
Quantum Topol. 5 (2014), 143–184
DOI 10.4171/QT/49

Quantum Topology
© European Mathematical Society

Integrality of Kauffman brackets of trivalent graphs

Francesco Costantino1

Abstract. We show that Kauffman brackets of colored framed graphs (also known as quan-
tum spin networks) can be renormalized to a Laurent polynomial with integer coefficients by
multiplying it by a coefficient which is a product of quantum factorials depending only on the
abstract combinatorial structure of the graph. Then we compare the shadow-state sums and
the state-sums based on R-matrices and Clebsch–Gordan symbols, reprove their equivalence
and comment on the integrality of the weight of the states. We also provide short proofs of
most of the standard identities satisfied by quantum 6j -symbols of Uq.sl2/.
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1. Introduction

The family of Uq.sl2/-quantum invariants of knotted objects in S3 as knots, links
and more in general trivalent graphs, can be defined via the recoupling theory ([9])
as well as via the theory of representations of the quantum group Uq.sl2/ ([10]
and [15]) and the so-called theory of “shadows” ([16], Chapter IX). These invariants
are defined for framed objects (framed links or graphs, see Definition 2.1) equipped
with a “coloring” on the set of 1-dimensional strata of the object satisfying certain

1This work was supported by the French ANR project ANR-08-JCJC-0114-01.
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admissibility conditions (Definition 2.4), and take values in Q.q
1
2 /. As customary in

the literature, we shall call these invariants the “Kauffman brackets” of the colored,
framed graph G and denote them by hG; coli. In particular, if G is a framed knot
k the set of admissible colorings is the set of half-natural numbers (here we use
the so-called “spin” notation) and they coincide with the unreduced colored Jones
polynomials of the knot: hk; si D J2sC1.k/.

Although the definition of Kauffman brackets via recoupling theory is simple
and appealing, the definition based on the theory of representations of Uq.sl2/ hap-
pens to be more useful for our purposes. In Section 2 we will sketch the proof of
the equivalence of the two definitions (the relations have been already studied by
S. Piunikhin [14] and is fully detailed in [3]).

It is known that, in general, hG; coli is a rational function of the variable q
1
2 (there

are various notations in the literature, for instance our q
1
2 is A in [9]). If L is a

framed link, it was shown by T. Le ([12]) that, up to a factor of the form q˙ n
2 , hL; ni

is a Laurent polynomial in q (actually in [12] a much stronger result is proved which
holds for general polynomial invariants issued from quantum group representations).

On contrast it is well known that hG; coli is not in general a Laurent polynomial
if G is a trivalent graph. The main result of the present paper is Theorem 3.2, restated
here in a simpler form (we refer to Section 3 for the notation).

Theorem 1.1 (integrality of the renormalized Kauffman brackets). There exist m; n 2
Z such that

hhG; colii + hG; coli Q
Œ2 col.e/�ŠQ

Œav C bv � cv�ŠŒbv C cv � av�ŠŒcv C av � bv�Š

2 .
p�1/mq

n
4 ZŒq; q�1�;

where the products are taken over the non-closed edges e of G and the vertices v

of G.

It turns out that hhG; colii D hG; coli if G is a link. This normalization was
proposed and conjectured to be integral by S. Garoufalidis and R. van der Veen
(in [8], where they also proved the integrality in the classical case when q D ˙1) in
order to define generating function for classical spin networks evaluations.

We hope that our result will allow further development in that direction and in
the understanding of the categorification of Uq.sl2/-quantum invariants for general
knotted objects: a categorification of tensor products of the tensor products of quan-
tum sl.2/-modules with their quantum group action and the Jones–Wenzl projector
was constructed in [7] using categories of representations of the Lie algebra gl.n/ for
various n (see also [1]). We expect that the proposed renormalization will turn out to
fit into this categorial framework (as well into the framework introduced in [2]) and
allow to build a categorial refinement of Kauffman brackets.
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The last sections are almost independent from the preceding ones. In Section 4
we recall the definition of shadow-state sums to compute hhG; colii, give a new self-
contained proof of the equivalence (first proved in [11]) between the shadow-state
formulation and the R-matrix formulation of the invariants, and comment on the
non-integrality of the single shadow-state weights. Using shadow state-sums we
also provide short proofs of the most famous identities for 6j -symbols (e.g. Racah,
Biedenharn–Elliot, orthogonality). In the last section we will quickly comment on the
case when G has non-empty boundary and on the algebraic meaning of the shadow-
state sums with respect to the state-sum based on R-matrices and Clebsch–Gordan
symbols.

1.1. Structure of the paper. In Section 2 we will recall the definition of Kauffman
brackets of colored graphs and the basic facts on representation theory of Uq.sl2/

(for generic q). We then show how to compute Kauffman brackets via morphisms
associated to tangles, and provide explicit formulas for the elementary morphisms.
In Section 3 we will define hhG; colii and prove its integrality. Section 4 is almost
independent from the first sections (basically it depends only on Lemma 3.9); there we
explain how to compute hhG; colii via shadow state-sums and provide short proofs
of some well known identities for 6j -symbols. In Section 5 we comment on the
algebraic meaning of shadow-state-sums.

Acknowledgments. The author is grateful to François Gueritaud, Roland Van der
Veen and Vladimir Turaev for their comments and suggestions.

2. Kauffman brackets via representations of Uq.sl2/

2.1. The definition of Kauffman brackets

Definition 2.1 (KTG). A Knotted Trivalent Graph (KTG) is a finite trivalent graph
G � S3 equipped with a “framing,” i.e. the germ of an orientable smooth surface
S � S3 such that S retracts on G.

Remark 2.2. Note that this is not a “fat graph” as S is required to exist around all
G and not only around its vertices. In contrast we require G to be embedded in S3.
Also, starting from the end of Subsection 2.3 we will drop the assumption for S to
be orientable.

In order to specify a framing S on a graph G we will only specify (via thin lines
as in the leftmost drawing of Figure 2) the edges around which it twists with respect
to the blackboard framing in a diagram of G, implicitly assuming that S will be lying
horizontally (i.e. parallel to the blackboard) around G out of these twists. Let us
also remark that if D is a diagram of G there is a framing SD (called the blackboard
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framing) induced on G simply by considering a surface containing G and lying almost
parallel to the projection plane. Pulling back the orientation of R2 shows that SD is
orientable. The following result is a converse.

Lemma 2.3. If G is a framed graph and S is and orientable framing on G then there
exists a diagram D of G such that SD D S .

Proof. The idea of the proof is to fix a diagram D and count the number of half
twists of difference on each edge of G between SD and S . The reduction mod 2 of
these numbers forms an explicit cochain in H 1.GI Z2/ which is null cohomologous
because S and SD are orientable. The coboundary reducing it to the 0 cochain
corresponds to a finite number of moves as those in Lemma 2.17 which change D

and isotope G into a position such that the number of half twists of difference between
S and SD is even on every edge. Then up to adding a suitable number of kinks to
each edge of G this difference can be reduced to 0 everywhere.

Let now G be a KTG, E the set of its edges, V the set of its vertices.

Definition 2.4 (Admissible coloring). An admissible coloring of G (see Figure 1 for
an example) is a map col W E ! N

2
(whose values are called colors) such that for all

v 2 V the following conditions are satisfied:

(1) av C bv C cv 2 N,

(2) av C bv � cv; bv C cv � av; cv C av � bv ,

where av , bv , and cv are the colors of the edges touching v.

2

3

7
2

7
2

3
2

5
2

Figure 1. An admissibly colored KTG containing 4 vertices and 6 edges.

Let us now fix diagram D of G such that the blackboard framing coincides with
that of G (it exists by Lemma 2.3), and an admissible coloring col on G, and recall
how the Kauffmann bracket hG; coli is defined.
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Let q 2 C,

Œn� + qn � q�n

q � q�1

and

Œn�Š +
nY

j D1

Œj �; Œ0�Š D 1:

Let also �
n

k

�
+ Œn�Š

Œk�ŠŒn � k�Š
:

If G is a framed link L and col is 1
2

on all the components of G, the Kauffman bracket

hL; 1
2
i 2 ZŒq˙ 1

2 �, is defined by applying recursively Kauffman’s rules to D:

D q
1
2 C q� 1

2 and D �Œ2�

To define the general hG; coli for trivalent colored graphs let’s first define the Jones–
Wenzl projectors JW2a 2 C.q

1
2 /ŒB.2a/�:

JW2a D 2a +
X

�2S2a

q�a.2a�1/C 3
2 T .�/

Œ2a�Š
O�

where O� is the positive braid containing the minimal number (T .�/) of crossings and
inducing the permutation � on its endpoints (it is a standard fact that such braid is
well defined). Actually JW2a is defined as an element of the Temperly–Lieb algebra,
but for the purpose of this section we will just consider it as a formal sum of braids; in
the next section a more precise interpretation will be provided. One defines hG; coli
by the following algorithm.

(1) Cable each edge e of G by JW2 col.e/, i.e. in D replace an edge e colored by a

by a formal sum of braids in B.2a/ according to the above definition of JW2a:

a �! 2a

(2) Around each vertex, connect the (yet free) endpoints of the so-obtained strands
in the unique planar way without self returns:

a b

c
�!

2a 2b

2c
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(3) This way one associates to .G; col/ a formal sum with coefficients ci 2 Q.q1=2/

of links Li contained in a small neighborhood of the framing of G and therefore
framed by annuli running parallel to it. Define

hG; coli +
X

i

ci hLi ;
1
2
i:

Theorem 2.5 (Kauffman, [9]). hG; coli is an invariant up to isotopy of .G; col/.

2.2. Basic facts on Uq.sl2/

Definition 2.6. Uq.sl2/ (we will also use the notation Uq) is the algebra generated
by E; F; K and K�1 with relations

ŒE; F � D K2 � K�2

q � q�1
;

KE D qEK;

KF D q�1FK;

KK�1 D K�1K D 1:

Its Hopf algebra structure is given by

�.E/ D E ˝ K C K�1 ˝ E;

�.F / D F ˝ K C K�1 ˝ F;

�.K/ D K ˝ K;

S.E/ D �qE;

S.F / D �q�1F;

S.K/ D K�1;

�.E/ D �.F / D 0;

�.K/ D 1:

Remark 2.7. To make clear the relation with other notations note that ours is coherent
with that of [10] after replacing their s with q; our q corresponds to q D A2 in [3]
and our E; F respectively to X and Y .
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Lemma 2.8. For each a 2 N
2

there is a simple representation V a of Uq.sl2/ of
dimension 2a C 1 whose basis is ga

u; u D �a; �a C 1; : : : ; a and on which the
action of E; F; K is

E.ga
u/ D Œa � u�Œa C u C 1�ga

uC1;

F.ga
u/ D ga

u�1; K.ga
u/ D quga

u:

Remark 2.9. In [3] and [10] different bases ea
u and f a

u for V a where used. The
changes of basis are in both cases diagonal and are

f a
m D Œ2a�Š

Œa � u�Š
ga

u

and
ea

u D Œa C u�Šga
u:

Let also recall that, by Clebsch–Gordan decomposition theorem, V a ˝ V b is
isomorphic to V aCb ˚ V aCb�1 ˚ : : : ˚ V ja�bj. Hence by Schur’s lemma, the
space Hom.V c ; V a ˝ V b/ has dimension 1 if .a; b; c/ is admissible and 0 otherwise;
in the next subsection, for each three-uple a; b; c we will choose explicit elements
Y

a;b
c 2 Hom.V c; V a ˝ V b/ which are “induced from the topology.”

2.3. Computing Kauffman brackets invariants via Uq . The standard construction
of quantum invariants via the representation theory of Uq ([10] and [15]) allows one to
associate to each diagram of an .n; m/-colored framed tangle G (possibly containing
some vertices) an operator between representations of Uq (i.e. a morphism of vector
spaces commuting with the action of Uq). More explicitly if the bottom strands of G

are colored by a1; : : : an and the top strands by b1; : : : bm then one can associate to a
diagram D of G a morphism

op.G; col; D/ W V a1 ˝ � � � ˝ V an �! V b1 ˝ � � � ˝ V bm :

To do this, one defines the operators associated to each “elementary” subdiagram
(shown in Figure 2) equipped with any admissible coloring and then decomposes
D into a vertical stacking of these subdiagrams: op.G; col; D/ is then defined as a
composition of the operators associated to the elementary blocks. If one can choose
the elementary operators so that the resulting morphism op.G; col; D/ does not de-
pend on D, then in particular, if G is closed, op.G; col; D/ will be an invariant up to
isotopy of .G; col/ with values in C.q

1
4 /.

Proposition 2.10. There exist choices of operators for all admissible colorings of the
elementary diagrams of Figure 2 such that for each closed, colored KTG .G; col/,
and each diagram D of G such that the framing of G coincides with the blackboard
framing, it holds

op.G; col; D/ D hG; coli:



150 F. Costantino

Let us define operators

[ 1
2

W V 0 �! V
1
2 ˝ V

1
2

and

\ 1
2

W V
1
2 ˝ V

1
2 �! V 0

which will allow us to compute hG; coli whenever G is a framed link and col D 1
2

.

We define it explicitly in the bases g
1
2
u and g0

0 by

\ 1
2

.g
1
2
u ˝ g

1
2
v / D ıu;�v

p�1
2u

qug0
0 (1)

[ 1
2

.g0
0/ D

1
2X

uD� 1
2

p�1
2u

qug
1
2
u ˝ g

1
2�u (2)

Then we define the morphism

1
2
1
2

R W V
1
2 ˝ V

1
2 �! V

1
2 ˝ V

1
2

associated to a positive crossing of 1
2

-colored strands by

q
1
2 Id Cq� 1

2 [ 1
2

B \ 1
2

:

Similarly, for a negative crossing we define

1
2
1
2

R� W V
1
2 ˝ V

1
2 �! V

1
2 ˝ V

1
2

by

q� 1
2 Id CqC 1

2 [ 1
2

B \ 1
2

:

Since

\ 1
2

B [ 1
2

D �Œ2�;

and by the definition of the crossing operator, it is evident that for each framed link G

colored by 1
2

on each component and for any diagram D of it, it will hold

op.G; col; D/ D hG; coli:
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Remark that
.\ 1

2
˝ Id 1

2
/.Id 1

2
˝[ 1

2
/ D Id 1

2

and this encodes an isotopy invariance for planar diagrams; therefore for every framed
.n; m/-tangle (implicitly colored by 1

2
) one has an associated morphism

.V
1
2 /˝n �! .V

1
2 /˝m

well defined up to isotopy preserving the endpoints and the framing.
To treat the general case we define now JW2a 2 End..V

1
2 /˝2a/ exactly as in

Subsection 2.1, but now interpreting it as a morphism of representations of Uq (via
the definition of the R-operators we already gave). The following holds (see [3],
Section 3.5).

Theorem 2.11 (Jones, Wenzl). The operators JW2a are projectors over the unique
submodule of .V

1
2 /˝2a isomorphic to V a.

Therefore let us fix once and for all morphisms �a W V a ! .V
1
2 /˝2a by1

�a.ga
u/ + q

a2�u2

2

Œa C u�Š
JW2a..g

1
2
1
2

/˝.aCu/ ˝ .g
1
2

� 1
2

/˝.a�u//

and projectors
�a W V ˝2a

1
2

! V a

so that
�a B �a D Ida and �a B �a B JW2a D JW2a :

These operators allow to define the morphisms associated to a trivalent vertex

Y a;b
c W V c �! V a ˝ V b

by

a b

c

+ Y a;b
c + .�a ˝ �b/ B .JW2a ˝ JW2b/ B

2a 2b

2c

B JW2c B�c

1See [3], Definition 3.5.6, and recall that our base is related to that of [3] by a diagonal change

ga
u D ea

u

Œa C u�Š
:
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where the drawing on the right represents the morphism

.V
1
2 /˝2c �! .V

1
2 /˝2a ˝ .V

1
2 /˝2b

obtained by tensoring suitably [ 1
2

and identity maps. Similarly one can define maps

P c
a;b W V a ˝ V b �! V c

by

a b

c

+ P c
a;b + �c B JW2c B

2a 2b

2c

B .JW2a ˝ JW2b/ B .�a ˝ �b/:

From these, one gets new morphisms

[a W V 0 �! V a ˝ V a

(as Y
.a;a/
0 ) and

\a W V a ˝ V a �! V 0

(as P 0
a;a), as well as

W a;b;c W V 0 �! V a ˝ V b ˝ V c

(as .Ida ˝Y
b;c
a / B [a) and

Ma;b;c W V a ˝ V b ˝ V c �! V 0

(as \c B .P c
a;b

˝ Idc/) (see Figure 2).

Figure 2. The elementary graphs and the associated morphisms. In all the drawings except the
leftmost, the framing is the blackboard framing.

Composing these elementary morphisms one can associate morphisms to any
diagram of a planar colored trivalent tangle.
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Proposition 2.12. The following morphisms V a ˝ V b ! V c coincide:

a b

D D
aa b

b

cc
c

i.e. we have
P c

a;b D .Idc ˝\b/ B Y c;b
a D .\a ˝ Idc/ B Y

a;c
b

:

The proof is a direct consequence of isotopy invariance of morphisms induced
by framed tangles colored by 1

2
, the definitions of P c

a;b
and Y

a;b
c , the identities

JW2
2a D JW2a and the following ones.

Lemma 2.13. The morphisms from .V
1
2 /˝4a ! V 0 represented by the following

diagrams coincide:

2a D 2a

Proof. Each minimal positive braid in the definition of JW2a of the left hand side, can
be slid through an isotopy over the max to a minimal positive braid in the definition
of JW2a in the right hand side The morphisms two such braids induce are the same
because the tangle they are represented by are isotopic, and their coefficients in
the sum expressing JW2a are the same because they contain the same number of
crossings.

One also defines operators a
b
R (resp. b

aR�) V a ˝ V b ! V b ˝ V a associated to
a colored positive (resp. negative) crossing as

a
bR + .�b ˝ �a/ B

2a 2b

B .�a ˝ �b/

and

b
aR� + .�b ˝ �a/ B

2a 2b

B .�a ˝ �b/

where the diagrams represent 2a parallel strands passing over (resp. under) 2b parallel
strands.
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Now that we chose our elementary morphisms, let us conclude the proof of
Proposition 2.10. Given a pair .G; col/ and a diagram D for it, using the identi-
ties �a B �a B JW2 col.a/ D JW2 col.a/ and JW2

2 col.a/ D JW2 col.a/ on all the edges

of D, one sees that op.G; col; D/ D P
i ci op.Li ;

1
2
/ where the Li and ci are the

same framed links and coefficients as in the definition of hG; coli. But since we
already proved that op.Li ;

1
2
/ D hLi ;

1
2
i, Proposition 2.10 follows.

Later on, we will want to compute the invariants also using diagrams whose
blackboard framing is not the one on G; therefore we define positive and negative
“half twist” endomorphisms Ha W V a ! V a as

Ha + �a B
2a

B �a

and

H �1
a + �a B

2a

B �a

2.4. Explicit formulas for the elementary operators. In this subsection we provide
explicit formulas for the operators defined in the preceding subsection when written
in the bases ga

u.

2.4.1. Half-twists. Let us start by the “half twist” operator Ha W V a ! V a which
is

Ha + .
p�1/2aq.a2Ca/ Ida :

We associate it to a vertical a-colored strand whose framing performs a positive half
twist with respect to the blackboard framing.

2.4.2. Morphisms associated to Y -shaped vertices. Let

Y a;b
c 2 Hom.V c ; V a ˝ V b/

be defined as in Subsection 2.3.

Definition 2.14. The quantum Clebsch–Gordan coefficient C
a;b;c
u;v;t is the coefficient

in the sum
Y a;b

c .gc
t / D

X
uCvDt

C
a;b;c
u;v;t ga

u ˝ gb
v

It is clear that C
a;b;c
u;v;t is zero if u C v ¤ t because

�.K/.ga
u ˝ gb

v / D quCvga
u ˝ gb

v

and the weight of a vector is preserved by a morphism.
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Proposition 2.15. It holds

C
a;b;c
u;v;t D p�1

c�a�b
qC1f1.�1/�1

X
z;w W zCwDc�t

.�1/zqC2Q1; (3)

where

C1 D C1.a; b; c; u; v/ D .b � v/.b C v C 1/ � .a � u/.a C u C 1/

2
;

C2 D C2.c; t; w; z/ D .z � w/.c C t C 1/

2

�1 D �1.b; c; t; v/ D .b � v/ � .c � t /

f1 D f1.a; b; c/ D Œa C b � c�ŠŒb C c � a�ŠŒc C a � b�Š

Œ2c�Š
;

Q1 D Q1.a; b; c; t; u; v; w; z/ D
�
a C u C z

a C c � b

��
b C v C w

b C c � a

��
c � t

z

�
;

and where the sum is taken over all z; w 2 N such that z C w D c � t and all the
arguments of the factorials are non-negative integers.

Proof. In [3], Lemma 3.6.10, using the basis ea
u D Œa C u�Šga

u for V a, the following
formula was provided for the Clebsch–Gordan coefficients (where we are rewriting

the formula via q-binomials and correcting a missing factor of
p�1

.t�c/
):

C
a;b;c
u;v;t D p�1

c�a�b
.�1/�1qC1f2

X
z;w W zCwDc�t

.�1/zqC2Q2; (4)

where

f2 D f2.c; t / D Œc C t �ŠŒc � t �Š

Œ2c�Š
;

Q2 D Q2.a; b; c; u; v; w; z/ D
�
a C b � c

a � u � z

��
a C u C z

z

��
b C v C w

w

�
;

and where the sum is taken over all z; w such that z Cw D c � t and all the arguments
of the quantum factorials are non-negative integers. To get our statement it is then
sufficient to multiply by ŒaCu�ŠŒbCv�Š

ŒcCt�Š
(to operate the change of basis from ea

u to ga
u), to

single out of the factorials the terms ŒaCb�c�ŠŒbCc�a�ŠŒcCa�b�Š
Œ2c�Š

and to pair the factorials
in the denominators of the summands so that their sums match a C u C z, b C v C w

and c � t (recall that u C v D t ).
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2.4.3. Cup and Cap. Let

[a W C D V 0 �! V a ˝ V a

be defined as Y
a;a
0 . An explicit computation using (3) gives in the base ga

u

[a .g0
0/ D

aX
uD�a

Œ2a�Š
p�1

2u
quga

u ˝ ga�u: (5)

This, together with the invariance under isotopy which forces the identity

.\a ˝ Ida/ B .Ida ˝[a/ D Ida

uniquely determines
\a W V a ˝ V a �! V 0

(defined as P 0
a;a) as

\a .ga
u ˝ ga

v / D ıu;�v

p�1
2u

qu

Œ2a�Š
g0

0 : (6)

2.4.4. Morphisms associated to 3-valent vertices. To compute the coefficients of
the projectors

P c
a;b W V a ˝ V b �! V c

out of Y
a;b
c we use Proposition 2.12. So letting

P c
a;b.ga

u ˝ gb
v / D

X
t

P
a;b;c
u;v;t gc

t ;

it holds

P
a;b;c
u;v;t D C

a;c;b
�u;t;v

p�1
2u

qu

Œ2a�Š
(7)

Similarly, “non-smooth minima” operators

W a;b;c 2 Hom.V 0; V a ˝ V b ˝ V c/

are defined by “pulling up the bottom leg in Y
a;b
c ,” i.e. by setting

W a;b;c + .Y a;b
c ˝ Idc/ B [c :

So, letting

W a;b;c.g0
0/ +

aX
uD�a

bX
vD�b

cX
tD�c

W
a;b;c

u;v;t ga
u ˝ gb

v ˝ gc
t
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the coefficients are

W
a;b;c

u;v;t + C
a;b;c
u;v;�t

p�1
�2t

q�t Œ2c�Š

D p�1
�a�b�c

.�1/�2qC1f3

X
z;w W zCwDcCt

.�1/zqC3Q3;
(8)

where

�2 D .b � v/ � 2t;

f3 D Œa C b � c�ŠŒb C c � a�ŠŒc C a � b�Š;

Q3 D Q1.a; b; c; �t; u; v; w; z/ D
�
a C u C z

a C c � b

��
b C v C w

b C c � a

��
c C t

z

�
;

and

C3 D �t C C2.c; �t; w; z/ D �t C .z � w/.c � t C 1/

2
:

Finally,
M a;b;c 2 Hom.V a ˝ V b ˝ V c ; V 0/

defined by
M a;b;c + \c B .P c

a;b ˝ Idc/

has coefficients

M
a;b;c
u;v;t + M a;b;c.ga

u ˝ gb
v ˝ gc

t / D P
a;b;c
u;v;�t

p�1
�2t

q�t

Œ2c�Š
: (9)

2.4.5. R-matrix. A positive crossing corresponds to the action of Drinfeld’s uni-
versal R-matrix.

Lemma 2.16. The morphism a
b
R W V a ˝V b ! V b ˝V a is given by the composition

of Drinfeld’s universal R-matrix with the flip of the coordinates and in the basis
ga

u ˝ gb
v it is

R.ga
u ˝ gb

v / D
X
n�0

Œn�Š.q � q�1/nQ4qC5gb
v�n ˝ ga

uCn (10)

where

Q4 D Q4.a; n; u/ D
�

a � u

n

� �
a C u C n

n

�
;

C5 D C5.u; v; n/ D 2uv � n.u � v/ � n.n C 1/

2
;

and where the sum is taken over all the n such that ju C nj � a and jv � nj � b. We
will denote a

b
R

h;k
u;v the coefficient of R.ga

u ˝ gb
v / with respect to gb

h
˝ ga

k
.
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Proof. The first statement is a direct consequence of the definition of a
b
R and of the

fact that
1
2
1
2

R coincides with the composition of the action of Drinfeld’s R-matrix and

the flip. To compute the explicit entries of a
b
R, we use the formulas provided in [10]

(Corollary 2.32: recall that Nt D q� 1
2 ) in the basis f

j
m and the diagonal change of

basis f
j

m D Œ2j �Š
Œj �m�Š

g
j
m:

R.ga
u ˝ gb

v / D
X
n�0

.q � q�1/n

Œn�Š
f4qC5gb

v�n ˝ ga
uCn

D
X
n�0

Œn�Š.q � q�1/nQ4qC5gb
v�n ˝ ga

uCn

where

f4 D f4.a; b; n; u; v/

D Œa C u C n�ŠŒb � v C n�Š

Œa C u�ŠŒb � v�Š

Œa � u�Š

Œ2a�Š

Œb � v�Š

Œ2b�Š

Œ2a�ŠŒ2b�Š

Œa � u � n�ŠŒb � v C n�Š
:

The morphism associated to a negative crossing whose upper strand is colored by
a and whose lower strand is colored by b is the inverse of a

b
R and can be computed

in terms of the one we just gave and two extrema:

.R�/ + .Ida ˝ Idb ˝\a/ B .Ida ˝a
bR ˝ Ida/ B .[a ˝ Idb ˝ Ida/:

An explicit formula is then computed out of (10)), (5)) and (6)):

a
bR�.gb

v ˝ ga
u/ D

X
n�0

Œn�Š.q�1 � q/nq�C5Q4ga
uCn ˝ gb

v�n: (11)

where the sum is taken over all the n such that ju C nj � a and jv � nj � b. Remark
that a

b
R� D a

b
R�1 because a

b
R� B a

b
R D Ida ˝ Idb . We will denote a

b
.R�1/

h;k
u;v the

coefficient of R�1.ga
u ˝ gb

v / with respect to gb
h

˝ ga
k

. The following well-known
lemma relates R-matrices to Y -morphisms.

Lemma 2.17 (half-twist around a vertex). For every admissible 3-uple .a; b; c/ it
holds

ab

c

D a
bR B Y a;b

c D .H �1
b ˝ H �1

a / B Y b;a
c B .H c/ D ab

c

.
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Proof. It is sufficient to prove the equality for the highest weight vector gc
c 2 V c ; to do

this it is sufficient to check that a
b
RBY

a;b
c .gc

c / and .H �1
b

˝H �1
a /BY

b;a
c B.H c/.gc

c / have
the same coefficient with respect to the element gb

b
˝ga

c�b
of the basis gb

j ˝ga
i ; ji j �

a; jj j � b of V b ˝ V a. By (10) and (3) this coefficient is for the left hand sideX
uCvDc

a
bRb;c�b

u;v � C a;b;c
u;v;c D a

bR
b;c�b

c�b;b
� C

a;b;c

c�b;b;c

D qC6 � p�1
c�a�b

.�1/0q�C7f5;

where

f5 D f5.a; b; c/ D Œ2b�ŠŒa C c � b�Š

Œ2c�Š
;

C6 D C6.b; c/ D 2.c � b/b;

and

C7 D C7.a; b; c/ D 1

2
.a � .c � b//.a C .c � b/ C 1/:

The coefficient on the right hand side is .H b
b

/�1.H a
a /�1C

b;a;c
b;c�b;c

.H c
c / which equals

p�1
3c�3a�3b

qC8.�1/a�.c�b/qC7f5 D p�1
c�b�a

qC8qC7f5

where
C8 D C8.a; b; c/ D c2 C c � .a2 C a/ � .b2 C b/:

A straightforward computation shows that the two coefficients are indeed equal.

2.5. The state-sum computing hG; coli. Let G be a closed KTG, E be the set of its
edges, V the set of its vertices and col W E ! N

2
an admissible coloring. Let also D be

a diagram of G and for every e 2 E, let ge 2 N
2

be the difference between the framing
of e in G and the blackboard framing on it (it is half integer because the two framings
may differ of an odd number of half twists). Let C; M; N be respectively the set of
crossings, maxima and minima in D (recall that we are fixing a height function on
R2 to decompose D into elementary subgraphs). Then let f1; : : : fn be the connected
components of D n .V [ M [ N [ C /. Remark that each fj is a substrand of an
edge of G therefore it inherits a color which we will denote cj . To express hG; coli
as a state-sum, let us first define a state.

Definition 2.18 (States). A state is a map s W ff1; : : : fng ! Z
2

such that js.fj /j � cj ,
for all j D 1; : : : n and s.fj / is integer if and only if cj is. Given a state s, we will
call the value s.fj / the state of fj . (Equivalently, a state is a choice of one vector
g

cj

s.fj /
of the base of V cj for each component of D n .V [ M [ N [ C /.)
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The weight w.s/ of a state s is the product of a factor ws.x/ per each x crossing,
vertex, maximum and minimum of D. To define these factors, in Table 1 use the
letters a; b; c for the colors of the strands and u; t; v; w for their states.

Table 1

ws

�
a

u v

�
= ıu;�v

p�1
2u

qu

Œ2a�Š
ws

�
a

u v �
= ıv;�uŒ2a�Š

p�1
2u

qu

ws

�
a b

w

uv

t �
= a

b
R

t;w
u;v (see (10)) ws

�
a b

w

u v

t �
= a

b
.R�1/

t;w
u;v (see (11))

ws

�a b

c

�
= C

a;b;c
u;v;t (see (3)) ws

�
a b

c �
= P

a;b;c
u;v;t (see (7))

ws

�
a b c

u v t�
= W

a;b;c
u;v;t (see (8)) ws

�
a b c

u v t

�
= M

a;b;c
u;v;t (see (9))

Finally, to take into account the action of the half-twist operators Hj on the edges
of G, let

F.D; col/ +
Y

e2edges

p�1
4ge col.e/

q2ge.col.e/2Ccol.e//

be the framing factor (note that it does not depend on any state but it does depend on
the diagram D). The weight of a state s of hG; coli is then defined as

w.s/ D F.D; col/
Y

M2maxima

ws.M/
Y

m2minima

ws.m/
Y

c2crossings

ws.c/
Y

v2vertices

ws.v/ (12)

The value of hG; coli is then given by

hG; coli D
X

s2states

w.s/ (13)

since the state-sum represents nothing else than the composition of the elementary
morphisms associated to G as a morphism

op.G; col; D/ W V 0 �! V 0:

Remark 2.19. The above state-sum shows that one can extend this way the definition
of Kauffman brackets to colored KTG’s whose framing is a non-orientable surface:
diagrams of such KTG’s will always contain some half-twists which will contribute
through a constant multiplicative factor (included in F.D; col/).
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Example 2.20. If L D L1; : : : Ln is an unlink with (possibly half-integral) framings
g1; : : : gn and colored by colors c1; : : : cn then

hL; coli D
nY

iD1

.�1/2ci Œ2ci C 1�.
p�1/4gi ci q2gi .c2

i
Cci /

It is sufficient to prove it for the case of an unknot colored by cj and with framing gj .

In that case the value is the trace of the operator \cj
B .Id ˝H

2gj
cj

/B[cj
which equals

tr.\cj
B .Id ˝H

2gj
cj

/ B [cj
/ D .

p�1/4gi ci q2gi .c2
i

Cci /

cjX
uD�cj

p�1
4u

q2u

D .
p�1/4gi ci q2gi .c2

i
Cci /.�1/2cj

cjX
uD�cj

q2u

D .�1/2cj Œ2cj C 1�.
p�1/4gi ci q2gi .c2

i
Cci /:

Example 2.21 (the theta graph). Consider a theta graph as in Figure 3. Equip it with
the blackboard framing and color the edges by V a; V b and V c . Its invariant is then

	.a; b; c/ +
aX

m1D�a

bX
m2D�b

cX
mD�c

W a;b;c
m1;m2;mM a;b;c

m1;m2;m (14)

By Proposition 2.10 the above formula equals the standard skein theoretical value:

	.a; b; c/ D .�1/aCbCc Œa C b C c C 1�ŠŒa C b � c�ŠŒa C c � b�ŠŒb C c � a�Š

Œ2a�ŠŒ2b�ŠŒ2c�Š
(15)

Remark 2.22. The above example shows that in general hG; coli is not a Laurent
polynomial: consider for instance the case a D b D c D 1 in (15).

Figure 3. The operator associated to a colored theta graph.
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3. Integrality

Let G be a closed KTG, E be the set of its edges, V the set of its vertices and
col W E ! N

2
an admissible coloring. We define the Euler characteristic �.e/ of

an edge e 2 E as 1 if e touches a vertex and 0 otherwise (some edges of G may
be knots). Let also D be a diagram of G and for every e 2 E, let ge 2 N

2
be the

difference between the framing of e in G and the blackboard framing on it (it is half
integer because the two framings may differ of an odd number of half twists). We
define a renormalization for hG; coli as

hhG; colii + hG; coli
Q

e2E;�.e/D1Œ2 col.e/�ŠQ
v2V Œav C bv � cv�ŠŒbv C cv � av�ŠŒcv C av � bv�Š

;

where by av; bv; cv we denote the colors of the three edges surrounding v.

Remark 3.1. The renormalization factor depends only on the abstract combinatorial
structure of .G; col/, therefore hhG; colii is an invariant of colored KTG’s.

Theorem 3.2 (Integrality of the renormalized Kauffman brackets). There exist m; n 2
Z such that

hhG; colii 2 .
p�1/mq

n
4 ZŒq; q�1�

Moreover, hhG; colii.p�1/�mq� n
4 is divisible in ZŒq; q�1� by Œ2 col.e/C1� for each

edge e of G. If the framing of G is orientable, then m D 0 and n is even.

Proof. Up to isotopy, we can suppose that the diagram D of G is the closure of a
.1; 1/-tangle G0 whose boundary strands are included in the same edge e and also (by
small isotopies around vertices and crossings) that D contains only maxima, minima,
positive crossings and vertices with 3 top legs. As an example (written in italic in
order to allow the reader to skip the example part easily), we will follow the general
proof on the leftmost graph of Example 3.8, with a fixed choice of a coloring; this
first step amounts to the operation

The factor

F.D; col/ D p�1

P
e2E �4ge col.e/ Y

e2E

q�2ge.col.e/2Ccol.e//
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in the state-sum (12)) changes the value of hG; coli only by a factor of the form
.
p�1/kq

h
4 ; k; h 2 Z, therefore, up to dividing by F.D; col/ we may suppose that

the framing of G is the blackboard framing. In the above example the factor is 1 as
we started with a graph framed by the blackboard framing. By Schur’s lemma the
morphism represented by G0 is 
 IdV n . We claim that there exists an integer s such
that

� + 


Q
e2E;�.e/D1Œ2 col.e/�ŠQ

v2V Œav C bv � cv�ŠŒbv C cv � av�ŠŒcv C av � bv�Š

belongs to q
s
2 ZŒq; q�1�; this will conclude because

hhG; colii D .�1/2 col.e/Œ2 col.e/ C 1��:

In our example, this is to say that



Œ3�Š4Œ2�Š2

.Œ2�ŠŒ1�ŠŒ1�Š/4
2 q

s
2 ZŒq; q�1�

for some integer s.
To prove our claim let us define “renormalized operators” associated to each

maximum, minimum, crossing and vertex of D equipped with a state as

NHj + Hj ;

.N [a/u;v + ıu;�v

1

Œ2a�Š
a

u v
;

.N \a/u;v + ıu;�vŒ2a�Š a
u v

;

.a
bNR/t;w

u;v WD a
bRt;w

u;v ;

.N W /
a;b;c
u;v;t +

W
a;b;c

u;v;t

Œa C b � c�ŠŒb C c � a�ŠŒc C a � b�Š
:

Since the morphism represented by G0 is diagonal, the only non-zero weight states
are those where the states of the top and bottom strand of G0 are equal. Therefore, if
in (13)) one fixes the same state u on the top and bottom strand of G0 and replaces
each weight by its “normalized version” defined above, the result will be

hhG0; colii D hG0; coli �
Q

e2E .Œ2 col.e/�Š/.cap.e/�cup.e//Q
v2V Œav C bv � cv�ŠŒbv C cv � av�ŠŒcv C av � bv�Š

;

where for each edge, cup.e/ (resp. cap.e/) are the number of minima (resp. maxima)
on e. The above formula coincides with normalization factor as in the claim since
by our hypothesis on D all the vertices have 3 top legs and so for each edge e

different from the top strand it holds �.e/ D cap.e/ � cup.e/, and that for the top
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strand cap.e/�cup.e/ D 0 (the top and bottom strands are part of the same edge in G

therefore only one of them should be counted in the renormalization). In our example
this is self-evident: every edge of the open graph contains exactly one maximum and
no minimum, with the only exception of the topmost edge which contains no maxima
or minima. For the sake of completeness, let us also fix the state u D 3

2
on the open

strands.
Remark now that the coefficients of each “renormalized operator” belong to

ZŒ
p�1�Œq˙ 1

2 �. This is straightforward because of Lemma 3.4 and (10) and (8).
Let us first show that actually all the coefficients are non-imaginary. Let us remark
that in the state-sum for hhG; colii, since each edge with �.e/ D 1 has two end-

points and each N W a;b;c belongs in particular to
p�1

�a�b�c
ZŒq˙ 1

2 �, the prod-

uct of the factors
p�1

col.e/
coming from these vertices is

p�1
�2 col.e/

. Simi-

larly the product of the factors
p�1

2ui coming from the cups and caps on e is

˙p�1
2 col.e/.cap.e/�cup.e// D ˙p�1

2 col.e/
(because each ui is a half integer if and

only if col.ei / is) and this cancels with the previous imaginary phase.

In our example, the operators N W
3
2 ; 3

2 ;1 have coefficients in
p�1

� 3
2

� 3
2

�1
ZŒq˙ 1

2 �

(this is seen by inspecting (8)) and each edge (except the top-most) contains one maxi-
mum whose associated operator is either \1 or \ 3

2
. In particular, \1 has coefficients

in
p�1

2t
Œ2�ŠZŒq˙1�; t 2 f�1; 0; 1g (see (6)) and so in

p�1
2
ZŒq˙1� and \ 3

2
has

coefficients in Œ3�Š
p�1

2t
ZŒq˙1�; t 2 f�3

2
; �1

2
; 1

2
; 3

2
g and so in

p�1
3
ZŒq˙1�. Now

we can redistribute the
p�1 factors on each edge so that the 3

2
-colored edges get 2

p�1
� 3

2 factors from the N W
3
2 ; 3

2 ;1 operators at their endpoints, and one
p�1

3
from

the operator \ 3
2

at their maximum, and so the overall imaginary factor associate to

each 3
2

-colored edge is 1; the same holds for the other 2 edges.
So now we are left to show that hhG; colii contains only all odd or all even

powers of q
1
2 . First of all remark that this is the case for the coefficients N W

a;b;c
u;v;t ,

.a
b
NR/

v�n;uCn
u;v , .N \a/u;v, and .N [a/u;v; more specifically, an inspection of (8)

and (10), reveals that the parities (2 Z
2Z ) of the powers of q

1
2 in these coefficients are

(beware: states may be half-integers but the values below are integers, then considered
mod 2):

� in N W
a;b;c

u;v;t : .a2 C a � u2 � u/ C .b2 C b � v2 � v/ C .c2 C c � t2 � t /;

� in .a
b
NR/

v�n;uCn
u;v : i.a/n C i.b/n C i.a/i.b/ where i.x/ + 1 if 2x is odd and

0 otherwise;

� in .N [a/u;v and .N \a/u;v: 2a (not depending on any state).

Hence for each state s in the state-sum expressing hhG; colii the weight w.s/ contains
either only even or only odd powers of q

1
2 because it is (by definition) a product of

the above factors; we will therefore call s even or odd accordingly. Our goal is to
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show that all the states have the same parity: for instance remark that if col has
integers values, all the states are even. For each state s we will compute its parity
“redistributing” on the edges the parities of the coefficients of the elementary operators
and then summing them up over all the edges. For each edge e of G with �.e/ D 1,
orient e arbitrarily and let u and v the states of the substrands of e respectively
at the beginning and at the end of e; let the contributions of the endpoints to the
parity of e be 2.col.e/2 C col.e// � u2 � u � v2 � v. Similarly each [ or \ in e

contributes by 2 col.e/ and since e contains an odd number of such operators they
contribute globally by 2 col.e/. Finally to take into account the crossings, follow e

and remark that each time e crosses another edge, say e0, the state on the substrand of
e jumps from x to x ˙ n (n 2 Z) and the parity of the powers of q

1
2 in the R-matrix

corresponding to the crossing is ni.col.e//Cni.col.e0//C i.col.e//i.col.e0//; so we
define the contribution of the crossing to the parity of e as ni.col.e//, dropping for
the moment the term i.col.e//i.col.e0// which does not depend on the state. Using
the fact that on each [col.e/ and \col.e/ the state of the substrand of e changes sign
(see (5) and (6)) and following e from its beginning to its end, one can check that the
global contribution to the parity of e coming from the crossings is �.uCv/i.col.e//.
Therefore summing up the parity of e is 2.col.e/2 C col.e// � u2 � u � v2 � v C
2 col.e/ � .u C v/i.col.e//, which modulo 2 is 2 col.e/2 � u2 � v2 if i.col.e// D 1

or 0 if i.col.e// D 0. In both cases it is constant mod 2 when u and v range
in f� col.e/; � col.e/ C 1; : : : col.e/g � Z

2
. Similarly, for edges with �.e/ D 0

the parity is easily seen to be constant. Therefore the parity of the states is constant
because it is the sum of constant contributions coming from the edges and the constant
term C D P

crossings i.a/i.b/ (where a and b are the colors of the strands forming the
crossing).

To decline the above arguments in our example, let us fix a state s on our graph
as follows (recall Definition 2.18):
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The contribution of s to the state sum is

w.s/ D N W
3
2

; 3
2

;1

1
2

; 1
2

;�1
N W

1; 3
2

; 3
2

1; 1
2

;� 3
2

N W
3
2

; 3
2

;1

1
2

;� 1
2

;0
N W

3
2

;1; 3
2

� 3
2

;0; 3
2

.
3
2
3
2

NR/
� 1

2
; 3

2
1
2

; 1
2

\ 3
2

� 1
2

; 1
2

\ 3
2
3
2

;� 3
2

\ 3
2

� 3
2

; 3
2

\ 3
2
1
2

;� 1
2

\1
0;0 \1�1;1

(16)

Using (8) and (10) , and reducing mod ZŒq˙1�, so that for instance

N W
3
2

; 3
2

;1
1
2

; 1
2

;�1
� kq

3C3C2
2

and

.
3
2
3
2

NR/
� 1

2
; 3

2
1
2

; 1
2

D Œ3�.q � q�1/q
1
2

� 1
2

C 1
2

�1 � hqC9

for some k; h 2 Z, where

C9 D i
�

3
2

�
i
�

3
2

�
2

C i
�

3
2

�
2

C i
�

3
2

�
2

;

we have

w.s/ � lq
3C3C2

2 q
0C3C3

2 q
3C4C2

2 q
3C2C0

2 qC9q
3
2 q

3
2 q

3
2 q

3
2 q1q1 mod ZŒq˙1�

for some l 2 Z, where we wrote the exponents so to match the forms used in the above
bulleted list. To follow our above argument, we now need to re-aggregate the powers
of q

1
2 corresponding to the same edges of the graph: for instance for the leftmost

edge we have q
3
2 C 3

2 C 4
2 and so its parity is even. Acting similarly for all the edges we

have

w.s/ � lq
3
2

C 3
2

C 4
2 q

3
2

C i. 3
2

/

2
C 3

2
C 3

2 q
2
2

C1C 0
2 q

3
2

C i. 3
2

/

2
C 3

2
C 3

2 q
3
2

C 3
2 q

2
2

C1C 2
2 q0q

i. 3
2

/i. 3
2

/

2

where we listed the edges counting them from the bottom left one, going to the right
and then passing to the top part of the picture, left to right, and the very last term
comes from the crossing (treated separately). In particular s is an odd state. It is
easily checked that for each internal edge the exponent we found agrees mod 1 with the
formula 1

2
.2.col.e/2Ccol.e//�u2�u�v2�vC2 col.e/�.uCv/i.col.e/// computed

precedingly (where u and v are the states of the two substrands of e containing its
endpoints); but as we observed above the overall parity of the formula depends only
on the coloring of the graph and not on its state, so that all the other states will be
odd. This agrees with the result of Example 3.8 which predicts that in our example
hhG; colii 2 q

1
2 ZŒq˙1�.

To prove the last statement remark that by Lemma 2.3 one can choose D satisfy-
ing the additional requirement that the framing of G coincides with the blackboard
framing, and so in this case one can suppose F.D; col/ D 1. In the above proof, this
factor was the only one responsible for possible terms of the form

p�1q
1
4 .
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Corollary 3.3. With the notation of Theorem 3.2, if a1; : : : ak are colors of edges of
G such that 2ai C 1; i D 1; : : : k are pairwise co-prime, hhG; coliip�1

�m
q

�n
4 is

divisible by
Q

j Œ2aj C 1� in ZŒq˙ 1
2 �.

Lemma 3.4. Let a1; : : : as be integers and let the q-multinomial be defined as�
a1 C � � � C as

a1 a2 : : : as�1 as

�
+ Œa1 C � � � C as �Š

Œa1�Š � � � Œas �Š
:

Then the q-multinomial is a Laurent polynomial with positive, integer coefficients.

Proof. If s D 2 the statement is a direct consequence of the fact that, if yx D q2xy

are two skew-commuting variables, then

.x C y/n D
nX

j D0

q
n.nC1/

2
� j.j C1/

2
� .n�j /.n�j C1/

2

�
n

j

�
xj yn�j

which is easily proved by induction. The general case follows by induction on s by
remarking that�

a1 C � � � C as

a1 a2 : : : as�1 as

�
D

�
a1 C � � � C as

.a1 C a2/ : : : as�1 as

��
a1 C a2

a1 a2

�
:

3.1. Examples and properties. The following examples can be proved by re-
normalizing the formulas provided in [13] for the standard skein invariants of tetra-
hedra and 	-graphs.

Example 3.5 (unknot). We have��
a

		
D .�1/2aŒ2a C 1�: (17)

Example 3.6 (theta graph). We have��
a

b

c

		
D .�1/aCbCcŒa C b C c C 1�

�
a C b C c

a C b � c; b C c � a; c C a � b

�
: (18)

Example 3.7 (the tetrahedron or symmetric 6j -symbol).

�� 		
D

zDmin QjX
zDmax Ti

.�1/zŒz C 1�Q5; (19)

where

Q5 D Q5.T1; T2; T3; T4; U1; U2; U3; z/

D
�

z

z � T1; z � T2; z � T3; z � T4; U1 � z; U2 � z; U3 � z

�
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and

T1 D a C b C c;

T2 D a C e C f;

T3 D d C b C f;

T4 D d C e C c;

U1 D a C b C d C e;

U2 D a C c C d C f;

U3 D b C c C e C f:

Example 3.8 (the crossed tetrahedron). Applying twice Lemma 2.17 to the preceding
example one gets

�� 		
D

�� 		

D
�� 		

D p�1
2.f Cc�e�b/

qf 2Cf Cc2Cc�b2�b�e2�e

�� 		
:

(20)

From now on we will often drop the hh�ii and denote the values provided by the
above formulas respectively by

; ; ; :

All the invariants we will be dealing with will be the normalized version unless
explicitly stated the contrary. The following lemma can be easily proved by starting
from the analogous statements for the standard skein theoretical normalization of the
invariants (see [9] or [13]).

Lemma 3.9 (properties of the renormalized invariant). The following are some of the
properties of hhG; colii.
(1) (Erasing 0-colored strand). If G0 is obtained from .G; col/ by deleting a 0-col-

ored edge, then hhG0; col0ii D hhG; colii.
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(2) (Connected sum). If G D G1#G2 along an edge colored by a, then

�� 		
D 1

.�1/2aŒ2a C 1�

�� 		
:

(3) (Whitehead move). If G and G0 differ by a Whitehead move then

�� 		
D

X
i

** b c

d

++
:

where i ranges over the all the admissible values.

(4) (Fusion rule). In particular, applying the preceding formula to the case j D 0

one has

**
b

++
D

X
i

**

b

b++
:

4. Shadow state-sums and integrality

In this section we will first provide a so-called shadow-state sum formula for the
invariants hhG; colii and give some examples. Then we will show through explicit
examples that the summands of the shadow state-sums are not Laurent polynomials
(even though, of course, the global sum of the state-sums are); in Subsection 4.3, we
will then provide short proofs of known identities on 6j -symbols.

4.1. Shadow state sums. Let .G; col/ be a fixed colored graph, D � R2 be a
diagram of it and V; E be the sets of vertices and edges of G, and C; F the sets of
crossings and edges of D (each edge of D is a sub-arc of one of G therefore it inherits
the coloring from col). Let the regions r0; : : : rm of D be the connected components
of R2 n D with r0 the unbounded one; we will denote by R the set of regions and we
will say that a region “contains” an edge of D or a crossing if its closure does.

Definition 4.1 (shadow-state). A shadow-state s is a map s W R [ F ! N
2

such that
s.f / equals the color of the edge of G containing f , s.r0/ D 0 and whenever two
regions ri and rj contain an edge f of D then s.ri /; s.rj /; s.f / form an admissible
three-uple.
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Given a shadow-state s, we can define its weight as a product of factors coming
from the local building blocks of D i.e. the regions, the edges of D, the vertices of G

and the crossings. To define these factors explicitly, in the following we will denote
by a; b; c the colors of the edges of G (or of D) and by u; v; t; w the shadow-states
of the regions and will use the examples given in Section 3.1.

(1) If r is a region whose shadow-state is u and �.r/ is its Euler characteristic,

ws.r/ + u �.r/

:

(2) If f is an edge of D colored by a and u; v are the shadow-states of the regions
containing it then, letting �.f / to be 0 if f is a closed component and 1 otherwise

ws.f / + u
a

v

�.f /

:

(3) If v is a vertex of G colored by a; b; c and u; v; t are the shadow-states of the
regions containing it then

ws.v/ + a
bc

u

v t :

(4) If c is a crossing between two edges of G colored by a; b and u; v; t; w are the
shadow-states of the regions surrounding c then

ws.c/ +
a

u
v
b t

w:

From now on, to avoid a cumbersome notation, given a shadow-state s we will not
explicitly write the colors of the edges of each graph providing the weight of the local
building blocks of D as they are completely specified by the states of the regions and
the colors of the edges of G surrounding the block. Then we may define the weight
of the shadow-state s as

w.s/ D
Y
r2R

�.r/ Y
f 2F

��.f / Y
v2V

Y
c2C

: (21)

Then, since the set of shadow-states of D is easily seen to be finite, we may define
the shadow-state sum of .G; col/ as

shs.G; col/ +
X

s2shadow states

w.s/:

As the following theorem says, the shadow state-sums provide a different approach
to the computation of hhG; colii.
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Theorem 4.2. It holds

hhG; colii D F.D; col/ shs.G; col/;

where (as in the preceding sections)

F.D; col/ +
Y

e2edges

p�1
4ge col.e/

q2ge.col.e/2Ccol.e//:

The original definition of the shadow state sums and proof of the above result (but
for the standard normalization of the invariants) is due to Kirillov and Reshetikhin [11]
and was later generalized to general shadows by Turaev [16]. We used this formu-
lation to extend the definition of colored Jones polynomials to the case of graphs
and links in connected sums of copies of S2 � S1 ([5]) and to prove a version of
the generalized volume conjecture for an infinite family of hyperbolic links called
fundamental hyperbolic links ([4]). These links were already studied in [6] for their
remarkable topological and geometrical properties.

Proof. Multiplying by F.D; col/�1 we can reduce to the case when the framing of
G is the blackboard framing. Let D be a diagram of G; we can add to G some
0-colored edges cutting the regions of D (except r0) into discs (this changes G

and D but not the value of the resulting invariant by Lemma 3.9); for each region
we will need �.r/ � 1 such arcs. Fix also a maximal connected sub-tree T in D

and let o � R2 be a 0-colored unknot bounding a disc containing D; it is clear that
hhG; colii D hh.G; col/[.o; 0/ii. Let also A be the trivalent graph defined as follows:
A + .N.T / \ D/ [ @N.T / (where N.T / is the regular neighborhood of T in R2).
The idea of the proof is to apply a sequence of fusion rules and inverse connected
sums in order to express hhG; colii as a

P
coli

c.coli /hhA; coli ii for some colorings
coli of A and coefficients c.coli /; then to show that each summand c.coli /hhA; coli ii
is the weight of exactly one shadow-state.

The unknot o is isotopic to @N.T / and, while following the isotopy, at isolated
moments it will cross some edges of D n .N.T / \ D/ (but no vertices or crossings
because they are all contained in N.T /). Let us choose the isotopy so that every edge
of D n .N.T / \ D/ is crossed exactly once (this can be done since each region is a
disc and T is a maximal connected sub-tree of D). We say that u enters a region r

if during the isotopy a subarc of u not contained in r crosses an edge contained in r .
We claim that, since T , is connected each region ri ; i D 1; : : : n will be “entered”
by o exactly once during the isotopy. Indeed if u enters twice a region ri , let ˛; ˇ the
subarcs of o in ri , connecting them by an arc � we may produce two unknots whose
connected sum is u. Since T is connected and contains all the vertices and crossings
of D, one of the two discs bounded by these unknots cannot contain vertices and so
˛ and ˇ cross the same edge of ri , against our hypothesis on the isotopy.
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We interpret each crossing moment as a fusion rule so that the isotopy of u

progressively “erases” each arc of D n .N.T / \ D/ exactly when entering a region
containing that arc, and the sum is taken over all admissible u:

b D
X

u

:

At the end of this isotopy, since for each i � n u entered ri only once, all the
components of @N.T /\ri (which are arcs) will be colored by the same colors ui (see
Figure 4 for an example of this construction in the case of a planar graph). Therefore
each summand in the final expression will be associated to a shadow-state s given by
s.r0/ D 0; s.ri/ D ui . Moreover, the other edges of A (i.e. those of N.T / \ D) are
included in those of G and therefore inherit the coloring col. Then we proved

hhG; colii D
X

u1;:::un

Y
r2R

ui
Y

f 2F nT

�1

hhA; col [fu1; : : : ungii;

where the colors of the edges of the 	 graphs are specified by the ui ’s and col. Remark
that the summation range is exactly the set of shadow-states because the colors of the
arcs of @N.T /\ri are all ui and the admissibility conditions for a three-uple of colors
around an edge are satisfied at every moment we apply the fusion rule. Moreover, in
the above formula we already got part of the weights of each shadow-state (i.e. those
of the regions and of all the edges out of T ). We are left to prove that what is missing
equals hhA; col [fu1; : : : ungii, i.e. we claim

hhA; col.u1; : : : un/ii D
Y

f 2T

�1 Y
v2V

Y
c2C

;

where in each factor the colors are specified by the combinatorics of D and by the
state u1; : : : un [ col on R [ F . To prove this, remark that

˝˝ ˛˛ D
X

i

˝˝ ˛˛ D
�1˝˝ ˛˛

;

where the first equality is a fusion rule and the second is the inverse of a connected sum.
Applying this identity on all the edges of T we split hhA; col [fu1; : : : ; ungii into the
product of the graphs remaining in the neighborhoods of the crossings and vertices
(which are respectively and ) divided by the product of the ’s corresponding
to the edges of T . This proves the claim and completes the proof when all the regions
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Figure 4. On the left a planar graph G to which we apply the construction of the proof of
Theorem 4.2. In the middle the graph A constructed by shrinking on a maximal subtree of G

an unknot bounding a disk containing G (the dotted parts are left just for reference). On the
right the final union of planar tetrahedra (in this case there are no crossings).

are discs. If in the beginning we added some 0-colored edge to G to cut D into a
diagram D0 whose regions are discs, then it is clear that every shadow state s0 of D0
can be lifted to a unique shadow state s of D: indeed the compatibility conditions
around a 0-colored edge force the states of the neighboring regions to be the same.
Moreover, since the only difference between D0 and D is given by the presence of
the 0-colored edge, it holds

w.s/ D w.s0/
Y

f 2F0

u
u

0

�1

D w.s0/
Y

f 2F0

u �1

D w.s0/
Y
r2R

u �.r/�1

:

The formula given by Theorem 4.2 is often re-written by means of the so-called
“gleams.”

Definition 4.3 (gleam). The gleam of a diagram D of G is the map
g W R ! Z

2
which on a region ri equals the sum over all the sectors

of crossings contained in ri of 1
2

times the local contributions of the
crossing determined according to the pattern on the right. (Here by
“sector” we mean one of the four angular sectors identified around
each crossing by the strands of the graph).

C C
�

�

Remark 4.4. Do not confuse a shadow state with the gleam. In general for a given
diagram D there is a unique gleam but many different shadow-states.

Corollary 4.5. Under the same hypotheses as Theorem 4.2, it holds

hhG; colii

D F.G; col/
X

s

Y
r2R

p�1
4g.r/u

q2g.r/.u2Cu/ u �.r/Y
f 2F

��.f /Y
V [C

:

(22)
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Proof. Using Example 3.8 one can rewrite the factors coming from crossings in term

of tetrahedra multiplied by extra factors of the form
p�1

˙2u
q˙.u2Cu/ for each of

the 4 sectors around a crossing. To conclude, collect these factors according to the
region containing the corresponding sectors and compare with Definition 4.3.

4.2. Simplifying formulas. Both (22) and (21) are far from being optimal: indeed
most of the factors in the state-sum can be discarded from the very beginning. Instead
of giving a general theorem for doing this let us show why this happens through some
examples. We will say that an edge, vertex or crossing is external if it is contained
in the closure of r0 and a region is external if its closure contains an external edge.
Then the following simplifications can be operated.

(1) If an external region contains two distinct external edges whose colors are dif-
ferent, then hhG; colii D 0.

(2) If an external region r contains external edges f1; : : : ; fk whose colors are all
c, then, for every shadow-state s on D, the total contribution coming from
r [ f1; : : : fk is

c �.r/�P
i �.fi /

:

(3) If an external vertex v is the endpoint of a non-external edge f then their con-
tribution simplify because

D :

(Beware: if @f is composed of two external vertices only one of them can be
simplified with f .)

(4) For the same reason, if D contains a sequence

of n 2 Z n f0g half-twists separating r0 from a region r , then, in each summand
of (22)) the total contribution of the crossings and internal edges of the twist
(excepted the initial and final ones) is

a
b

u

where u is the state of r and a; b are the colors of the strands (beware: the power
of q coming from the gleams do not simplify).
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4.3. Examples and comments on integrality. According toTheorem 3.2, hhG; colii
is a Laurent polynomial, and this is proved is by showing that the weight of each state
in the state-sum expressing it via R-matrices and Clebsch–Gordan symbols is a Lau-
rent polynomial. Surprisingly enough, this is not true for shadow-state sums: the
weight of a single shadow-state may be a rational function, but the poles of these
functions will cancel out when summing on all the shadow-states. We will now
clarify this by explicit examples.

4.3.1. Complicated formulas for unlinks. Consider the n-colored unnormalized
Jones polynomials of the unlink


 �
D p�1

�2n
qC9

2nX
u;vD0

p�1
2.uCv/

qC10 ;

where

C9 D C9.n/ D �4.n2 C n/

and

C10 D C10.u; v/ D .u2 C u/ C .v2 C v/:

To check how the formula is obtained from (22), remark that in the picture there
are 3 regions (besides the external region r0) two of which are disks (with gleams
1
2

as indicated) and one being an annulus (with gleam �1). If the unlink is colored
by n then the color c of the latter region is forced to be n (so that .0; n; c/ satisfy
the triangular inequalities). The colors u and v of the two disk regions must be the
compatible with n (the color of the internal unknot) and c (D n), and so they both
range in f0; 1; : : : ; 2ng. The gleams in the picture were computed as in Definition 4.3.

Of course this unlink is just the union of two unknots one having framing 0 and the
other having framing 1, so the above formula is a very complicated way of re-writing
.�1/2nŒ2n C 1�2q2.n2Cn/, but what is interesting is that the single states are again
not Laurent polynomials: for instance when n D u D v D 1 the weight is Œ3�.Œ5��1/

Œ2�Œ4�
.

4.3.2. A more complicated link example. Fix a; b 2 N and consider the n-colored
unnormalized Jones polynomials of the link

Jn

0
BBBBB@

1
CCCCCA D

2nX
u;vD0

p�1
s1

qg.u;v/ ;
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where

s1 D s1.a; b; u; v/ D 2.a C 1/u C 2.b C 1/v � 4n.a C b C 1/

where a box with a 2 Z stands for a sequence

of a half twists and

g.u; v/ + .a C 1/.u2 C u/ C .b C 1/.v2 C v/ � 2.a C b C 1/.n2 C n/:

To get the above formula, before applying (22), remark that up to isotopy of the
diagram, the region r0 can be chosen freely. Therefore, it is better to pick r0 as the
region touching the two boxes contemporaneously. Again, the summands are not
Laurent polynomials but the sum is (take for instance a D b D n D u D v D 1).
More surprisingly, by Theorem 3.2, for every a; b � 0 the resulting invariant will be
divisible by Œ2n C 1� in ZŒq; q�1�.

4.3.3. Some planar graphs. If G is a planar graph equipped with the blackboard
framing, then the gleam of its regions are 0 and so by Corollary 4.5 hhG; colii has a
simple expression. In the example of Figure 4, if all the edges of G are colored by
n 2 N then

hhG; nii D
2nX

u;vD0;ju�vj�n�uCv

; (23)

where u; v are the shadow-states of the two internal regions. If for instance in (23)
one puts n D 1, and considers the shadow-state with u D v D 1 then its weight is

Œ3�2.Œ4�Š.Œ5� � 1//6

.�Œ4�Š/7
D � Œ3�2.Œ5� � 1/6

Œ4�Š
… ZŒq�:

4.4. Identities on 6j -symbols. Shadow state formulas provide a straightforward
way to re-prove standard identities on 6j -symbols. (The normalization we are using
here for the symbols is that of Example 3.7).

4.4.1. Normalizations of 6j -symbols. It holds

ıb;0 D
aCcX

uDja�cj
: (24)
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This is proved by first checking that (22) applied to

.G; col/ D a

b
c

gives the right hand side. Indeed the diagram of G splits R2 in two regions (besides
the external region r0) both of which are discs equipped with 0 gleam; moreover in
each shadow state the most exterior region is colored by c and the interior region is
colored by u ranging in fja � cj; : : : ; a C c � 1; a C cg; then by (22) we have

hhG; colii D
aCcX

uDjc�aj

which equals the right hand side of eq. (24) because

and

Then recall that the invariant of a union of two unlinked graphs connected by a single
arc is zero unless the color of the arc is 0, in which case the invariant is just the product
of the invariants of the graphs (left hand side of (24)). Similarly, it holds

a
b

c
D

X
u

p�1
2.uCa�2c/

qu2CuCa2Ca�2.c2Cc/

b cu a

bc
u

bc

u

;

where u ranges between jb � cj and b C c. This is proved by applying (22) to

a b c

and to the same framed graph after undoing the kink on the b-colored edge.
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4.4.2. Orthogonality relation. A direct corollary of (22) is the well-known orthog-
onality relation

ıb;d D
X

u

p�1
2.d�b/

qd2Cd�b2�b

a
e

u

c
f

u

;

where u ranges over all the admissible colorings of the union of the two tetrahedral
graphs on the right. To prove it, just apply (22)) to the following two isotopic graphs
and simplify the common factors:

4.4.3. Racah identity. It holds

p�1
2.aCb�c/

qa2CaCb2Cb�c2�c

D
X

u

p�1
2.uCf �e�d/

qu2CuCf 2Cf �d2�d�e2�e ;

(25)

where u ranges over all the admissible colorings of the union of tetrahedra on the
right. Indeed it is sufficient to apply (22) to the following two isotopic graphs and
simplify the common factors:

4.4.4. Biedenharn–Elliot identity. Another direct corollary of (22) is the well-
known Biedenharn–Elliot identity

c
e

d

D
X

u

; (26)
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where u ranges over all the admissible colorings of the union of tetrahedra on the
right. Indeed it is sufficient to apply (22) to the following two isotopic graphs and
simplify the common factors:

5. R-matrices vs. 6j -symbols

In the preceding sections we showed how to compute invariants of colored graphs
by means of two different state-sums. Although for practical computation shadow
state-sums turn out to be easier to deal with, state-sums based on R-matrices and
Clebsch–Gordan symbols allow one to prove integrality results. In this section we will
compare the state-sums when applied to graphs with boundary. So let a .n; m/-KTG
be a framed graph embedded in a square box which contains only 3-valent vertices
(inside the box) and n (resp. m) 1-valent vertices on the bottom (resp. top) edge of
the box. A typical example is a framed .n; m/-tangle. Let as before E; V be the
set of edges and 3-valent vertices of G, @G˙ + @G \ @box and, once chosen a
diagram D of G, let F; C be the set of edges, and crossings of D. Let also b1; : : : bn

be the bottom (univalent) vertices of G and t1; : : : tm the top vertices. The definition
of admissible coloring of a .n; m/ is the same as the standard one, but in this case, a
second coloring is needed to get a numerical invariant out of G, namely a coloring
on @G.

Definition 5.1 (@-colorings for .n; m/-KTG’s). Let .G; col/ be a colored .n; m/-KTG;
a @-coloring for G is a map col@ W @G ! Z

2
such that if ik (resp. jk) is the color of

the edge containing bk (resp. tk) then j col@.bk/j � ik and col@.bk/ � ik 2 Z.

Equivalently a @-coloring is a choice of a vector in V i1 ˝ � � � ˝ V in of the form

g
i1
col@.b1/

˝ � � � ˝ g
in
col@.bn/

and a vector in V j1 ˝ � � � ˝ V jm of the form

g
j1

col@.t1/
˝ � � � ˝ g

jm

col@.tm/
:

Given a .n; m/-KTG equipped with a coloring col and a @-coloring col@, one can
compute hhG; col [ col@ii exactly as in (13): it is sufficient to restrict the set of
admissible states to those such that the state of the boundary edges coincide with
col@. Then G represents a morphism

Z.G; col/ W V i1 ˝ � � � ˝ V in �! V j1 ˝ � � � ˝ V jm
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and hhG; col [ col@ii is an entry in the matrix expressing Z.G; col/ in the bases
formed by tensor products of basis elements.

Most of the integrality result 3.2 still holds true (the idea of the proof is exactly
the same).

Theorem 5.2 (integrality: case with boundary). The following belongs to ZŒq˙ 1
2 �:

hhG; col [ col@ii

+
hG; col [ col@iF.G; col/

Y
e2E 0

Œ2 col.e/�Š

mY
kD1

p�1
jk

Y
v2V

Œav C bv � cv�ŠŒav C cv � bv�ŠŒcv C bv � av�Š

nY
kD1

p�1
ik

;

where E 0 is the set of all the edges of G which do not intersect @GC and F.G; col/
is defined as in the preceding sections.

What is interesting is that one can re-compute the invariant of .G; col/ also via
shadow-state sums and Clebsch–Gordan symbols. To explain this, we will use the
following definition.

Definition 5.3. Given a finite sequence j1; : : : ; jm a Bratteli sequence associated to
it is a sequence s0; s1; : : : sm such that s0 D 0 and for each 0 � k � m � 1 the
three-uple sk ; jkC1; skC1 is admissible.

It is not difficult to realize that the set of Bratteli sequences associated to j1 ; : : : ; jm

is in bijection with the set of irreducible submodules of V j1 ˝ � � �˝ V jm and that the
submodule V.s/ corresponding to a Bratteli sequence s D .s0; : : : sm/ is isomorphic
to V sm . Moreover, using the morphisms defined in Subsections 2.4.2 and 2.4.4, we
may fix explicit maps

�.s/ W V j1 ˝ � � � ˝ V jm �! V sm

and
i.s/ W V sm �! V j1 ˝ � � � ˝ V jm :

Graphically they are expressed as

�.s/ +
s2

sm

j1 j2 j3 jm

� � �
� � �

and

i.s/ + s2 sm

j1 j2 j3 jm

� � �
� � �

:
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More explicitly, to construct �.s/, apply the Clebsch–Gordan morphism P
s2

j1;j2

to the first two factors of V j1 ˝ � � � ˝ V jm (the isomorphism is fixed by the choice
of Clebsch–Gordan projectors made in Subsection 2.4.4). The result is in the space
V s2 ˝ V j3 ˝ � � � ˝ V jm and composing iteratively with with P

skC1

sk ;jkC1
one gets the

desired map �.s/ W V j1˝� � �˝V jm ! V sm . Similarly, i.s/ W V sm ! V j1˝� � �˝V jm

is defined by composing recursively from right to left the Clebsch–Gordan morphisms
of Subsection 2.4.2:

V sm �! V sm�1 ˝ V jm �! V sm�2 ˝ V jm�2 ˝ V jm �! : : : �! V j1 ˝ � � �˝ V jm :

Let
xG + G [ @ box

viewed as a framed graph in R2 by embedding the box in R2 with the blackboard
framing around its boundary. Let sC D .sC

1 ; : : : sC
m/ and s� D .s�

1 ; : : : s�
n / be

Brattelli sequences associated to j1; : : : ; jm and i1; : : : ; in and suppose that sC
m D

s�
n + x. We can extend col to a coloring col [s� [ sC of xG: the color of the edge

in the top (resp. bottom) edge of the box bounded by jk and jkC1 (resp. ik and ikC1)
is sC

k
(resp. s�

k
), the color of the left edge of the box is 0 and that of the right edge x

(see Figure 5).

Theorem 5.4 (Shadow state-sums vs. R-matrices and Clebsch–Gordan symbols).
Let 
.s�; sC/ 2 C be defined by �.sC/ B Z.G; col/ B i.s�/ D 
.s�; sC/ IdV x . Then


.s�; sC/
x

D hh xG; col [s� [ sCii

and

Z.G; col/

D
X
s�

X
sC

n�1Y
tD1

m�1Y
tD1

jt

hh xG; col [s� [ sCii
;

where the sum are taken over all the Bratteli sequences s� and sC associated respec-
tively to i1; : : : in and j1; : : : jm.

Proof. The value on the right hand side is the invariant of the colored graph

. xG; col [sC [ s�/

depicted on the right of Figure 5. But, as shown in the picture, xG is the closure of the
graph representing �.sC/ B Z.G; col/ B i.s�/.
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s
C

1s
C

1

s1
s1

s
C

m 1
s

C

m 1

sn 1 sn 1

xx 00 G GG

Figure 5. Using a pair of Bratteli sequences it is possible to close .G; col/ to a colored closed
KT G (in the middle).

The second statement follows by applying n � 1 times the fusion rule on the
bottom legs of G and m � 1 times on the top legs to get

D
X
s�

X
sC

n�1Y
tD1

m�1Y
tD1

jt

s
C

2

s2

sn

s
C
m

i1 i2 i3 in

j1 j2 j3 jm

xG0
;

where s� and sC range over all Bratteli sequences associated to i1; : : : ; in and
j1; : : : ; jn respectively and xG0 is the .1; 1/ colored KTG obtained by opening

. xG; col [sC [ s�/

along the right edge of the box.

Example 5.5 (R-matrices vs 6j -symbols). It holds

a
bRt;w

u;v D
aCbX

cDja�bj
C

b;a;c
t;w;vCu

p�1
2.c�a�b/

qc2Cc�a2�a�b2�b
c

a
b

c

P
a;b;c
u;v;uCv:

Indeed it is sufficient to apply the preceding theorem to .G; col/ being a crossing.
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