFT at a primitive p-th root of unity, where p � 5 is a prime, because the theory of
Integral TQFT developed in Gilmer [5] and Gilmer and Masbaum [6] and [7] implies
that this TQFT gives rise in a natural way to modular representations of mapping
class groups in positive characteristic. We remark that modular representations in
characteristic different from p coming from this SO.3/-TQFT at the p-th root of
unity were recently used in work of A. Reid and the second author [15]. But here we
will mainly study the modular representations in characteristic p coming from this
theory. We will show that these representations often have a nontrivial composition
series with interesting irreducible factors.

2. Statement of the main results

Throughout the paper, we fix a prime p � 5, and let �p be a primitive p-th root of
unity. We denote the corresponding ring of cyclotomic integers by

O D ZŒ�p� :

The theory of Integral SO.3/-TQFT developed in [5], [6], and [7] associates to a com-
pact oriented surface † a free O-lattice (i.e., a free O-module of finite rank) carrying a
representation of an appropriate central extension of the orientation-preserving map-
ping class group of the surface. This theory may be thought of as an integral refinement
of the Reshetikhin–Turaev TQFT associated with the Lie group SO.3/, a version of
which would be obtained if one extends coefficients from O to the cyclotomic field
Q.�p/. In this paper, we write �.†/ for the Integral TQFT-lattice associated to †.
We shall review the definition of �.†/ in §4. We write �† for the mapping class
group of the surface, and z�CC

† for the central extension of �† which we will use.
Here we follow the construction of z�CC

† given in our paper [8]. The group z�CC
† is a

central extension of �† by Z. It is generated by certain specific lifts of Dehn twists,
and we will describe in Proposition 4.2 how such a lift of a Dehn twist acts on �.†/.
It will not be necessary to know more about z�CC

† in this paper.
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For every ideal I � O, we have an induced representation of z�CC
† on the

O=I -module �.†/=I�.†/. In this way, we can get modular representations of
z�CC

† , namely when O=I is a finite field. We will see in Corollary 3.4 that in the case
where † has at most one boundary component, such a modular representation, say in
characteristic `, is always irreducible except possibly if ` D p. In this paper, how-
ever, we are interested in non-trivial decompositions of the representation. Therefore
we consider the case where I D .1��p/. It is well-known that this is a prime ideal in
O D ZŒ�p�, and the quotient ring is the finite field Fp. Thus we get a representation
of z�CC

† on the Fp-vector space

F.†/ D �.†/=.1 � �p/�.†/ : (1)

This is the modular representation referred to in the title of this paper. As shown in
§12 of our paper [8], it factors through a representation of the ordinary mapping class
group �†. (We shall explain the reason for this in §4.1) In Corollary 2.6, we will
show that in the case where † is either closed, or has one boundary component, the
modular representation F.†/ has a composition series with at most two irreducible
factors, which we will describe explicitly and whose dimensions we will compute.

In order to state our results more precisely, recall that if † has boundary, the
quantum representation depends on the choice of a color on each boundary com-
ponent, and we get a representation of the mapping class group of † rel. boundary
(meaning that �† consists of orientation preserving diffeomorphisms which are the
identity on the boundary, modulo isotopies which are also the identity on the bound-
ary). In our situation, the color on the boundary can be any even integer 2c satisfying
0 � 2c � p � 3. We will indicate this in our notation by writing †g.2c/ for a genus
g surface with one boundary component colored 2c. As usual in TQFT, the case
2c D 0 corresponds to the case where † has empty boundary.

Convention 2.1. Throughout most of the paper, g and c are fixed, and we simply
write † for †g.2c/.

The lattice �.†/ has a basis fb� g indexed by small admissible colorings � of the
edges of a lollipop tree [6]. This is pictured in Figure 1 in the case g D 3.

c1

a1 2c2a22a2 2a3

a1 C b1 a2 C b2 a3 C b3

Figure 1. Lollipop tree T
.2c/
g .

1See footnote 11.
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Here, the color 2c on the free (or trunk) edge is fixed, whereas the colors 2ai ,
ai C bi , and ci on the other edges are numbers in f0; 1; : : : ; p � 2g. A coloring is
admissible if whenever i , j and k are the colors of edges which meet at a vertex

i C j C k � 0 .mod 2/;

ji � j j � k � i C j;

i C j C k � 2p � 4:

A coloring is small if the colors ai C bi of the loop edges satisfy 0 � ai C bi �
.p � 3/=2 (see §3 of our paper [6]).

Convention 2.2. From now on, whenever we say coloring, we mean small admissible
coloring.

Here is a crucial definition for this paper.

Definition 2.3. A coloring � is called even or odd according as c CP
ai is even or

odd.2

We write
�.†/ D �ev.†/ ˚ �odd.†/ ; (2)

where �ev.†/ is the submodule spanned by the b� corresponding to even colorings,
and �odd.†/ is the submodule spanned by the b� corresponding to odd colorings.
Note that while �.†/ is defined intrinsically and does not depend on the choice of
the lollipop tree, the submodules �ev.†/ and �odd.†/ depend on this choice.

The following is the key result of this paper.

Theorem 2.4. Let † D †g.2c/. With respect to the decomposition (2), the image of
the group algebra OŒz�CC

† � in EndO.�.†// is�
EndO.�ev.†// .1 � �p/ HomO.�odd.†/; �ev.†//

HomO.�ev.†/; �odd.†// EndO.�odd.†//

�
(3)

The proof of Theorem 2.4 will be given in §4–6. It has the following immediate
corollary for the modular representation F.†/ of �† defined in (1).

Corollary 2.5. Let
F.†/ D F ev.†/ ˚ F odd.†/

be the decomposition induced from (2). With respect to this decomposition, the image
of the group algebra FpŒ�†� in EndFp

.F.†// is�
EndFp

.F ev.†// 0

HomFp
.F ev.†/; F odd.†// EndFp

.F odd.†//

�
(4)

2In the special case that .g; c/ D .2; 0/, we take c CP
ai to be 2a1.
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From (4) it is easy to get a composition series for F.†/.

Corollary 2.6. Let † D †g.2c/. If g � 1 or if .g; c/ D .2; 0/, then F odd.†/ D 0

and the representation F.†/ is irreducible. Otherwise, F.†/ has a composition
series with two irreducible factors: the subspace F odd.†/ is the unique irreducible
subrepresentation of F.†/, and the quotient F.†/=F odd.†/ is again irreducible.

We will explain how one deduces this corollary from (4) in §3.

Let us denote the dimensions of these irreducible factors by

o.2c/
g D dimFp

.F odd.†// D rankO.�odd.†//;

e.2c/
g D dimFp

.F.†/=F odd.†// D rankO.�ev.†//;

where † D †g.2c/. These numbers are simply the numbers of odd or even colorings

of the lollipop tree T
.2c/
g shown in Figure 1. Here, the superscript indicates that the

trunk color is fixed to be 2c in the colorings we are counting. We also define

D.2c/
g D e.2c/

g C o.2c/
g ;

ı.2c/
g D e.2c/

g � o.2c/
g :

In the case c D 0 corresponding to a surface without boundary, we simply write eg

for e.0/
g , and similarly for the other numbers just defined.

We will give recursion formulas for o.2c/
g and e.2c/

g in §7, where we will also prove

the following explicit expression for ı
.2c/
g .

Theorem 2.7. One has

.�1/cı.2c/
g D 41�g

p

.p�1/=2X
j D1

�
sin

�j.2c C 1/

p

��
sin

�j

p

��
cos

�j

p

��2g

: (5)

We think of (5) as an analog of the celebrated Verlinde formula for the dimension
of the SO.3/-TQFT vector space called Vp.†/ in Blanchet et al. [4]. In our current
notation, this dimension is

dim Vp.†/ D rankO.�.†// D dimFp
.F.†// D o.2c/

g C e.2c/
g D D.2c/

g ;

and the Verlinde formula (for p odd) says3

D.2c/
g D

�p

4

�g�1
.p�1/=2X

j D1

�
sin

�j.2c C 1/

p

��
sin

�j

p

�1�2g

: (6)

3The formula for Dg obtained by substituting c D 0 in (6) is different from the formula for dg.p/
in [4], p. 896, but they have the same sum when p is odd.
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One can, of course, combine (5) and (6) to get similar expressions for the numbers
e

.2c/
g and o

.2c/
g . Note also that if one substitutes p= sin2.�j=p/ for 1= cos2.�j=p/ in

the right hand side of our formula (5), one gets the right hand side of the Verlinde
formula (6). This will be explained in the proof of Theorem 2.7 in §7.2.

It is well-known that for g � 2, the number Dg when viewed as a function of p is
a polynomial of degree 3g � 3 in p (see for example Zagier [21] or [4]). Moreover,
the number D

.2c/
g is a polynomial in p and c of total degree 3g � 2. (This follows

from a residue formula for D
.2c/
g which we shall give in §7.4.) We have a similar

result for ı
.2c/
g . To state it, let Bn be the Bernoulli numbers defined by

t

et � 1
D

1X
nD0

Bn

tn

nŠ
: (7)

Note B1 D �1=2 and Bk D 0 for all odd k � 3. It will be convenient to denote (see
e.g. Ireland and Rosen [12], p. 231)

zBn D 1

2

.�1/nC1B2n

.2n/Š
D �.2n/

.2�/2n
:

Theorem 2.8. For g � 1, we have that ı
.2c/
g is an (inhomogeneous) polynomial in

c and p of total degree 2g � 1. The homogeneous part of degree 2g � 1 in this
polynomial is given by

.�1/g�1

2gX
kD1

2.2k � 1/
Bk

kŠ

c2g�k

.2g � k/Š
pk�1 : (8)

In particular, for any fixed value of c 2 f0; 1; : : : ; .p�3/=2g, the polynomial ı
.2c/
g .p/

has degree 2g � 1 in p. Moreover, the leading coefficient of this polynomial is
4.22g � 1/ zBg .

This should be compared to the fact that the leading coefficient of the polynomial
Dg.p/ is zBg�1 (see formula (6) in Zagier [21]4 or Corollary 2.10 below). This
leading coefficient is closely related to the volume of a certain moduli space (see
Witten [20], §3). Moreover, the dimension of this moduli space is equal to the degree
of the polynomial Dg.p/, by the Riemann–Roch formula. We wonder whether there
is an algebro-geometric interpretation of the degree and the leading coefficient of the
polynomial ıg.p/. We remark that in the related but different situation of SU.2/-
TQFT at even level, a similar question about an algebro-geometric interpretation of the
difference of the number of even and odd colorings (albeit for a quite different notion
of even and odd colorings) was answered affirmatively in Andersen and Masbaum [2]
in terms of certain geometrically defined involutions on the moduli space.

4Our Dg is 2�g times Zagier’s D.g; p/, which is the dimension of the SU.2/-TQFT vector space
V2p.†g/. This fact comes from a tensor product formula, see Theorem 1.5 of [4]. The V2p-theory
corresponds in Conformal Field Theory to SU.2/ at level k D p � 2.
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Theorem 2.8 will be proved in §7.3. It implies that the dimensions o.2c/
g and e

.2c/
g

of our irreducible factors F odd.†/ and F.†/=F odd.†/ are polynomials in p and c

which coincide with the polynomial D
.2c/
g =2 in degrees higher than 2g � 1. This

leads to the following corollary, which will be proved in §7.4.

Corollary 2.9. For g � 2, both e
.2c/
g and o

.2c/
g are polynomials of total degree 3g �2

in p and c. For g � 3, the leading terms of these polynomials are given by

e.2c/
g � o.2c/

g � .�1/g

4

2g�2X
kD0

Bk

kŠ

c2g�2�k

.2g � 2 � k/Š

�
1 C 2c

2g � 1 � k

�
pg�1Ck (9)

where � means equality up to addition of a polynomial in p and c of total degree
� 3g � 4.

Knowing the terms of total degree 3g � 2 and 3g � 3 in e.2c/
g and o.2c/

g (as given

in the preceding Corollary 2.9) allows one to compute the leading term of e.2c/
g and

o
.2c/
g when viewed as polynomials in p, with c held fixed. Corollary 2.9 implies that

these leading terms are given as follows.

Corollary 2.10. Assume c 2 f0; 1; : : : ; .p � 3/=2g is fixed. If g � 3, then both e
.2c/
g

and o.2c/
g are polynomials of degree 3g�3 in p with leading coefficient .c C 1

2
/ zBg�1.

For g D 2, we will write down e
.2c/
2 and o

.2c/
2 in (21) and (22) in §7.1. In this

case, the leading terms are slightly different: for fixed c, one has that e.2c/
2 and o

.2c/
2

are polynomials of degree 3 in p, with leading coefficient .c C 1/=24 and c=24,
respectively, except for o2 D o

.0/
2 which is identically zero.

In §7.5, we will give a residue formula for ı
.2c/
g similar to the residue formula for

D
.2c/
g mentioned above.

Remarks 2.11. (1) One can show [14] that the modular representations F odd.†/ and
F.†/=F odd.†/ of the mapping class group �† factor through the natural map

�† �� Sp.2g; Z/ �� Sp.2g; Fp/ :

(But this is in general not the case for the representation F.†/ itself.) We wonder
about how to characterize our irreducible factors among the modular representations
of the symplectic group Sp.2g; Fp/ in characteristic p. As a step in this direction,

in the case p D 5, we have identified our dimensions e.2c/
g .5/ and o

.2c/
g .5/ with the

dimensions of some known modular representations (see §8).
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(2) In the genus one case, where F.†/ itself is irreducible, we have e
.2c/
1 .p/ D

.p�1/=2�c, and o.2c/
1 .p/ D 0. In this case, we computed the modular representation

F.†1.2c// for any p and c already in [7], where we showed that F.†1.2c// (which
was denoted by �C

p;0.Tc/ in [7]) is isomorphic to the space of homogeneous polyno-
mials over Fp in two variables of total degree .p � 3/=2 � c. It is well-known that
this representation of Sp.2; Fp/ D SL.2; Fp/ is irreducible for every c � .p � 3/=2.

(3) Theorem 2.4 also gives information on the representations of the extended
mapping class group on the quotients

�.†/=.1 � �p/N �.†/

for any N � 1. The study of these higher quotient representations is interesting,
because they factor through finite quotients of the extended mapping class group,
but approximate the TQFT-representation better and better as N increases. This is
discussed in more detail in [7].

(4) The proper irreducible subrepresentation F odd.†/ of F.†/ (in the case g � 2

and .g; c/ ¤ .2; 0/) is the radical of a certain �†-invariant bilinear form on the
Fp-vector space F.†/. This form is symmetric if c � ..p C 1/=2/ g .mod 2/.
Otherwise this form is skew-symmetric. It is induced (after rescaling by .1 � �p/�c)
from a natural ZŒ�p�-valued form on the lattice �.†/. See §14 of our paper [6] for an
explicit description of this form in the case c D 0 (i.e. when the surface has empty
boundary). This description generalizes to the case c ¤ 0. 5

3. Proof of Corollary 2.6 and irreducibility in characteristic ¤ p

This is based on the following well-known lemma, whose proof we omit.

Lemma 3.1. Suppose a group G is represented on a vector space V over a field
k. If the associated algebra morphism kŒG� ! Endk.V / is surjective, then the
representation is irreducible.

Proof of Corollary 2.6 assuming Theorem 2.4. If g � 1 or if .g; c/ D .2; 0/, all
colorings are even and hence F odd.†/ D 0. Thus, by (4) (which follows immediately
from Theorem 2.4), the image of FpŒ�†� is EndFp

.F.†// and Lemma 3.1 implies
that the representation is irreducible in this case. Otherwise, both F odd.†/ and
F ev.†/ are non-zero. Applying again Lemma 3.1, it follows from (4) that F odd.†/

is an irreducible subrepresentation of F.†/, and the quotient representation F.†/=

F odd.†/ with the induced action is again irreducible.

5If c ¤ 0, one should define the notion of even and odd colorings as in Definition 2.3. The definition
of even and odd colorings in [6], p. 838, applies only to the case c D 0.



Irreducible factors of modular representations in TQFT 233

We only need to show, in the case that F odd.†/ ¤ 0, that F odd.†/ is the only
proper non-trivial subrepresentation of F.†/. The argument is quite standard, but we
give details for the reader’s convenience. Suppose, then, that V � F.†/ is a proper
non-trivial subrepresentation.

We consider first the case that V \ F odd.†/ ¤ 0. Then V � F odd.†/ since
F odd.†/ is irreducible. If V is strictly bigger than F odd.†/, then NV , the image of
V in F.†/=F odd.†/, is non-zero. But F.†/=F odd.†/ is also irreducible. So NV D
F.†/=F odd.†/ and hence V D F.†/ which is a contradiction. Thus V D F odd.†/

in this first case.
We consider now the second case, where V \ F odd.†/ D 0. We will see that this

case cannot happen. We proceed as follows. If V \ F odd.†/ D 0, then NV , the image
of V in F.†/=F odd.†/ is non-zero, hence equal to F.†/=F odd.†/, by irreducibility.
It follows that

dim V D dim NV D dim.F.†/=F odd.†// D dim F ev.†/

and the projection � D IdF ev.†/ ˚ 0F odd.†/ from F.†/ onto F ev.†/ along F odd.†/

sends V isomorphically to F ev.†/.
Now by (4) the projection � lies in the image of FpŒ�†�. As V is stable under the

action of �†, it follows that V must be equal to F ev.†/: But F ev.†/ is not stable under
the action, since Image.FpŒ�†�/ � HomFp

.F ev.†/; F odd.†//. This contradiction
shows that the second case does not occur.

Theorem 2.4 also implies the following corollary for the representation over the
complex numbers which generalizes a result of Roberts [17] (see Remark 3.3).

Corollary 3.2. If the surface † has at most one boundary component and if p is a
prime, the representation of the extended mapping class group on the SO.3/-TQFT
vector space at the p-th root of unity is irreducible over the complex numbers.

Note that irreducibility over the complex numbers implies irreducibility over the
cyclotomic field Q.�p/.

Remark 3.3. In the case where † is closed, Corollary 3.2 is due to Roberts [17].
Roberts actually considered the SU.2/-TQFT-representation. But when the repre-
sentation is considered over the complex numbers, his argument works also in the
SO.3/-case we are considering in this paper. Roberts’ argument is, however, quite
different from ours.

Proof of Corollary 3.2. By hypothesis we have † D †g.2c/ for some g and c, and
the representation under consideration is simply �.†/ ˝ C. As 1 � �p is a unit in C,
Theorem 2.4 shows that the group algebra CŒz�CC

† � of the extended mapping class
group maps onto EndC.�.†/ ˝ C/. Thus Lemma 3.1 gives the result.

The same argument works in finite characteristic ¤ p, as follows.
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Corollary 3.4. If I is an ideal in O D ZŒ�p� so that O=I is a finite field of charac-
teristic ` ¤ p, then the modular representation �.†/=I�.†/ in characteristic ` of
the extended mapping class group is irreducible.

Proof. The hypothesis implies that 1 � �p is a unit in O=I and so the result follows
from Theorem 2.4 as in the complex case above.

Remark 3.5. More generally, if I is any ideal in O not divisible by .1 � �p/, then
1 � �p is a unit in the ring R D O=I and so the image of the extended mapping class
group generates the entire endomorphism ring EndR.�.†/=I�.†//. This is why we
focus our attention on the ideal .1 � �p/ in this paper.

4. Skein-theoretic definition of the integral TQFT representation

The theory of Integral SO.3/-TQFT is slightly different depending on the congruence
class of the prime p .mod 4/. Following [6], let Op D ZŒ�p�, if p � �1 .mod 4/,
and Op D ZŒ�4p�, if p � 1 .mod 4/. The Integral TQFT lattice �p.†/ defined
in [6], §2, has coefficients in the ring Op . In the case p � 1 .mod 4/, we defined
in [6], §13, also another lattice �C

p .†/, with coefficients in ZŒ�p�. The lattice �C
p .†/

lattice is again free of finite rank. It is contained (as a set) in �p.†/, and one has

�p.†/ D �C
p .†/ ˝ZŒ�p� ZŒ�4p� .p � 1 .mod 4// (10)

where �4
4p D �p . The “bigger” lattice �p.†/ is in some sense the more natural one

from the TQFT point of view. But for the purpose of studying mapping class group
representations, we want the coefficient ring to be as small as possible. Therefore we
take the lattice �.†/ considered in Theorem 2.4 to be

�.†/ D
8<
:

�p.†/ if p � �1 .mod 4/,

�C
p .†/ if p � 1 .mod 4/.

(11)

Thus, in both cases, �.†/ is a free O-module of finite rank, where O D ZŒ�p�.
We will continue to use the notations O and �.†/ whenever it is possible to make
statements which are true in both cases. However, the proof of Theorem 2.4 will
require some additional arguments in the case p � 1 .mod 4/. We hope there will
be no confusion from the fact that O is different from Op in this case.

The construction of these lattices in [6] is a refinement of the skein-theoretic
construction of TQFT from the Kauffman bracket in Blanchet et al. [4].

Notation 4.1. Throughout the rest of the paper, we use the notations h D 1 � �p and
d D .p � 1/=2.
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We let Kauffman’s skein variable be A D ��dC1
p ; this is a primitive 2p-th root

of unity, and a square root of �p. As customary in the skein-theoretic approach to
TQFT, rather than considering surfaces with boundary, we think of closed surfaces
equipped with colored banded points. (A banded point in a surface † is a small
oriented closed interval embedded in †.) Thus, † D †g.2c/ will from now on stand
for a closed surface of genus g equipped with one colored banded point colored 2c,
where 0 � c � d � 1.

The TQFT-module Vp.†/ of [4] has coefficients in OpŒh�1� D OpŒp�1�.6 This is
a version of the Reshetikhin–Turaev SO.3/-TQFT module at the prime p associated
to †. Elements of Vp.†/ are represented skein-theoretically as linear combinations
of colored banded graphs in a handlebody H with @H D †, where the graphs should
meet the boundary nicely in the colored banded point. For example, the lollipop tree
T

.2c/
g of Figure 1 (with banding parallel to the plane) and some coloring defines an

element of Vp.†/ where † D †g.2c/.
More generally, any closed connected 3-manifold M equipped with an identifi-

cation of its boundary @M with †, and containing a colored banded graph which
meets † in the banded point, defines an element Z.M; G/ of Vp.†/. Here (as is
customary) we suppress the identification of @M with † from the notation, but it is
important to realize that the element Z.M; G/ depends on this identification; indeed,
the extended mapping class group z�CC

† acts on the set of such .M; G/ by changing
how @M is identified with †, and this induces the action of z�CC

† on the TQFT-module
Vp.†/. We also downplay a technicality: in order to define Z.M; G/ we must fix a
lagrangian in H1.†I Q/ and equip M with an integer weight to resolve the so-called
framing anomaly. Increasing the weight by 1 multiplies Z.M; G/ by an invertible
scalar called � in [6]. But lagrangians and weights will play almost no role in the
present paper, and by abuse of notation, we simply write Z.M; G/ and Vp.†/.7 This
method of resolving the framing anomaly by using lagrangians and integer weights
was pioneered by Walker [19] and developed by Turaev [18]. See also [8] for our
take on this.8

The Integral TQFT lattice �p.†/ was originally defined as the Op-submodule of
Vp.†/ spanned by all the elements Z.M; G/ coming from connected 3-manifolds M

equipped with colored graphs G (and any integer weight) [5] and [6]. In our joint
paper with van Wamelen [10], it was shown that �p.†/ could be also described as
the Op-submodule spanned by certain skein elements in the handlebody H: In other
words, we can use the fixed 3-manifold H if we permit our skein elements to have
certain carefully controlled denominators. This is done as follows.

Recall that banded knots can be also colored (= cabled) by skein elements (= linear
combinations of banded links) living in a solid torus. The skein-theoretic definition of

6We have OpŒh�1� D OpŒp�1� because .hp�1/ D .p/ as ideals in ZŒ�p�.
7Formally, one may think that the notation M stands for a manifold equipped with an integer weight,

and † stands for a surface equipped with a lagrangian. This is also the point of view adopted in [8].
8Another way to resolve the framing anomaly is to use p1-structures as in [4].
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�p.†/ is as the Op-submodule of Vp.†/ spanned by so-called mixed graphs9 in [10]
where a mixed graph is a colored banded graph G union a banded link L with each
component of L colored by the following skein element v in the solid torus

v D h�1.z C 2/ (12)

(Here, z stands for the banded knot given by the core of the solid torus.) It is
important to observe that the Op-module �p.†/ obtained in this way is bigger than
the Op-submodule of Vp.†/ spanned by colored banded graphs in H because v has
denominator h, which is a prime in O. But it is this Op-module �p.†/ which carries
a natural action of the extended mapping class group z�CC

† , as is most easily seen
from the above description of �p.†/ in terms of all connected 3-manifolds M with
boundary identified with †:

According to (10) and (11), in the case p � 1 .mod 4/, �.†/ is an O-module
contained in the Op-module �p.†/: We still have that �.†/ is the O-submodule of
Vp.†/ spanned by all mixed graphs in H [6], §13.

We refer the reader to [6] for the definition of the basis elements b� of �.†/

discussed in the introduction. Details of this definition will not be needed in this
paper, but we remark that although the b� are indexed by colorings of the banded
lollipop tree T

.2c/
g , the basis element b� is not just T

.2c/
g with coloring � , but is a

mixed graph in the sense explained above, which furthermore has been rescaled by
a certain non-positive power of h. In fact, the colorings of T

.2c/
g give the so-called

graph basis of Vp.†/, and the basis fb� g of �.†/ is obtained from this graph basis
by a triangular (but not unimodular) base change (see [6] for more details).

Let us now describe the action of the extended mapping class group on �.†/.
First we recall that, as usual in TQFT, any cobordism M from † to itself, equipped
with some colored graph G connecting the colored point in the source surface † to the
colored point in the target surface †, defines an endomorphism of Vp.†/ which, by
abuse of notation, we denote again by Z.M; G/. If furthermore M is connected, then
Z.M; G/ preserves the lattice �p.†/ (see [6]).10 For example, consider M D † � I
with weight zero, equipped with the banded arc pt � I with color 2c (where pt is
the colored banded point in †). We denote this “vertical” banded arc by C, and we
let C.2c/ denote this arc colored by 2c. Then we have that Z.† � I; C.2c// is the
identity map of �.†/.

Next recall that the mapping class group �† is generated by Dehn twists about
simple closed curves ˛ which avoid the colored banded point. (We remind the reader
that �† here is the mapping class group of † which fixes the banded point, which
is the same as the mapping class group rel. boundary of † with an open disk around
the banded point removed; in particular, the Dehn twist about a curve encircling the
banded point is non-trivial in �†.) For a certain skein element !C in the solid torus

9Mixed graphs were called v-graphs in [6].
10But Z.M; G/ does not necessarily preserve the lattice �.†/ D �

C
p .†/ in the case p � 1 .mod 4/.

We will address this problem at the end of §6.
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to be specified below, we denote by ˛0.!C/ the skein element in † � I obtained by
cabling ˛ � 1

2
by !C, with framing zero relative to the surface † � 1

2
lying in † � I.

Here is, then, a skein-theoretic description of the action.

Proposition 4.2. For a certain lift W.˛/ of the Dehn twist about ˛ to the extended
mapping class group z�CC

† , the action of W.˛/ on �.†/ is given by the endomorphism

Z.† � I; C.2c/ [ ˛0.!C// : (13)

Statements like this are, of course, well-known in the skein-theoretic approach
to TQFT. A more precise formula, taking into account the extra structure (weights
and lagrangians) needed to define the central extension z�CC

† and to specify the lifts
W.˛/ of Dehn twists to z�CC

† , can be found in §11 of [8]. We don’t need this more
precise formula to describe the image of the group algebra OŒz�CC

† � in EndO.�.†//,
because (1) the lifts W.˛/ generate the extended mapping class group z�CC

† , and (2)
in the central extension

Z �! z�CC
† ! �† ;

any two lifts of the same mapping class to z�CC
† differ by a power of the central

generator, and this central generator acts on �.†/ by �4 (which is a unit in O) times
the identity map.11 Thus we have the following corollary, which will be the starting
point for our proof of Theorem 2.4.

Corollary 4.3. The image of OŒz�CC
† � in EndO.�.†// is the O-subalgebra generated

by the endomorphisms Z.†� I; C.2c/[˛0.!C// associated to simple closed curves
˛ on † avoiding the colored banded point.

It remains to describe !C. Its key property (which basically implies Proposi-
tion 4.2) is described in Figure 2.

!C

D

Figure 2. Encircling a strand with !C has the same effect in TQFT as giving that strand a
positive twist.

11In fact, � is a square root of A�6�p.pC1/=2 , and since A2 D �p we have �4 D ��6
p : Notice that

�4 � 1 .mod h/. This is why the representation of z�CC

† on F .†/ D �.†/=h�.†/ factors through
the ordinary mapping class group �†.
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An explicit formula for !C is given in §4 of [7], based on computations of a
similar skein element in Blanchet et al. [3]. In this paper, we only need to know the
following about !C. Let T denote a closed surface of genus one (i.e., a torus) viewed
as the boundary of a solid torus. Since !C lies in the solid torus, it defines an element
of Vp.T /. By abuse of notation, we denote this element again by !C.

Proposition 4.4. One has !C 2 �.T /. Moreover, for the usual algebra structure in
�.T / coming from thinking of the solid torus as an annulus � I, the elements

1; !C; !2C; : : : ; !d�1C

form a basis of �.T /.

(Here, 1 stands for the empty link, which is the unit element of this algebra.)

Proof. We first consider the case p � �1 .mod 4/, where �.T / D �p.T /. The
following proof is similar to the proof of Theorem 6.1 of [10], where the reader will
find more details on some of the arguments that follow.

By its very definition, see [5] and [6], the lattice �p.T / contains the TQFT-
vectors associated to all connected manifolds with boundary T . Since !C, up to
multiplication by a unit, is also represented in Vp.T / by the result of �1-framed
surgery to the solid torus with boundary T along the core of the solid torus, we have
that !C 2 �p.T /. Let P be the Op-module spanned by the purported basis. By
similar reasoning, P � �p.T /.

Let fe0 D 1; e1; : : : ; ed�1g be the standard graph basis of Vp.T /: The determinant
of a matrix which expresses a basis for �p.T / in terms of fe0; e1; : : : ; ed�1g is given
by h�d.d�1/=2, up to units (see [10], p. 272).

Consider the Hopf pairing

.. ; // W �p.T / � �p.T / �! Op;

where ..x; y// is given by cabling the zero-framed Hopf link with x and y and
then evaluating the resulting skein element in S3 (normalized so that the empty link
evaluates to 1.) The determinant of the d � d matrix ..ei ; ej // is up to units given
by hd.d�1/. This is because the ei are an orthonormal basis for Vp.T / with respect
to the usual Hermitian TQFT form on Vp.T / [4], and the Hopf pairing that we are
considering differs from this by complex conjugation (which leaves the ei fixed), the
action of a homeomorphism (which is an isometry), and a rescaling by hd�1 (up to
units).

If we pair our purported basis with the ei under the Hopf pairing, we get

..!iC; ej // D .�1/j Œj C 1��i
j ;
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where �j D .�A/j.j C2/ D �
.dC1/j.j C2/
p are the twist eigenvalues, and the quantum

integers Œj C 1� are defined by

Œn� D A2n � A�2n

A2 � A�2
D �n

p � ��n
p

�p � ��1
p

:

Ignoring the unit12 factors .�1/j Œj C 1� which appear as multiples of the columns,
this is a Vandermonde matrix. (This matrix appeared on [10], p. 272.) Up to units,
its determinant is hd.d�1/=2. It follows that the determinant of the matrix expressing
!iC in terms of ej is given by h�d.d�1/=2, up to units. As a known basis for �p.T /

has this same property, and P � �p.T /, it follows that P D �p.T /. This completes
the proof in the case p � �1 .mod 4/.

Now assume p � 1 .mod 4/. Then the exact same proof as above shows that
f1; !C; !2C; : : : ; !d�1C g is a basis of �p.T /, which now has coefficients in ZŒ�4p�.
But the explicit formula for !C given in [7], §4, shows that !C and its powers lie in
the ZŒ�p�-lattice �.T / D �C

p .T /. Using (10), it follows that f1; !C; !2C; : : : ; !d�1C g
is a basis of �.T /. This completes the proof in the case p � 1 .mod 4/.

5. v0-colored links in the product of a surface and an interval

As the material presented here has independent interest, for this section only, we work
in a more general context where the coefficient ring can be any integral domain R

containing an invertible element A for which 1 C A ¤ 0.
Let S be a compact oriented surface, possibly with boundary (but without colored

points). Let K.S �I/ be the Kauffman bracket skein module of S �I with coefficients
in R. Observe that K.S � I/ has a natural product structure (given by stacking one
banded link on top of another) which makes K.S � I/ into an algebra. A banded
link L is called layered if it can be written as a product of banded knots, i.e., if each
component of L projects to a different subset of I. We say that a banded knot in S � I
is flat if it is (up to isotopy) entirely contained in a surface S � ftg for some t in the
interior of I, and the banding is also flat (i.e. parallel to the layers). Equivalently, a
banded knot is flat if it has a diagram on S without crossings.

Let v0 be the following slight modification13 of the element v defined in (12):

v0 D z C 2

1 C A

Note that v0 lies in K.solid torus/ ˝ RŒ.1 C A/�1�.

12The fact that the quantum integers Œj C1� appearing here are units in ZŒ�p� is shown in Lemma 3.1(ii)
of [16].

13Note that v0 was called v in [10], but in the present paper we follow [6] and reserve the notation v

for the element defined in Equation (12). We will see in (14) that v and v0 are essentially equivalent when
R D O.
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Lemma 5.1. The R-submodule of K.S � I/ ˝ RŒ.1 C A/�1� spanned by v0-colored
banded links is generated, as an algebra, by v0-colored banded knots.

Proof. We need to convert a v0-colored banded link L to an R-linear combination of
banded links where the components are layered in some order one on top of the other.
Recall that one of the Kauffman bracket skein relations [13] is

D A C A�1

The following equation shows how to use this skein relation to change crossings
of strands belonging to different connected components of L at the cost of introducing
an R-linear combination of v0-colored banded links with fewer crossings and fewer
components. The dotted lines show the connection scheme in the complement of a
disc in S where the crossing occurs. This allows a proof by induction on the number
of connected components of L.

v0 v0
�

v0 v0

D 1

.1 C A/2

0
BBB@

z z

�
z z

1
CCCA

D A � A�1

.1 C A/2

0
BBB@

z

�
z

1
CCCA

D A � A�1

1 C A

0
BBB@

v0
�

v0

1
CCCA

D .1 � A�1/

0
BBB@

v0
�

v0

1
CCCA:

Proposition 5.2. The R-submodule of K.S�I/˝RŒ.1CA/�1� spanned by v0-colored
banded links is generated, as an algebra, by v0-colored flat banded knots.



Irreducible factors of modular representations in TQFT 241

Proof. Using the previous lemma, it is enough to see that an element given by a
single v0-colored banded knot can be written as an R-linear combination of products
of flat banded knots. This can be proved by induction on the number of crossings
of the banded knot, using the following equation, and a similar one obtained from
the same starting diagram but with the opposite crossing data. The two asterisks are
meant to indicate two points on a disk in S to help locate the placement of the links
with respect to these reference points. Thus the empty link could be denoted by two
asterisks, but to save space, we write simply a scalar for that scalar times the empty
link. The dotted lines play the same role as in the previous equation.

The following equation, then, shows that a v0-colored banded knot with n crossings
can be rewritten as an R-linear combination of three v0-colored banded knots with
fewer than n crossings, one v0-colored two-component banded link also with fewer
than n crossings, and the empty link. By the same reasoning as in the proof of the
previous lemma, this v0-colored two-component banded link may be written as a
linear combination of v0-colored layered links with fewer than n crossings. So the
needed result can be proved by induction on the number of crossings.

v0

	 	 D 1

1 C A

 z

	 	 C 2

!

D 1

1 C A

 
A

z

	 	 C A�1

zz z

	 	 C 2

!

D 1

1 C A

 
A

z C 2

	 	 C A�1

z C 2z C 2 z C 2

	 	

� 2A�1

z C 2z C 2

	 	

�2A�1

z C 2

	 	 � 2A C 4A�1 C 2

1
CA

D A

v0

	 	 C .1 C A�1/

v0v0 v0

	 	

� 2A�1

v0v0

	 	 � 2A�1

v0

	 	 � 2 C 4A�1:
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We will say a banded link in S � I is a flat layered banded link, if it is a product
of flat banded knots. In other words, each component lies in a different S � ftg, the
banding is also flat (i.e., parallel to the layers), and each component is flat. We can
rephrase the above result as follows.

Corollary 5.3. The R-submodule of K.S �I/˝RŒ.1CA/�1� spanned by v0-colored
banded links is spanned (as an R-module) by flat layered v0-colored banded links.

6. Proof of Theorem 2.4

Let us consider the results of the previous section but taking R to be O with
A D ��dC1

p . We write x 
 y (where x and y lie in some O-module) if x D uy

where u is a unit of O. Since 1 � A is a unit in O, see [10], Lemma 4.1(i), we have
h D 1 � �p D 1 � A2 
 1 C A. Comparing (12) and (5), we see that

v 
 v0 (14)

in K.solid torus/ ˝ OŒh�1� . Thus we have the following specialization of Corol-
lary 5.2, where we have permissibly substituted v for v0.

Proposition 6.1. The O-submodule of K.S � I/ ˝ OŒh�1� spanned by v-colored
banded links is spanned by flat layered v-colored banded links.

We now return to † D †g.2c/. In order to prove Theorem 2.4, we must compute
the image of OŒz�CC

† � in EndO.�.†//. We proceed in three steps. The first step is to
apply the previous Proposition 6.1 with S equal to † with a disk around the colored
banded point removed. Thus S � I is † � I minus a tubular neighborhood of the
vertical arc C D pt � I.

Lemma 6.2. The image of OŒz�CC
† � in EndO.�.†// is equal to the O-submodule of

EndO.�.†// spanned by elements of the form Z.† � I; C.2c/ [ s/; where s is some
v-colored banded link in .† � I/ n C :

Proof. Let E be the image of OŒz�CC
† � in EndO.�.†//, and let E 0 be the O-submodule

of EndO.�.†// described in the lemma. Note that both E and E 0 are sub-algebras of
EndO.�.†//. We must show that E D E 0.

The inclusion E � E 0 is easy: by Corollary 4.3, we know that E is the O-
subalgebra generated by the endomorphisms Z.† � I; C.2c/ [ ˛0.!C// associated
to simple closed curves ˛ on † avoiding the colored banded point. Notice that ˛0

is a flat banded knot, so that E is the subalgebra generated by the endomorphisms
coming from flat !C-colored banded knots. As !C 2 S.T /, and S.T / is spanned
by v-colored banded links in the solid torus, we see that E � E 0.



Irreducible factors of modular representations in TQFT 243

For the opposite inclusion, we must show that every v-colored banded link s in
.† � I/ n C can be rewritten as an O-linear combination of products of flat !C-
colored banded knots. We proceed as follows. First, Proposition 6.1 tells us that s

can be rewritten as an O-linear combination of flat layered v-colored banded links,
i.e., products of flat v-colored banded knots. Thus, it is enough to show that a flat
v-colored banded knot can be rewritten as an O-linear combination of products of
flat !C-colored banded knots. But this follows from Proposition 4.4. This completes
the proof.

In the next step of the proof of Theorem 2.4, we wish to replace † � I by another
cobordism from † to itself. For this we use the following general fact about Integral
TQFT.

Lemma 6.3. Let M be a compact connected oriented 3-manifold with @M D �†t†,
and let G � M be a colored banded graph which meets the boundary at the colored
points of �† and †. Let .M 0; G0/ be obtained from .M; G/ by surgery on some
framed link in M n G. Then the set of endomorphisms

fZ.M; G [ s/ W s is a v-colored banded link in M n Gg
spans the same Op-submodule of EndOp

.�p.†// as the set of endomorphisms

fZ.M 0; G0 [ s/ W s is a v-colored banded link in M 0 n G0g :

Proof. This is similar to [4], Proposition 1.9, in the skein-theoretic construction of
TQFT over a field. The proof is based on the surgery axiom (see e.g. [8], Lemma 11.1)
which says that the effect of performing surgery along a framed curve in M is the
same as the effect of cabling that curve with a certain skein element !. Given the
fact that ! lies in Sp.T / and can therefore be expressed as a Op-linear combination
of v-colored links in a solid torus, and the fact that surgery is reversible (we can also
perform surgery M 0 in the complement of G0 to recover M ), the result follows.

Notice that we have formulated the above Lemma 6.3 for the lattice �p.†/. In
the case p � 1 .mod 4/ (where O ¨ Op and �.†/ ¨ �p.†/), the lemma as stated
does not hold for �.†/. This is not really a problem, as there is also a version of
Lemma 6.3 for the lattice �.†/. But we defer the discussion of how to deal with
this issue to the end of this section. Therefore, in what follows, we will work with
the lattice �p.†/. We will thus obtain a proof of Theorem 2.4 for �p.†/ in place
of �.†/. This will already constitute a proof of Theorem 2.4 in the case p � �1

.mod 4/. Once this is done, we will then explain the extra arguments needed in the
case p � 1 .mod 4/ to conclude the proof.

In the second step of the proof of Theorem 2.4, we use Lemma 6.3 to replace
† � I with the interior connected sum of two handlebodies, H1#H2, where H2 is a
genus g handlebody with boundary †, and H1 is H2 with the reversed orientation.
Note that H1#H2 is a cobordism from † to itself.
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We will need an explicit description of this construction. To this end, we identify
† � I with the complement of a neighborhood of two linked graphs G1; G2 � S3,
as drawn in Figure 3. In this figure, the vertical arc C is drawn as a thickened line.
Note that C is not part of G1 nor of G2, as C lies in † � I.

Also we identify H1#H2 with the complement of a neighborhood of the disjoint
union of two graphs G0

1 t G0
2 � S3. One may pass from † � I to H1#H2 by doing

C1 framed surgery along g curves which encircle each of the clasps between G1 and
G2. The thickened line labelled C0 in Figure 3 represents the image of C after the
surgery. Again we remark that C0 lies in H1#H2 and is not part of G0

1 nor of G0
2.

Note that C0 meets the 2-sphere along which the connected sum occurs in a single
point.

G1

G2

C

G0
1

G0
2

C 0

Figure 3. † � I can be surgered to obtain H1#H2 .

By lemmas 6.2 and 6.3 we obtain the following result.

Lemma 6.4. The image of OpŒz�CC
† � in End.�p.†// is the Op-submodule spanned

by the endomorphisms Z.H1#H2; C0.2c/ [ s/; where s is any v-colored banded link
in H1#H2 n C0 :

We can describe this submodule as follows. First, note that G0
1 and G0

2 are lollipop
trees for two handlebodies H1 and H2 (not to be confused with H1 and H2) whose
boundaries are copies of † (and each G0

i meeting the boundary of Hi in the colored
point). Thus the second figure in Figure 3 describes a decomposition of S3 into
three pieces: the cobordism H1#H2 and the handlebodies H1 and H2. Now let
	.C0/ � H1#H2 be a tubular neighborhood of C0 which meets the handlebodies H1

and H2 along 2-disks. The complement of H1 tH2 [	.C0/ in S3 (which is the same
as the complement of 	.C0/ in H1#H2) is a genus 2g handlebody H . A lollipop tree
T for H is drawn in Figure 4.
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G0
1

G0
2

C 0T

Figure 4. A lollipop tree T for the handlebody H of genus 2g which is the complement in S3

of the union of neighborhoods of G0
1

and G0
2

and a neighborhood of C0.

Now observe that any v-colored banded link in H1#H2 n C0 may be isotoped to
lie in H , and the collection of such links then span the lattice �.@H/: The set

fb� W � is a coloring of T g
(recall that all colorings are assumed small and admissible) is a basis for �.@H/ and
hence also for �p.@H/: Thus Lemma 6.4 can be restated more explicitly as follows.

Lemma 6.5. The image of OpŒz�CC
† � in End.�p.†// is the Op-submodule spanned

by the endomorphisms
Z.H1#H2; C0.2c/ [ b� / ;

where � runs through the colorings of T .

This completes the second step of the proof of Theorem 2.4. For the third and last
step, we must first recall the orthogonal lollipop bases for the integral TQFT modules
which we constructed in [7]. The following discussion is valid for the lattices �.†/

as defined in (11). The elements of an orthogonal lollipop basis are denoted by
fQb�g, and are again indexed by (small admissible) colorings � of a lollipop tree for a
handlebody with boundary the given surface. Of course, for a given surface this basis
(as well as the original basis fb�g defined in [6]) depends on a choice of handlebody
and lollipop tree with it. The fact that our notation in what follows does not indicate
this should cause no confusion. Also we note that, in the proof we present, besides
our original surface † of genus g with one banded point colored 2c, we also need
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to consider @H , which is a surface of genus 2g with no colored points, and the basis
of �.@H/ associated to the lollipop tree T (see Figure 4). For this reason, in the
following discussion of bases, we use the letter 2e to denote the color of the colored
banded point and thus of the trunk edge (see formulas (15) and (16) below). In one
case, this trunk color is 2c and in the other case it is zero. The discussion in §2 of
bases, when modified in this way, applies as well to �.@H/.

The important property of the orthogonal lollipop basis for us is that fQb� g is
orthogonal with respect to the Hopf pairing

.. ; // W �.†/ � �.†/ �! O

which is based on placing skeins in neighborhoods of linked lollipop trees and eval-
uating. See §3 of [7] for more details about this pairing. The linked lollipop trees
defining the Hopf pairing are as in the left part of Figure 3 in the case where the
surface is †g.2c/, and as in Figure 4 in the case where the surface is @H .

In [7], there is also defined a basis fQb#
�g for the dual lattice

�#.†/ D fx 2 V.†/ W ..x; y// 2 O 8y 2 �.†/g
so that [7], Remark 3.5,

..Qb� ; Qb#
� 0// 
 ı�

� 0 :

Moreover, Qb#
� is a power of h�1 times Qb� . For our computation below, it will be

convenient to express this rescaling by a power of h�1 as follows. Given a coloring �

of a lollipop tree, let A.�/ D P
ai denote the sum of the half-colors at the stick edges

(see Figure 1). Then for a certain skein element x� (see [7], eq. (6), Corollary 3.4)
we have

Qb� D h�b.A.�/�e/=2cx� (15)

and
Qb#

� D h�d.A.�/Ce/=2ex� (16)

where bxc is the greatest integer � x, and dxe is the smallest integer � x:

We are now ready for the final step in the proof of Theorem 2.4. Recall the lollipop
tree T in the genus 2g handlebody H . If � is a coloring of T , let

Z.�/ D Z.H1#H2; C0.2c/ [ Qb� / :

The endomorphisms Z.�/ span the image of OpŒz�CC
† � in End.�p.†// by Lemma 6.5.

We shall compute the matrix of Z.�/ with respect to the orthogonal lollipop basis of
�p.†/. We shall find that the matrix of Z.�/ is either zero or a scalar multiple of an
elementary matrix.

To carry out this computation, we need to fix some notation. Recall that the
orthogonal lollipop basis of �p.†/ consists of the Qb� where � runs through the
colorings of G1 with trunk color 2c. For two such colorings �1 and �2, let E�2;�1

be



Irreducible factors of modular representations in TQFT 247

the elementary matrix with .�2; �1/ entry equal to one, and all other entries equal to
zero. (Thus, the corresponding endomorphism sends Qb�1

to Qb�2
, and all other basis

vectors to zero.) Next, as G0
i is simply Gi in a different position, we will identify

colorings of Gi with those of G0
i . There is also a graph isomorphism r W G2 ! G1

that is given by reflection across a horizontal axis. If � is a coloring of G1, then r

induces a coloring � B r of G2, which we denote by r.�/. Let T 0 denote the graph
G0

1 [ C0 [G0
2. Given two colorings �2; �1 of G1 which are colored 2c on the trunk

edge, let �1#c�2 denote the coloring of T 0 obtained by coloring G0
1 by �1, G0

2 by
r.�2/, and C0 by 2c. Finally, we call o W T ! T 0 the graph isomorphism that sends
a loop to the loop that clasps it.

Lemma 6.6. Let � be a coloring of T . Then Z.�/ D 0 unless � D o.�1#c�2/

for some colorings �1 and �2 of G1 with trunk edge colored by 2c. Conversely, if
� D o.�1#c�2/, then the matrix of Z.�/ is a scalar multiple of the elementary matrix
E�2;�1

. The scalar multiple is h times a unit in Op if �1 is odd and �2 is even. (See
Definition 2.3 for the definition of odd and even colorings.) In all other cases, the
scalar multiple is a unit.

Proof. The matrix entry Z.�/�2;�1
is, up to units, the evaluation of the skein in S3

given by placing Qb� in H , Qb�1
in H1, and Qb#

r.�2/
in H2, with the last two connected

by C0 colored 2c, and thus determining a coloring of the graph T 0. Note that every
coloring � of T is of the form o.� 0

1#c0� 0
2/ for some � 0

1, c0, and � 0
2. Using orthogonality

for @H , we see that Z.�/�2;�1
is zero unless � 0

1 D �1, c0 D c, and � 0
2 D �2. This

shows that Z.�/ is either zero (if c0 ¤ c) or a scalar multiple of the elementary
matrix E�2;�1

(if c0 D c and � D o.�1#c�2/). Assume we are in the latter case.
Then the scalar multiple can be computed as follows. Using (15) and (16), and
A.�1#c�2/ D A.�1/ C A.�2/, we have that

Z.�/�2;�1
D h�b.A.�1/�c/=2ch�d.A.�2/Cc/=2e..Qb�1#c�2

; x�1#c�2
//

D h�b.A.�1/�c/=2ch�d.A.�2/Cc/=2ehdA.�1#c�2/=2e..Qb�1#c�2
; Qb#

�1#c�2
//


 h�b.A.�1/�c/=2c�d.A.�2/Cc/=2eCd.A.�1/CA.�2//=2e

D
8<
:

h if �1 is odd and �2 is even,

1 otherwise.

This completes the proof of Lemma 6.6.

The proof of Theorem 2.4 in the case p � �1 .mod 4/ (where �.†/ D �p.†/)
is now completed as follows. The statement to be proved is that the image of the
group algebra OpŒz�CC

† � in End.�p.†// is�
End.�ev

p .†// h Hom.�odd
p .†/; �ev

p .†//

Hom.�ev
p .†/; �odd

p .†// End.�odd
p .†//

�
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This is very similar to what Lemma 6.6 says, except that Lemma 6.6 expresses Z.�/

in the orthogonal lollipop basis fQb�g of �p.†/, whereas the definition of �ev
p .†/ and

�odd
p .†/ was in terms of the original lollipop basis fb� g. But the submodules �ev

p .†/

and �odd
p .†/ are the same no matter whether we use the original lollipop basis or the

orthogonal lollipop basis. This is because [7], §2, there is a triangular basis change
between the two bases which respects the block summands given by specifying the
stick colors 2ai . Thus, Lemma 6.5 together with Lemma 6.6 imply Theorem 2.4 in
the case p � �1 .mod 4/.

We now consider the case p � 1 .mod 4/. In this case, we need to be more
precise about the integer weights which we put on cobordisms to resolve the framing
anomaly. As mentioned in §4, changing the weight of a cobordism .M; G/ multiplies
the induced endomorphism Z.M; G/ by �, where � is a unit in Op . Thus, as long
as we were working with coefficients in Op , we could (and did) ignore weights in
the above proof. The problem in the case p � 1 .mod 4/ is that only �2 lies in
O D ZŒ�p�, but not � itself.14 Thus Z.M; G/ preserves the lattice �.†/ if and only
if the weight of M satisfies a parity condition. This condition is best formulated by
saying that M together with its weight should lie in the even cobordism category
defined in Gilmer [5]. If this is the case, we say that the weight of M is of the correct
parity. We will not need the precise formulation of this condition, which is non-trivial
to state. (It is not simply to require all weights to be even.) It will be enough for
us to know that for every cobordism M and integer n, exactly one of n or n C 1

is a weight of the correct parity for M . Also, for the cobordisms (13) describing
the representation of the extended mapping class group z�CC

† at the beginning of our
proof, it is alright to take the weight to be zero.

Here is, then, how to modify the above proof of Theorem 2.4 in the case p � 1

.mod 4/ so that it holds for the lattice �.†/ and not just for the lattice �p.†/. At the
beginning of the proof, we equip the cobordisms (13) with weight zero. In Lemma 6.3,
we add the hypothesis that both M and M 0 are equipped with a weight of the correct
parity, then the statement holds true for �.†/ in place of �p.†/. In Lemmas 6.4
and 6.5, we equip the cobordism H1#H2 from † to itself with a weight of the correct
parity, then both Lemmas hold true for the image of OŒz�CC

† � in EndO.�.†//. We do
not change anything in the computation in Lemma 6.6, but notice that Z.�/ is now
defined more precisely (by the requirement on the weight of the cobordism H1#H2

to be of the correct parity). Lemma 6.6 shows that the matrix of Z.�/ is either zero
or a scalar multiple of an elementary matrix E�2;�1

, and it also computes this scalar
multiple up to a unit in Op D ZŒ�4p�. But since we know that the matrix of Z.�/

has coefficients in O D ZŒ�p�, this actually computes the scalar multiple up to a unit
in O. The remaining arguments in the proof are the same as before. This completes
the proof of Theorem 2.4.

14As already mentioned, � is a square root of A�6�p.pC1/=2 , so that � 2 ZŒ�p� if and only if p � �1

.mod 4/. This is why Op D ZŒ�4p � if p � 1 .mod 4/. In both cases, Op is the minimal ring containing
�p and �.
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7. Proof of Theorem 2.7, Theorem 2.8, and Corollary 2.9

7.1. Recursion formulas for o
.2c/
g and e

.2c/
g . Recall that

o.2c/
g D dimFp

.F odd.†// and e.2c/
g D dimFp

.F.†/=F odd.†//

(where † D †g.2c/) are given by the number of odd or even colorings of the lollipop

tree T
.2c/
g shown in Figure 1. In a coloring of a lollipop tree, all the colors except the

loop colors must be even numbers 2a with 0 � a � d � 1. Recall [6] that a stick
edge is an edge which meets a loop. We will call a trivalent vertex at the opposite
end of a stick edge from the loop a stick vertex. We say a coloring is balanced at a
stick vertex if the three edges which meet at the stick vertex are colored 2a, 2b, and
2c with a C b C c � 0 .mod 2/: Otherwise the coloring is called unbalanced at the
stick vertex. It is easy to see from Definition 2.3 that a coloring is even if and only if
the number of stick vertices where the coloring is unbalanced is even.

As a building block, we consider first the lollipop tree T
.2c1 ;2c2/
1 associated to a

surface of genus one with two colored points colored 2c1 and 2c2 shown in Figure 5.
Note that colorings of T

.0;2c/
1 are the same as colorings of T

.2c/
1 , as an arc which is

colored zero can be erased. Let ˇ.c1; c2/ denote the number of colorings of T
.2c1;2c2/
1

that are balanced at the stick vertex and 
.c1; c2/ denote the number of colorings of
T

.2c1 ;2c2/
1 that are unbalanced at the stick vertex.

2c1 2c2

2a

a C b

Figure 5

Lemma 7.1. If c1 � c2, then

ˇ.c1; c2/ D .c2 C 1/.d � c1/

and


.c1; c2/ D c2.d � c1/:

Proof. Small admissibility at the top of the stick edge says simply that 0 � b �
d � a � 1: Admissibility at the bottom of the stick edge says

c1 � c2 � a � minfc1 C c2; 2d � 1 � c1 � c2g :
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Thus ˇ.c1; c2/ is eitherX
c1�c2�a�c1Cc2
a�c1�c2 .mod 2/

.d � a/ or
X

c1�c2�a�2d�1�c1�c2
a�c1�c2 .mod 2/

.d � a/

depending on which upper limit for a is smaller. But it turns out that both these sums
sum to .c2 C 1/.d � c1/. The unbalanced case is done similarly.

Proposition 7.2. The numbers e.2c/
g and o

.2c/
g satisfy the recursion formulas

e
.2c/
1 D ı

.2c/
1 D D

.2c/
1 D d � c and o

.2c/
1 D 0; (17)

e
.2c/
gC1 D

d�1X
aD0

.e.2a/
g ˇ.a; c/ C o.2a/

g 
.a; c//; (18)

o
.2c/
gC1 D

d�1X
aD0

.o.2a/
g ˇ.a; c/ C e.2a/

g 
.a; c//: (19)

Proof. This follows from the discussion preceding Lemma 7.1.

Of course the numbers D
.2c/
g D e

.2c/
g C o

.2c/
g and ı

.2c/
g D e

.2c/
g � o

.2c/
g can also

be computed recursively from (17)–(19). For later use, we remark that

ı
.2c/
gC1 D

d�1X
aD0

.ˇ.a; c/ � 
.a; c// ı.2a/
g D

d�1X
aD0

.d � maxfa; cg/ ı.2a/
g : (20)

It is not hard to get explicit formulas for low genus in this way, such as

e
.2c/
2 D ..c C 1/p3 � .3c2 C 3c/p2 C .2c3 � 3c � 1/p C 2c3 C 3c2 C c/=24;

(21)

o
.2c/
2 D .cp3 � .3c2 C 3c/p2 C .2c3 C 6c2 C 3c/p � .2c3 C 3c2 C c//=24;

(22)

ı
.2c/
2 D .p3 � .6c2 C 6c C 1/p C 4c3 C 6c2 C 2c/=24; (23)

o3 D .p � 3/.p � 2/.p � 1/2p.p C 1/=2880; (24)

e3 D .p � 1/p.p C 1/2.p C 2/.p C 3/=2880; (25)

ı3 D .p � 1/p.p C 1/.p2 C 1/=240; (26)

ı4 D .p � 1/p.p C 1/.17p4 C 31p2 C 24/=40320; (27)

ı5 D .p � 1/p.p C 1/.31p6 C 82p4 C 103p2 C 72/=725760: (28)
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7.2. Proof of Theorem 2.7. We must prove formula (5) for ı
.2c/
g . To this end, let us

reformulate the recursion relation (20) in terms of theVerlinde algebra, as follows. The
Verlinde algebra Vp for the SO.3/-TQFT at the p-th root of unity (where p D 2d C1)
is the quotient algebra

Vp D KŒz�=.ed � ed�1/

where K D Q.�p/ is the cyclotomic field and where ei D ei .z/ is the Cheby-
shev polynomial of the second kind defined recursively by e0 D 1; e1.z/ D z, and
enC1.z/ D zen.z/ � en�1.z/ (see Blanchet et al. [3] and [4].) In Vp , one has

edCi D ed�1�i ; (29)

so that the linear basis fe0; e1; : : : ; ed�1g of Vp is the same, up to reordering, as the
basis fe0; e2; : : : ; e2d�2g. If x 2 Vp , we denote by M.x/ D .M.x/j i / the d � d

matrix describing multiplication by x in the basis fe0; e2; : : : ; e2d�2g. Here, we index
the matrix entries from 0 to d � 1 so that

x e2i D
d�1X
j D0

M.x/j i e2j :

The following result identifies .�1/cı
.2c/
g as a matrix coefficient.

Proposition 7.3. Define yK 2 Vp by

yK D
d�1X
nD0

.�1/n.d � n/e2n :

Then for 0 � c � d � 1, we have

.�1/cı.2c/
g D M. yKg /c;0 :

Proof. Since e0 is the identity element of the algebra Vp , we have yKge0 D yKg and
it is enough to show that

yKg D
d�1X
cD0

.�1/cı.2c/
g e2c : (30)

We prove (30) by induction on g. The formula certainly holds for g D 0; 1 since
ı

.0/
0 D 1, ı

.2c/
0 D 0 (c ¤ 0) and ı

.2c/
1 D e.2c/

1 D d � c. The induction step follows
from our recursion formula (20), since the matrix coefficients of M. yK/ are given by

M. yK/j i D .�1/iCj .d � maxfi; j g/ ;

as is easily checked using the fact that the structure constants of the Verlinde algebra
in the basis fe0; e2; : : : ; e2d�2g encode the admissibility conditions at the trivalent
vertices of a colored graph.
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The original Verlinde numbers D
.2c/
g can also be described as matrix coefficients:

put

K D
d�1X
nD0

.d � n/e2n D
d�1X
nD0

e2
2n ;

then

D.2c/
g D M.Kg /c;0 : (31)

Moreover, it is well-known how to diagonalize the matrix M.K/ using the so-called
S -matrix, and this diagonalization gives a proof of the Verlinde formula (6) (see
Remark 7.6 below). We now apply the same method to the matrix M. yK/.

Here is a formulation of the basic diagonalization result. Let us write q D �p .
Let S D .Sij / be the d � d matrix defined by

Sij D q.2iC1/.2j C1/ � q�.2iC1/.2j C1/ .i; j D 0; 1; : : : ; d � 1/ :

This matrix is q � q�1 times the S -matrix of the SO.3/-TQFT, and one has

S�1 D � 1
p

S

(this last statement can also be checked by direct computation).

Lemma 7.4. Let Q D diag.�q2j C1 � q�2j �1/j D0;1;:::;d�1. Then

M.z/ D SQS�1 D � 1
p

SQS (32)

Proof. This statement can also be checked by a direct computation (which is given
in our paper [9]). Here is how to deduce it from results in Blanchet et al. [4]. On
page 913 of that paper, one finds elements vj 2 Vp which are eigenvectors for the
multiplication by z:

zvj D �.qj C1 C q�j �1/vj :

It is observed there that v0; v1; : : : vd�1 form a basis of Vp , but using (29), one sees
that this is the same, up to reordering, as v0; v2; : : : v2d�2, which is therefore also a
basis. The matrix Q is the matrix of multiplication by z in this latter basis. Moreover,
using (29) again, one can check that in our notation v2j is given by

v2j D 1

q � q�1

d�1X
iD0

Sij e2i :

This proves the lemma.
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Let Gj denote the Galois automorphism of the cyclotomic field Q.q/ (recall
q D �p is a primitive p-th root of unity) defined by Gj .q/ D qj (j D 1; : : : ; p � 1).
Thinking of yK as a polynomial in z, we see from (32) that the eigenvalues of M. yK/

are given by G2j C1.ƒ/ (j D 0; : : : ; d � 1), where

ƒ D yK.z/
ˇ̌̌
zD�q�q�1

D
d�1X
nD0

.�1/n.d � n/
q2nC1 � q�2n�1

q � q�1
D 1

.q C q�1/2
:

(To see the last equality, multiply both sides by .q � q�1/.q C q�1/2 and compare
the coefficients of the resulting polynomials.)

Thus (32) gives

M. yKg/c;0 D � 1

p

d�1X
j D0

Scj G2j C1.ƒg /Sj 0

D � 1

p

d�1X
j D0

G2j C1..q2cC1 � q�2c�1/.q � q�1/ƒg /

D � 1

p

dX
j D1

Gj ..q2cC1 � q�2c�1/.q � q�1/ƒg/:

The last equality is justified by the fact that both .q2cC1 � q�2c�1/.q � q�1/ and ƒ

lie in the real subfield Q.q C q�1/ of the cyclotomic field Q.q/.
Substituting now q D �e�i=p (which is a primitive p-th root of unity), and using

Proposition 7.3, we get (5) for ı
.2c/
g in Theorem 2.7.

Remark 7.5. In [9], eq. (5), we wrote down a different formula for ı
.2c/
g which was

based on the following expression for ƒ as a polynomial in q D �p:

ƒ D dd=2e C
d�1X
kD1

.�1/kd.d � k/=2e.q2k C q�2k/ :

We thank Don Zagier for pointing out that this is equal to 1=.q C q�1/2, which leads
to the simpler formula for ı

.2c/
g given in Theorem 2.7.

Remark 7.6. In the same way, one gets a proof of the Verlinde formula (6) by
expressing D

.2c/
g as a coefficient of the matrix M.K/ as in (31) and computing the

eigenvalues of this matrix. The computation is exactly the same, except that ƒ must
be replaced with

K.z/
ˇ̌̌
zD�q�q�1

D �p

.q � q�1/2

(see [4], p. 913).
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7.3. Proof of Theorem 2.8. Observe that ı
.2c/
1 D d � c is a polynomial in p D

2d C 1 and c of total degree one, and

ı
.2c/
gC1 D

d�1X
aD0

.d � a/ ı.2a/
g C

c�1X
aD0

.a � c/ ı.2a/
g ; (33)

as follows easily from (20). Using the well-known formula

N �1X
nD0

nk D N kC1

k C 1
C O.N k/ (34)

(where O.N k/ is a polynomial in N of degree at most k), one sees by induction on
g that ı

.2c/
g is a polynomial of total degree at most 2g � 1 in p and c. Let Lg the

homogeneous part of degree 2g � 1 in ı
.2c/
g . We must show that

Lg D .�1/g�1

2gX
kD1

2.2k � 1/
Bk

kŠ

c2g�k

.2g � k/Š
pk�1 : (35)

This will also be proved by induction. It is certainly true for g D 1. To perform
the induction step, assume it is true for g. Using (33) and (34), it is easy to see that a
monomial c2g�kpk�1 in Lg gives rise to a term

�c2gC2�kpk�1 C 2k�2g�2p2gC1

.2g � k C 1/.2g � k C 2/
(36)

in LgC1. We must show that the coefficient of c2gC2�kpk�1 in LgC1 is given by (35)
with g C 1 in place of g. This is immediate from (36) for k < 2g C 2, while for
k D 2g C 2 it follows from the identity

2gC2X
kD0

2k.2k � 1/

�
2g C 2

k

�
Bk D 0 : (37)

Identity (37) follows from Exercises 12, 17, 19, 21, and 22, in [12], Chapter 15.15

7.4. A residue formula for D
.2c/
g . For the proof of Corollary 2.9, we need the

following expression for theVerlinde formula (6) which is computed using the residue
theorem. This computation is well-known in the case c D 0 (see the references in [4].)
If c ¤ 0, however, an additional binomial coefficient appears in the formula, which
we have not seen in the literature. Therefore we sketch the computation here. We use
the notation

s.t / D sinh.t /

t
D

1X
kD0

t2k

.2k C 1/Š
: (38)

15Warning: there is a factor 2n�1 (resp. an�1) missing in the statements of Exercises 21 (resp. 22).
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Proposition 7.7 (residue formula for D
.2c/
g ). For g � 1, one has

D.2c/
g D .�p/g

2

�
41�g 2c C 1

p
restD0

� 2pt

e2pt � 1

s..2c C 1/t/

s.t /2g�1

dt

t2g�1

�

�
�c C g � 1

2g � 2

��
:

(39)

Proof (cf. [4], p. 914). We apply the residue theorem to the meromorphic 1-form

.z2cC1 � z�2c�1/dz

z.zp � 1/.z � z�1/2g�1
:

This form has simple poles at all non-trivial p-th roots of unity, and the sum of the
residues at these poles is �2D

.2c/
g =.�p/g by the Verlinde formula (6). The poles at

z D ˙1 give rise to the residue term in (39), and the pole at z D 0 gives rise to the
binomial coefficient in (39). (This term would be absent in the case c D 0.) There
are no other poles. Thus the result follows from the residue theorem.

Using the power series expansions for t=.et � 1/ in (7), and for s.t / in (38), it is
easy to see from (39) that for g � 2, D

.2c/
g is a polynomial of total degree 3g � 2 in

p and c. Moreover, it is easy to get an explicit formula for the leading order terms.
One finds that for g � 2, and in degrees � 3g � 3, the polynomial D

.2c/
g =2 is given

by the expression appearing on the right hand side of Eq. (9) in Corollary 2.9.
Corollary 2.9 follows from this by observing that both e

.2c/
g and o

.2c/
g coincide

with D
.2c/
g =2 up to addition of some polynomial of degree 2g � 1, by Theorem 2.8.

7.5. A residue formula for ı
.2c/
g . Here is an analog of Proposition 7.7 for ı

.2c/
g .

Proposition 7.8 (residue formula for ı
.2c/
g ). For g � 1, one has

ı.2c/
g D .�1/g

2

�41�g

p
restD0

� 2pt

e2pt C 1

cosh..2c C 1/t/ cosh.t /

s.t /2g

dt

t2gC1

�

C 2c C 1

2g � 1

�c C g � 1

2g � 2

��
:

(40)

Proof. Consider the meromorphic 1-form

.z2cC1 � z�2c�1/.z � z�1/dz

z.zp � 1/.z C z�1/2g
:

This form has simple poles at all non-trivial p-th roots of unity, and the sum of the
residues at these poles is .�1/cC12ı

.2c/
g by formula (5). The poles at z D ˙i give

rise to the residue term in (40), and the pole at z D 0 gives rise to the binomial
coefficient term in (40). There are no other poles. Thus the result follows, as before,
from the residue theorem.
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Remark 7.9. Formula (40) shows again that ı
.2c/
g is a polynomial in c and p of total

degree 2g � 1. Using
t

et C 1
D

1X
nD1

.1 � 2n/Bn

tn

nŠ
(41)

(as follows easily from (7)), one can write down an explicit formula for this poly-
nomial in terms of Bernoulli numbers. This could be used to give another proof of
Theorem 2.8. Below, we make two more remarks about this polynomial.

First, the contribution to ı
.2c/
g coming from the residue term in (40) is of the form

p times a polynomial in .2c C 1/2 and p2. (This is because both cosh.t / and s.t /
are even functions of t ; note also that there is no constant term in (41).) Thus, any
monomial cnpm appearing in ı

.2c/
g has m odd or zero. (See for example (23).)

Second, the contribution to ı
.2c/
g coming from the binomial coefficient is zero

for c < g � 1. In particular, for g � 2, the one-variable polynomial ıg obtained

by putting c D 0 in ı
.2c/
g is an odd polynomial in p. We claim that for g � 2 this

polynomial ıg is always divisible by

ı2 D e2 D D2 D p.p2 � 1/=24 :

(See for example formulas (26)–(28)). This can be seen as follows. First, divisibility
by p is clear since ıg is an odd polynomial in p. Next, running the residue computation
in the proof of Proposition 7.8 backwards in the special case c D 0, p D 1, one finds
that the right hand side of (40) is zero in this case. Thus the polynomial ıg is divisible
by p � 1. But since ıg is odd, it must then also be divisible by p C 1. This proves
the claim.

As mentioned in the introduction, we believe that the polynomial ı
.2c/
g and its

specialization ıg should have an algebro-geometric interpretation. If so, there should
probably be a geometric reason behind the above-mentioned properties of these poly-
nomials.

8. Further Comments

For g � p�1, Gow [11] has constructed p�1 irreducible modular K-representations
of the symplectic group Sp.2g; K/, where K is a field of characteristic p. Gow
denotes these representations by

V.g; k/ .g � p C 2 � k � g/ :

The representation V.g; k/ is a subquotient of ƒkV where V ' K2g is the stan-
dard representation of Sp.2g; K/. If K is algebraically closed, then V.g; k/ is the
fundamental module with highest weight !k; see [11], Corollary 2.4.

The dimensions of these representations of Sp.2g; K/ depend only on the char-
acteristic p of the field K. It turns out that for p D 5, the dimensions of the four
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representations constructed by Gow coincide with the dimensions of our irreducible
factors F odd.†g.2c// and F.†g .2c//=F odd.†g.2c//.

Theorem 8.1. For p D 5 and g � 4, we have

.dim V.g; g C 1 � n//nD1;2;3;4 D .e.0/
g .5/; e.2/

g .5/; o.2/
g .5/; o.0/

g .5// :

This is proved in [9]. It would be interesting to know whether these equalities
of dimensions come from isomorphisms of the corresponding Sp.2g; Fp/-representa-
tions. In [9], we give an explicit formula for the dimensions of the V.g; k/ analogous
to formulas (5) and (6) for ı

.2c/
g and D

.2c/
g . We remark that for every prime p � 5

we have a priori as many irreducible representations of Sp.2g; Fp/ as Gow.16 But
it appears that for p > 5 the dimensions of the V.g; k/ and the dimensions of our
irreducible factors are different.
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