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Abstract. We construct a categorification of the quantum sl3 projectors, the sl3 analog of the
Jones–Wenzl projectors, as the stable limit of the complexes assigned to k-twist torus braids (as
k !1) in a suitably shifted version of Morrison and Nieh’s geometric formulation of sl3 link
homology [14]. We use these projectors to give a categorification of the sl3 Reshetikhin–Turaev
invariant of framed tangles.
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1. Introduction

In [1], Bar-Natan introduced a geometric formulation of Khovanov’s sl2 homology
theory for tangles. In this framework, the invariant of a tangle takes values in a cate-
gory whose objects are complexes composed of crossingless tangles and cobordisms.
This construction gives a categorification of the Temperley–Lieb algebra, meaning
that the Temperley–Lieb algebra can be recovered from this category by taking the
Grothendieck group.

1The author was partially supported by NSF grant DMS-0846346 during the completion of this work.
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The Jones–Wenzl projectors are special idempotent elements of the Temperley–
Lieb algebra relevant to quantum topology, where they are used to give combinatorial
constructions of the sl2Reshetikhin–Turaev invariants of framed links (i.e. the colored
Jones polynomial) and the sl2 Witten–Reshetikhin–Turaev invariants of 3-manifolds.
A natural question to ask is whether there exist objects in Bar-Natan’s category cor-
responding to these projectors.

This question has been answered in the affirmative by various authors using dif-
fering constructions. In [18], Rozansky has constructed complexes in Bar-Natan’s
category satisfying categorified versions of the defining relations of the Jones–Wenzl
projectors and mapping to them via the canonical map to the Grothendieck group.
These complexes are presented as the stable limit of the complexes assigned to k-twist
torus braids as k !1, i.e. as the complexes associated to “infinite twists.” Cooper
and Krushkal [4] used a categorified version of the Frenkel–Khovanov recursion re-
lation for the Jones–Wenzl projectors [6] to give an alternative construction of these
categorified projectors. Finally, Frenkel, Stroppel, and Sussan [5] have used cate-
gory O methods to construct categorified Jones–Wenzl projectors. It can be shown
that the constructions of Rozansky and Cooper and Krushkal agree and that these
constructions are related to that of Frenkel, Stroppel, and Sussan [21] (see also [12]
for a connection between the category O formulation of Khovanov homology and the
webs and foams formulation used in this paper).

In this paper, we extend the results of Rozansky and Cooper-Krushkal to the
sl3 case. Playing the role of the Temperley–Lieb algebra is Kuperberg’s sl3 spi-
der [10], a combinatorial construction which describes a full subcategory of the
category Rep Uq.sl3/ of (type I) finite dimensional representations of the quantum
group Uq.sl3/ at generic q. The quantum sl3 knot invariant has a simple description
in this context which has been categorified in [7]. Mackaay and Vaz gave a geometric
reformulation of this knot homology in [11] akin to Bar-Natan’s construction which
was extended by Morrison and Nieh in [14] to give a categorification of the sl3 spider.

The analog of the Jones–Wenzl projectors are the sl3 projectors, also called in-
ternal clasps or magic elements, which correspond to projection onto highest weight
irreducible summands in Rep Uq.sl3/. These projectors have been studied in [8] and
have been used to construct quantum invariants of 3-manifolds [15]. The main result
of this paper is the following:

Theorem. The complex assigned to a k-twist torus braid (suitably shifted) in Morri-
son and Nieh’s categorification of the sl3 spider stabilizes as k !1 and the stable
limit gives a categorified sl3 projector.

We shall give a more precise statement of this result in Theorem 2.5 and the remarks
following that theorem. We use these categorified projectors to construct an invariant
of framed tangles which categorifies the sl3 Reshetikhin–Turaev invariant of framed
tangles. See Definition 5.1 and Theorem 2.8 for the construction of this invariant and
details of its properties.
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The paper is organized as follows. In Section 2 we provide the relevant background
information on the sl3 spider and projectors. We also review the sl3 tangle invariant,
sl3 homology, and categorification. This section also contains a summary of the
major results of the paper.

We present the relevant homological algebra in Section 3. The results in Subsec-
tion 3.1 are standard and are for the most part presented without proof. Subsections 3.2
and 3.3 contain results concerning the calculus of chain complexes; these results are
due to Rozansky and were originally presented in [18]. We give a slightly different
treatment which is adapted for our purposes.

Section 4 contains the bulk of the content of the paper. In this section we con-
struct the categorified projectors and show that they satisfy categorified versions of
the properties which define the projectors in the sl3 spider. We also show that the
categorified projectors decategorify to give the sl3 projectors.

We define the tangle invariant in Section 5 and compute some examples.

Acknowledgments. I would like to thank Scott Morrison and Lev Rozansky for
useful discussions; their work on sl3 knot homology and categorified Jones–Wenzl
projectors (respectively) served as motivation for this work. I am also grateful to
Dick Hain and Ezra Miller for a useful tea-time discussion concerning some homo-
logical algebra and to Sabin Cautis for pointing out a typo in (an earlier version of)
Example 5.4. Finally, I would like to thank my advisor Lenny Ng for his continued
guidance.

2. Background and summary of results

2.1. The sl3 spider. The sl3 spider � , introduced in [10], can be interpreted as a
pivotal category giving a diagrammatic description of the subcategory of Rep Uq.sl3/
generated (as a pivotal category) by the standard representation (see [13] for details of
this interpretation, [3] for background on pivotal categories, and [19] for the graphical
description of such categories). The objects in this category are words in the symbols
C and �, tensor product is given by concatenation of words, and the dual of a word
is obtained by reversing the word and switching all signs; for example

.C�C/˝ .� �C/ D .C�C��C/
and

.C�C��C/� D .�CC�C�/:
Morphisms in � are given by C.q/-linear combinations of webs – oriented, trivalent
planar graphs whose edges are all directed into or out from a trivalent vertex – with
appropriate boundary, modulo local relations. We shall refer to the parameter q as the
quantum degree. Edges should be directed into C and out from � in the codomain
and vice versa in the domain; the local relations are given as follows:
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��
���� �� D Œ2� �� ; (2.1)

��
����

��

����� ��
�		

���


 ��

� ��
D

��

 C ���� ; (2.2)

��
D Œ3�; (2.3)

where Œn� D qn�q�n

q�q�1 . A web with no digon, square, or circular faces is called non-

elliptic. Using the above relations, any web can be expressed as a ZŒq�1; q�-linear
sum of non-elliptic webs; in fact, for a fixed boundary, the non-elliptic webs give a
basis for the corresponding Hom-set [10]. An Euler characteristic argument shows
that there cannot exist a non-empty, closed, non-elliptic web.

Tensor product is given by placing the webs next to each other (vertically) in
a disjoint manner and composition (denoted by �) is given by gluing together the
boundaries of the webs; for example,

��
�����

��
���
˝ �� D ��

�����

��
���
��

and

��
�����

��
���
� ��

�����
��
��� D

��
����

������ �� ������
��
����
:

Note that tangle composition is denoted in the non-traditional but diagrammatically
more pleasing order; when considering morphisms in other categories we will use
the traditional order for composition. The dual of a web is obtained by rotating the
web 180B and the pairing is given by the webs

��
and

��

:

We will call these webs and their duals U -webs.
The correspondence between � and the subcategory of Rep Uq.sl3/ generated by

the standard representation is given as follows. The symbols C and � correspond to
the standard representation V of Uq.sl3/ and its dual V �. The morphisms

��
�����

��
���

and ��
�����

��
���

correspond to the unique (up to scalar multiple) mapsV �˝V � ! V andV˝V ! V �
(we shall read all diagrams as mapping from the domain on the left to the codomain
on the right). We will call these morphisms and their duals Y -webs. All other
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morphisms can be obtained from Y -webs and U -webs via composition and tensor
product. The main result of [10] is that under this correspondence � is equivalent to
the full subcategory of Uq.sl3/ representations generated by V . One consequence
of this result is that there exist only finitely many non-elliptic webs with a given
boundary since the corresponding Hom-set is a finite-dimensional vector space.

2.2. sl3 projectors. Kuperberg introduced “internal clasps” in his initial study of
the sl3 spider [10]. Under the equivalence outlined above, these clasps are idempotent
elements Pw 2 Hom�.w; w/which correspond to projection onto the highest weight
irreducible summand (and then inclusion). Here w is a word ofC’s and �’s.

We shall denote these projectors graphically by

Pw D w

when we don’t wish to specify the word w and by orienting the strands and labeling
them with numbers corresponding to their multiplicities when we do. For instance,

P.CCC��C/ D
3

2��
��

��

where unlabeled strands have multiplicity one.
The projectors are defined as follows. Let the weight of a word w be given by

wt.w/ D .wC; w�/ 2 Z2�0

where w˙ denotes the number of ˙ signs appearing in the word. There is a partial
order on words generated by the relations

.wC; w�/ > .wC C 1; w� � 2/;

.wC; w�/ > .wC � 2; w�C 1/;
corresponding to the partial order on the weight lattice for sl3. The projector Pw is
the unique non-zero idempotent element in Hom�.w; w/ satisfying the condition that
if wt.v/ < wt.w/ then Pw �W1 D 0 for anyW1 2 Hom�.w; v/ andW2 �Pw D 0 for
anyW2 2 Hom�.v; w/. (Recall our conventions for the order of tangle composition!).
It follows that .Pw/� D Pw� .

Of particular importance are the segregated projectors, those of the form

m

n��

��
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for m; n � 0; we will refer to the domain (D codomain) of a segregated projector
as a segregated word. All other projectors can be obtained from these by inserting
“H -webs,” those of the form

������ 				 ��

��
				 �� ������

and
				�� ���� ��

��
���� �� 				��

to permute the order of the C’s and �’s. For example P.C�C/ can be obtained from
P.CC�/ as follows:

��
��

��

D 


��
���

���


��

���

���



 ��
:

The following result, proved in [15], gives a recursive formula for the segregated
projectors.

Proposition 2.1. For m > 0,

m�� D
m�1��

��
� Œm � 1�

Œm�

m�1
m�2

��
��
� ���

��
(2.4)

and for m; n > 0

m

n��

��

D
min.m;n/X
kD0

.�1/k Œm�ŠŒn�ŠŒmC n � k C 1�Š
Œm � k�ŠŒn� k�ŠŒmC nC 1�ŠŒk�Š

��

��

k

m�k

n�k

m

n

:

(2.5)

From these formulas one can show that a projector is the sum of a lone identity web,
denoted idw for the duration, in quantum degree zero with a C.q/-linear combination
of non-identity webs. The next proposition, which follows from Proposition 2.1 and
the definition of the projectors, gives a characterization of Pw that we will eventually
categorify.

Proposition 2.2. The following properties characterize Pw .

(1) Pw D idw C
Pr
iD1 fi .q/ �Wi with fi 2 C.q/ and where Wi 2 Hom�.w; w/X

idw are non-elliptic webs.

(2) If wt.v/ < wt.w/ thenPw�W1 D 0 for anyW1 2 Hom�.w; v/ andW2�Pw D 0
for any W2 2 Hom�.v; w/.

(3) Pw � Pw D Pw .
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In fact, one can show that the third property follows from the first two, but perhaps
a better way to view this proposition is that the latter two properties characterize the
projector, with the first property serving as a non-degeneracy condition (indeed, the
zero morphism is the only other morphism satisfying the second two properties).

If the projector is segregated, Proposition 2.1 shows that the non-identity webs
in the sum take the form V1 � W � V2 where V1 and V2 are (the tensor product of
identity webs with)U -webs or Y -webs, andW is an arbitrary web. This observation,
together with the semisimplicity of Rep Uq.sl3/, implies that the second defining
property above can be replaced by the following in the case of a segregated projector:

(20) Pw annihilates Y -webs and U -webs (when two of the boundary points are at-
tached to Pw).

This can also be deduced from the following result of Kuperberg which shall be used
in the sequel.

Proposition 2.3 ([10]). If w is a segregated word and v is a word of lower or incom-
parable weight, then any non-elliptic web in Hom�.w; v/ factors through a Y -web or
a U -web, i.e. has a Y -web or U -web with two of its boundary points attached to w.

A similar result holds for Hom�.v; w/ by taking duals.

2.3. sl3 knot invariants. In [10], Kuperberg introduced skein relations for the sl3
spider which lead to the quantum sl3 invariant of framed tangles (see [9] for a detailed
discussion of the combinatorial approach to this invariant and [16] for the original
construction using quantum groups). We will use the convention for these relations
which is categorified in [7]:* ���������




���

���

����

+
D q2

�� 



� q3
������ 				 ��

��
				 �� ������

and *
��

��
��

��
���

����

���
�

 +
D q�2

�� 



� q�3
������ 				 ��

��
				 �� ������

:

Using these relations, we can view (framed) tangles as morphisms in � . In particular,
links are morphisms in Hom�.;; ;/ Š C.q/ so this gives a C.q/-valued invariant of
(framed) links. In fact, the local and skein relations show that this link invariant is
ZŒq�1; q�-valued. Moreover, one can check that using the convention above for the
skein relations actually leads to an invariant which is independent of framing. This
does not, however, give an invariant of tangled webs (webs with crossings) since we
have the relation * ��

����

����

��
�� ��

+
D q8

* ��

����
����

������

+
: (2.6)
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There are similar corrections of q8 for other orientations of this diagram with the
factor of q8 always appearing on the side of the equation with smaller writhe.

Using the sl3 projectors we can extend this invariant to give a combinatorial de-
scription of the sl3 Reshetikhin–Turaev invariant of framed tangles, also known as
the colored sl3 invariant. This is an invariant of framed tangles with each component
labeled by a finite dimensional irreducible representation of sl3. To compute this
invariant hT i.w1;:::;wr/ for an r-component tangle T , consider any word wt corre-
sponding to the highest weight of the irreducible representation labeling the com-
ponent t . Take the cable of the tangle corresponding to the tangle’s framing with
strands directed according to wt , inserting the relevant projector somewhere along
the component. Finally, use the skein relations to evaluate the (sum of) tangled webs.

Example 2.4. Since we have

��
�� D

  

!!
� 1

Œ3�

""

##

we find that *
0

��

+
.C�/

D ���� D Œ3�2 � 1:

It is possible to show that for each labeling this invariant depends only on the
regular isotopy class of the tangle and in particular does not depend on where we
place the projector on each component. Again, see [16] for the original construction
of this invariant.

2.4. sl3 knot homology. Using the cohomology rings of projective space and flag
varieties and certain singular surfaces called foams, Khovanov constructed a categori-
fication of the quantum sl3 knot invariant in [7]. This construction gives a bigraded
homology theory for links from which the quantum sl3 link invariant can be obtained
by taking the graded Euler characteristic. In [11], Mackaay and Vaz gave a geometric
reformulation of this theory in the spirit of [1], which was later refined by Morrison
and Nieh in [14] to an invariant of tangles. This latter theory is the setting for our
categorification.

We now briefly outline Morrison and Nieh’s construction, referring the reader to
their work for complete details. The invariant takes values in the homotopy category
of bounded complexes over a graded, additive category F of webs and surfaces
with singularities, denoted Kb.F / for the duration. In more detail, the objects of
the category1 F are formal direct sums of q-graded webs and morphisms between
webs are matrices of C-linear combinations of isotopy classes of degree-zero foams

1This category is denoted Mat.Cob.su3// in Morrison and Nieh’s work.
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– surfaces with singular arcs which locally look like the product of the letter Y
and an interval – having the appropriate webs as boundary. The degree of a foam
F W qk1W1 ! qk2W2 is given by

deg.F / D 2�.F / � j@j C jV j
2
C k2 � k1

where � is the Euler characteristic, @ is the boundary of W1 (or W2; they agree), and
V is the set of trivalent vertices in W1

`
W2. Certain (degree homogeneous) local

relations are imposed on these foams, see [14].
Morrison and Nieh emphasize the fact that F has the structure of a canopolis;

informally, this is a planar algebra enriched over Cat, the category of categories.
This setting is appropriate since they view � as a planar algebra, using the pivotal
structure to ignore the distinction between domain and codomain. Since we view �

as a pivotal category, we will consider F as a (weak) tensor 2-category. Objects are
words, 1-morphisms are formal direct sums of q-graded webs, and 2-morphisms are
matrices of isotopy classes of foams. We will denote vertical composition, matrix
multiplication via gluing of foams along webs, by B and horizontal composition,
gluing of webs along their boundaries, by �. Tensor product is defined in a similar
fashion as for � and will be denoted as before by˝. This tensor 2-categorical structure
naturally extends to Kb.F /, which is constructed by taking the homotopy category
of complexes in each Hom�-category. Horizontal composition and tensor product are
defined by taking the total complex of the corresponding double complex, similar to
the construction of the tensor product of complexes of abelian groups.

The invariant of a tangle T , denoted �T �, is given on crossings by

� ���������




���

���

����

�
D
 
q2

�� 


���
��

��
���

�� q3
������ 				 ��

��
				 �� ������

!
(2.7)

and

�
��

��
��

��
���

����

���
�

 �
D
 
q�3

������ 				 ��

��
				 �� ������

���
��

�����
��

��

�� q�2
�� 

 !

(2.8)

and extended to all tangles using horizontal composition and tensor product. Note
that these foams, and hence the differentials in all complexes, have degree zero. We
shall refer to the foam in equation (2.7) as a zip and the foam in (2.8) as an unzip,
often denoting these morphisms by z and u respectively. Here and for the dura-
tion we will underline the term sitting in homological degree zero; if no underline
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is present then the leftmost term is assumed to be in homological degree zero. Ap-
plying a Reidemeister move to a tangle changes the corresponding complex by a
homotopy equivalence, so we obtain a Kb.F /-valued invariant of tangles. Taking
the graded Euler characteristic of the complex assigned to a tangle gives the quantum
sl3 invariant.

2.5. Categorification. F categorifies the sl3 spider. To formulate this statement
precisely, we must consider the subcategory � 0 � � whose morphisms are ZŒq�1; q�-
linear combinations of webs. The local relations (2.1), (2.2), and (2.3) show that � 0
is indeed a subcategory. In [14], Morrison and Nieh show that the graded split
Grothendieck group of F corresponds with � 0. In particular, categorified versions of
equations (2.1), (2.2), and (2.3) hold:

��
���� �� Š q �� ˚ q�1 �� ; (2.9)

��
����

��

����� ��
�		

���


 ��

� ��
Š

��

 ˚ ���� ; (2.10)

and
��
Š q2; ˚ q0; ˚ q�2; (2.11)

whereŠ denotes isomorphism in F .
The categorified version of equation (2.6) also holds:�

��

����

����

��
�� ��

�
'

� ��

����
����

������

�
Œ2�f8g: (2.12)

Here and throughout ' denotes homotopy equivalence, Œa� denotes a shift up in
homological degree by a, and fbg denotes a shift up in quantum degree by b. Similar
relations hold for other orientations of (2.12) and, as in the decategorified case, the
shifts occur on the side of the equation with smaller writhe.

A priori, we have a commutative diagram

T
���

�����
���

���
����

����

h�i

$$�
��
��
��
��
��
��
��

F
� � ��

��

Kb.F /

��
� 0 �� K4.Kb.F //

where T is the category of tangles and K4 denotes the triangulated Grothendieck
group of a triangulated category. The bottom map exists since it is easy to see that the
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split Grothendieck group of an additive category always maps (surjectively) to the
triangulated Grothendieck group of the homotopy category of complexes over that
category. In fact, we show in [17] that this map is an isomorphism, giving the desired
diagram

Kb.F /

�

��
T h�i

��

���

%%������������
� 0:

(2.13)

where the map � is taking the “Euler characteristic,” the alternating sum of terms in
a complex viewed as an element of � 0. Another way of stating this result from [17]
is that isomorphic complexes in Kb.F / (i.e. homotopy equivalent complexes) have
the same Euler characteristic.

We will later see that a diagram similar to (2.13) exists for an extension of the
category Kb.F / containing certain semi-infinite complexes. This will be the natural
setting for the decategorification of our categorified projectors.

2.6. Summary of results. The main result of this paper is the following theorem.

Theorem 2.5. For each word w there exists a complex zPw consisting of webs in
Hom�.w; w/ supported in non-negative homological degree so that

(1) idw appears only once in zPw and does so in quantum and homological degree
zero,

(2) all other webs in the complex factor through words of lower weight,

(3) if wt.v/ < wt.w/ then zPw �W1 ' 0 for anyW1 2 Hom�.w; v/andW2� zPw ' 0
for any W2 2 Hom�.v; w/, and

(4) zPw � zPw ' zPw .

It follows from this description that such a complex is unique up to homotopy
equivalence. We construct such complexes as the stable limit (up to homotopy) of
the complexes �

::: w

k
�
Œk � c��fk .3c� � 2cC/g

as k ! 1. The notation indicates that there are k full twists on strands directed
according to the word w and c˙ is the number of˙ crossings in one twist. Although
the complexes zPw will be semi-infinite, we will show that it is possible to take their
graded Euler characteristic and that the next result holds.

Theorem 2.6. �. zPw/ D Pw .
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Theorems 2.5 and 2.6 will be proved in Section 4. As a consequence of the above
we obtain an alternate characterization of the sl3 projectors, known to experts in the
field. The author is unaware of a proof appearing in the literature.

Corollary 2.7. Let w be a word, then

w D lim
k!1

qk.3c��2cC/

*
::: w

k
+
:

This limit is a finite sum of webs with coefficients in ZŒq�1; q�� and corresponds
to the left hand side using the inclusion of coefficients C.q/ ,! CŒq�1; q��.

Finally, we shall use the categorified projectors zPw to give a categorification of
the sl3 Reshetikhin–Turaev invariants of framed tangles. Let KC.F / denote the
homotopy category of bounded below complexes in F .

Theorem 2.8. Let T be an r-component framed tangle and let w1; : : : ; wr be words
labeling the components of T . There exists a complex �T �.w1;:::;wr /

in KC.F /,
invariant up to homotopy under regular isotopy, which gives a categorification of the
sl3 Reshetikhin–Turaev invariant, i.e. the diagram

KC.F /

�

��
T h�i.w1;:::;wr /

��

���.w1;:::;wr /

&&�������������������
�

commutes.

This result is proved in Section 5.

3. Homological algebra

In this section we present the requisite homological algebra for our results. The first
subsection contains standard results from homological algebra. The following two
subsections present the “calculus” of chain complexes. Almost all of these results (or
rather the dual statements) are taken from [18], but we repeat them in the interest of
giving a self contained treatment and in order to provide some proofs omitted there.

3.1. Standard results. Let A be an additive category. We will consider both the
category Kom.A/ of (cochain) complexes of objects in A and the category K.A/,
the homotopy category of Kom.A/. We will use the superscripts b and C to denote
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the full subcategories of these categories consisting of bounded and bounded below
complexes. For instance, KC.A/ denotes the homotopy category of bounded below
complexes in A. We will useŠ to indicate isomorphism in Kom.A/ and' to denote
isomorphism in K.A/, that is, homotopy equivalence.

The first result, a technical tool from [2], concerns Gaussian elimination homotopy
equivalences. Such homotopy equivalences are ubiquitous in the study of Khovanov
homology and its generalizations.

Proposition 3.1 (Gaussian elimination). Let

� � � �� A
. �̨ / �� B ˚ C

�
 ˇ
� ı

�
�� D ˚E .� � / �� F �� � � �

be a complex in Kom.A/ where  W B ! D is an isomorphism, then this complex is
homotopy equivalent to the following complex:

� � � �� A
˛ �� C

ı��B �1Bˇ �� E
� �� F �� � � � :

Moreover, if A is graded and the differentials in the complex are degree 0 then so is
the homotopy equivalence.

Given a complex .A�; dA/ in Kom.A/, we denote byAŒn�� the complex shifted up
by the integer n, that is the complex with

AŒn�i D Ai�n

and with differential given by .�1/ndA. If f W A� ! B � is a chain map, the complex
cone.f / is given by

cone.f /i D AiC1 ˚ B i

with differential
� �dA 0

�f dB

�
. It is a standard fact, proved in [20] for the case of abelian

groups, that the cone of a chain map detects if the map is a homotopy equivalence.
The proof described there carries over to arbitrary additive categories.

Proposition 3.2. A chain map' is a homotopy equivalence if and only if cone.'/ ' 0.

Recall now that the category K.A/ is triangulated, with distinguished triangles
given by those isomorphic to triangles of the form

A� f �� B � � �� cone.f / ı �� AŒ�1�� :
Using the above we can deduce the next result.

Proposition 3.3. Let ' and  be homotopy equivalences and ˛ be a chain map, then
cone.' B ˛ B  / ' cone.˛/.
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Proof. Given chain maps f and g, there is a homotopy equivalence

cone.cone.f /

�
id 0
0 g

�
�� cone.g B f // ' cone.g/

so there is a distinguished triangle

cone.f / �� cone.g B f / �� cone.g/ �� cone.f /Œ�1� :
Considering the rotations of this triangle, the result follows from Proposition 3.2
assuming in turn that f or g is a homotopy equivalence.

Let fAi;j g be a double complex. By convention, the horizontal dh and vertical
dv differentials anti-commute. Given a double complex we can obtain an element in
Kom.Kom.A// by negating the differentials in every other row, and vice versa. We
will use this trick to show the following.

Proposition 3.4 (Replacement). Let fAi;j g be a double complex with 0 � i � 1
and 0 � j � m (a triply-bounded double complex). Suppose that for each j there
exist complexes D�;j and homotopy equivalences 'j W A�;j ' D�;j , then Tot.fAi;j g/
is homotopy equivalent to a complex Dm which has ˚iCjDkDi;j in homological
degree k.

Proof. We proceed via induction on m. The case m D 0 is obvious. We will show
the m D 1 case as this informs the proof of the general case. We consider a double
complex fAi;j g of the form

A0;1
dh �� A1;1

dh �� A2;1
dh �� � � �

A0;0

dv

��

dh �� A1;0

dv

��

dh �� A2;0

dv

��

dh �� � � �
(3.1)

where each square anti-commutes. We find that

Tot.fAi;j g/ D A0;0

�
dh

dv

�
�� A1;0 ˚ A0;1

�
dh 0
dv dh

�
�� A2;0 ˚ A1;1

�
dh 0
dv dh

�
�� � � � :

(3.2)
Negating the top row of equation (3.1) to view dv as a chain map between the com-
plexes .A�;0; dh/ and .A�;1;�dh/ we find that Tot.fAi;j g/ D cone.dv/Œ1�. Consider
the composition '1 B dv B '�1

0 W D�;0 ! D�;1. Proposition 3.3 shows that

cone.'1 B dv B '�1
0 / ' cone.dv/

which gives the result since the degree k term of cone.'1 B dv B '�1
0 /Œ1� is Dk;0 ˚

Dk�1;1.
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We now prove the general case. Let fAi;j gj�mC1 be a double complex with
0 � i � 1 and 0 � j � mC 1 and let fAi;j gj�m be the double complex obtained
by truncating the last row of fAi;j gj�mC1. We find that

Tot.fAi;j gj�mC1/ Š cone.Tot.fAi;j gj�m/
dv �� A�;mC1 Œm�/Œ1�

where we have negated the differential onA�;mC1Œm� in the case thatm is even to view
dv as a chain map (recall how Œ�� acts on differentials). By induction, there exists a
homotopy equivalence  W Dm ! Tot.fAi;j gj�m/ and the result follows from

cone.'mC1Œm� B dv B  / ' cone.dv/

as above.

We will typically apply this result to double complexes of the form fAi �Bj gwhere
A� and B � are complexes in Kom.F / and the complexes Ai � B � can be simplified
using Gaussian elimination.

The final result we shall need describes how tensor products interact with cones
and homotopy equivalence.

Proposition 3.5. Suppose A is a tensor category, then

cone.A� f �� B �/˝ C � D cone.A� ˝ C � f˝idC �� B � ˝ C �/:

and if A� ' B � then A� ˝ C � ' B � ˝ C �.

Similar results holds for other operations that behave like the tensor product of
complexes. In particular, we will use the analogous result for horizontal composition
in Kom.F /.

3.2. Homological calculus in Kom.A/. In this section, we study the calculus of
chain complexes in Kom.A/. Let A� be such a complex.

Definition 3.6. The kth truncation of A� is the complex t�kA� with

t�kAi D
8<
:A

i if i � k;
0 if i > k;

and the obvious differentials.

Extend t�k to a functor Kom.A/! Kom.A/ by defining t�kf for a chain map
f W A� ! B � to be the obvious map t�kA� ! t�kB �. We will say that a chain
complex A� is Oh.k/ if Ai D 0 for all i < k. Equivalently, A� is Oh.k/ if and only if
t�.k�1/A� D 0.
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Definition 3.7. The isomorphism order of a chain map f W A� ! B � is given by

jf jŠ D sup
k

fk j t�kf is an isomorphismg

Clearly, a chain map f is a chain isomorphism if and only if jf jŠ D1.

Proposition 3.8. LetA� f�! B � ��! cone.f /
ı�! AŒ�1�� be a distinguished triangle

and suppose B � is Oh.k/, then jıjŠ � k � 1.

Proof. The result follows since ı is given by the diagram

� � � �� AiC1 ˚ B i ��

D
��

� � � �� Ak ˚ Bk�1 ��

D
��

AkC1 ˚ Bk ��

‹
��

� � �

� � � �� AiC1 �� � � � �� Ak �� AkC1 �� � � �
noticing that the degree i term of cone.f / is AiC1 ˚ B i .

Define an inverse system in Kom.A/ as a sequence of chain complexes linked by
chain maps:

A D .A�
0

f0 � A�
1

f1 � � � � /:
Definition 3.9. An inverse system A is stabilizing if liml!1 jfl jŠ D1.

Definition 3.10. An inverse system has a Kom-limit, denoted limKom A, if there exist

chain maps limKom A
Qfl�! A�

l
so that

limKom A
Qfl�1

!!���
���

���
� Qfl

''�
��

��
��

��

A�
l�1 A�

lfl�1

��

(3.3)

commutes and liml!1 j Qfl jŠ D1.

In fact, these preceding two notions coincide.

Theorem 3.11. An inverse system A has a Kom-limit if and only if it is stabilizing.
Such a limit is unique up to isomorphism.

Proof. First, assume that A D .A�
0

f0 � A�
1

f1 � � � � / is a stabilizing inverse system.
We shall give a direct construction of A� D limKom A.

For each homological degree k, there exists a minimal l.k/ so that f k
l
W Ak

lC1 !
Ak
l

is an isomorphism for all l � l.k/; let Ak D Ak
l.k/

. Since all of the fl are

chain maps, there is an obvious choice of boundary map Ak ! AkC1. Indeed, the
construction is demonstrated in the following diagram:
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: : :
: : :

: : :
: : :

: : :
: : :

A
lf

l
�

1

��

D
���

��
A
k l

((��
��

��
��

��

��

��

A
k

C1
l

��

��

A
k

C2
l

��

��

A
k

C3
l

��

��

A
k

C4
l

��

��

���

A
lC
1f
l

��

D
���

�� A
k lC
1

��

Š
��

A
k

C1
lC
1

))��
����

����
����

����
��
����

��

��

A
k

C2
lC
1

��

��

A
k

C3
lC
1

��

��

A
k

C4
lC
1

��

��

���

A
lC
2f
l
C

1

��

D
���

�� A
k lC
2

��

Š
��

A
k

C1
lC
2

��

Š
��

A
k

C2
lC
2

��

��

A
k

C3
lC
2

���	�	
�	
�	�	

�	�	
�	
�	�	

�	
�	

��

��

A
k

C4
lC
2

��

��

���

A
lC
3f
l
C

2

��

D
���

�� A
k lC
3

��

Š
��

A
k

C1
lC
3

��

Š
��

A
k

C2
lC
3

** 
�

�


�

�


�

��

��

A
k

C3
lC
3

��

Š
��

A
k

C4
lC
3

��

��

���

: : :f
l
C

3

��

: : :

Š
��

: : :

Š
��

: : :

Š
��

: : :

Š
��

: : :��
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where the boundary maps are uniquely specified as any path between the selected
“nodes”; commutativity of the above grid ensures that these maps are well-defined
and square to zero. Define maps Qfl W A� ! A�

l
using the obvious maps from Ak D

Ak
l.k/
�! Ak

l
, noting that these determine chain maps with respect to the differential

on A� described above, again by commutativity.

We now show that A� is a Kom-limit for A. Since A is stabilizing, for every N
there exists lN so that l > lN implies jfl jŠ � N . This in turn implies that if l > lN
then j Qfl jŠ � N , showing that liml!1 j Qfl jŠ D1. The result now follows since the
diagram (3.3) commutes by construction.

Next, assume that A has a Kom-limit. Commutativity of (3.3) shows that

jfl jŠ � min.j Qfl jŠ; j QflC1jŠ/

so liml!1 jfl jŠ D1, i.e. A is stabilizing.

Finally, we show that Kom-limits are unique up to isomorphism in Kom.A/.
Suppose that both A� and .A0/� are Kom-limits. For each homological degree k0,

there existsm.k0/ so that for allm � m.k0/ the maps Qf km and Qf 0k
m are isomorphisms

for all k � k0. Define the isomorphism .A0/� Š�! A� in the kth0 homological degree
by

. Qf km.k0/
/�1 B Qf 0k

m.k0/
W .A0/k ! Ak:

Commutativity of (3.3) implies that this gives a chain isomorphism, well defined
independent of the choice of m.k0/.

3.3. Homological calculus in K.A/. We now describe the extension of the defini-
tions and results from the previous section to the homotopy category K.A/.

Let A� be a complex in K.A/. Define the homological order of A� via

jA�jh D supfk j A� ' B � where B � is Oh.k/g:

We think of a complex as homologically negligible if jA�jh is large. In the same
vein, we view complexes A� and B � as homologically close if there is a chain map

A� f�! B � so that cone.f / is homologically negligible.

The next two definitions generalize the notions of stabilizing inverse system and
Kom-limit.
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Definition 3.12. An inverse system A D .A�
0

f0 � A�
1

f1 � � � � / is Cauchy if

lim
l!1
jcone.fl/jh D1:

Definition 3.13. An inverse system A D .A�
0

f0 � A�
1

f1 � � � � / has a K-limit, denoted

limK A, if there exist chain maps limK A
Qfl�! A�

l
so that

limK A
Qfl�1

!!��
��
��
��
� Qfl

++�
��

��
��

��

A�
l�1 A�

lfl�1

��

(3.4)

commutes in K.A/ and liml!1 j cone. Qfl/jh D1.

We now aim to state and prove the analog of Theorem 3.11 in the homotopy
category. Before doing so, we need a preparatory lemma.

Lemma 3.14. Suppose we have a commutative triangle

A�

f

��

k

,,�
��

��
��

��
��

B �
g

�� C �

in K.A/ (i.e. k ' g B f ), then

j cone.g/jh � minfj cone.k/jh; j cone.f /jh � 1g;
j cone.f /jh � minfj cone.g/jh C 1; j cone.k/jhg;

and

j cone.k/jh � minfj cone.f /jh; j cone.g/jhg:

Proof. The result follows from the various rotations of the distinguished triangle

cone.f /! cone.g B f /! cone.g/! cone.f /Œ�1�;

noting that for any chain map X � ˛�! Y � we have the inequality jcone.˛/jh �
minfjY �jh ; jX �jh � 1g.

Theorem 3.15. An inverse system A has a K-limit if and only if it is Cauchy.
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The following proof is essentially taken from [18], but we reproduce the argument
in our context as a construction contained therein will be used later.

Proof. First, assume that A D .A�
0

f0 � A�
1

f1 � � � � / is Cauchy. This implies that
there exist complexes C �

l
so that

(1) Cl Œ�1�� ' cone.fl /,

(2) C �
l

is Oh.ml /, and

(3) liml!1ml D1:
We now construct a new inverse system B D .B �

0

ı0 � B �
1

ı1 � � � � / with B �
l
' A�

l

via the following procedure. Let B �
0 D A�

0; to define B �
l

for l � 1, consider the
distinguished triangle

A�
l

fl�1�! A�
l�1

�l�1�! cone.fl�1/: (3.5)

Using the diagram

Al�1Œ1�� ��

D
��

cone.fl�1/Œ1� ��

'
��

A�
l

fl�1 ��

D
��

A�
l�1

D
��

Al�1Œ1�� ��

'
��

C �
l�1 ��

D
��

A�
l

��

D
��

A�
l�1

'
��

Bl�1Œ1��
jl�1 ��

D
��

C �
l�1 ��

D
��

A�
l

��

'
��

B �
l�1

D
��

Bl�1Œ1��
jl�1 �� C �

l�1 �� cone.jl�1/
ıl�1 �� B �

l�1

in which every row is a distinguished triangle and whose first row is obtained from
rotating (3.5), we define B �

l
D cone.jl�1/. Note that indeed B �

l
' A�

l
and under

these homotopies we have the commutative diagram

A�
l

fl�1 ��

'
��

A�
l�1

'
��

B �
l ıl�1

�� B �
l�1:

(3.6)
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Consider now the inverse system B D .B �
0

ı0 � B �
1

ı1 � � � � / whose objects fit
into distinguished triangles

Bl Œ1�
� jl�! C �

l �! B �
lC1

ıl�! B �
l :

Since C �
l

is Oh.ml /, Proposition 3.8 gives that jıl jŠ � ml � 1; this in turn implies
that B is stabilizing so it has a Kom-limit B � D limKom B.

We now see that B � gives a K-limit for A. The commutative square 3.6 together
with the fact that B � is a Kom-limit gives the diagram

B �

Qı0

--���
���

���
���

���
���

���

Qı1
..  
  
  
  
  
  

Qı2

�� ,,�
��

��
��

��
��

��

B �
0

˛0'
��

B �
1

˛1'
��

ı0

�� B �
2

˛2'
��

ı1

�� � � ���

A�
0 A�

1f0

�� A�
2f1

�� � � ���

(3.7)

where the maps ˛l are determined by equation (3.6), liml!1 j Qıl jŠ D 1, and the
squares commute up to homotopy. Since ˛l is a homotopy equivalence, we have
cone.˛l B Qıl / ' cone. Qıl / which implies j cone.˛l B Qıl/jh D j cone. Qıl /jh: Define

Qfl W B � �! A�
l

via
Qfl D ˛l B Qıl I

Gaussian elimination of complexes implies that j cone. Qfl /jh � j Qfl jŠ so we have

lim
l!1
j cone. Qfl/jh � lim

l!1
j Qıl jŠ

D1 :

Since fl B QflC1 ' Qfl this shows that B � is a K-limit for A.
Now, suppose that A has a K-limit. Equation (3.4) and Lemma 3.14 give that

j cone.fl /jh � minfj cone. Qfl/jh; j cone. QflC1/jh � 1g
so

lim
l!1
j cone.fl /jh D1

showing that A is Cauchy.
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Similar to the case of limits in Kom.A/, there is also a uniqueness statement;
however, we need a few preparatory lemmata before giving its proof.

Lemma 3.16. Let A be a Cauchy inverse system and letB � be the K-limit constructed

in the proof of Theorem 3.15. If A� is a complex and there are maps A� ai�! A�
i so

that the diagram
A�

a0

--���
���

���
���

���

a1..!!
!!
!!
!!

a2

�� ,,�
��

��
��

��

A�
0 A�

1f0

�� A�
2f1

�� � � ���

commutes in K.A/, then there exists a map A� h�! B � so that the triangles

A�

h

��

ai

..  
  
  
  

A�
i B �
˛i BQıi

��

commute in K.A/.

Proof. Consider the diagram

A�

a0

..  
  
  
  
  
  

a1

��
a2

,,�
��

��
��

��
��

�

//""
"""

"""
"""

"""
"""

"""
"

A�
0 A�

1f0

�� A�
2f1

�� � � ���

B �
b0

00�����������
b1

��
b2

11           

22���������������������

where bi D ˛i B Qıi (in the notation from the proof of Theorem 3.15). Using (3.7) we
can assume that bi D fi B biC1 and by throwing out terms and re-indexing we can
suppose that jbi jŠ � i . It suffices to show that such an h W A� ! B � exists with the
(remaining) triangles

A�

h

��

ai

..  
  
  
  

A�
i B �

bi

��

commuting up to homotopy.
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To this end, consider the sub-diagrams given by

A�
ai

..!!
!!
!!
!! aiC1

++#
##

##
##

##

A�
i A�

iC1fi

��

B �:
bi

00$$$$$$$ biC1

**%%%%%%%

We begin by constructing maps

gi W t�iA� �! t�iB �

so that giC1 is homotopic to a map OgiC1 with t�j OgiC1 D t�jgi for j < i and so that
the triangles

t�iA�

gi

��

t�iai

33&&&
&&
&&
&&

t�iA�
i t�iB �
t�ibi

��

commute. Define
gi D .t�ibi /�1 B t�iai :

Since ai ' fi B aiC1 there exist maps H k
i so that

aki D f ki B akiC1 C dAi
BH k�1

i CH k
i B dA: (3.8)

Consider the map OgiC1 W t�iC1A� �! t�iC1B � defined in homological degree k by

OgkiC1 D

8̂̂̂
<
ˆ̂̂:
giC1iC1 if k D i C 1;
giiC1 C dB B .bi�1i /�1 BH i�1

i if k D i;
gkiC1 C dB B .bk�1

i /�1 BH k�1
i C .bki /�1 BH k

i B dA if k < i;

which is a chain map homotopic to giC1. Note that for k < i

OgkiC1 D gkiC1 C dB B .bk�1
i /�1 BH k�1

i C .bki /�1 BH k
i B dA

D .bki /�1 B f ki B akiC1 C dB B .bk�1
i /�1 BH k�1

i C .bki /�1 BH k
i B dA

D .bki /�1 B .f ki B akiC1 C dAi
BH k�1

i CH k
i B dA/

D .bki /�1 B aki D gki
so the gi have the desired properties.
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We now define maps

hi W t�iA� �! t�iB �

with hi ' gi and so that t�jhiC1 agrees with t�jhi for all j < i as follows.
Let h0 D g0 and h1 D Og1 ' g1; we will construct hiC1 assuming that we have
constructed h0; : : : ; hi . Since hi ' gi there exist maps Gki so that

hii D gii C dB B Gi�1i

and

hki D gki C dB BGk�1
i CGki B dA if k < i:

Define hiC1 via

hkiC1 D

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

giC1iC1 if k D i C 1;
giiC1 C dB B ..bi�1i /�1 BH i�1

i CGi�1i / if k D i;
gkiC1 C dB B ..bk�1

i /�1 BH k�1
i CGk�1

i /

C..bki /�1 BH k
i CGki / B dA if k < i;

and observe that hiC1 ' giC1 (and that in fact we takeGi�1i D 0). We also compute

hkiC1 D gkiC1 C dB B ..bk�1
i /�1 BH k�1

i CGk�1
i /C ..bki /�1 BH k

i CGki / B dA
D OgkiC1 C dB BGk�1

i CGki B dA
D gki C dB B Gk�1

i CGki B dA
D hki

for k < i , so the hi have the desired properties.
Finally, let

h W A� �! B �

be defined as the stable limit of the maps hi , i.e. hk D hki for any i > k. It remains
to check that bi B h ' ai for all i . Observe first that we have the equalities

hk D
8<
:h

k
kC1 if k � i;
hki if k < i;

D
8<
:g

k
kC1 C dB B .bk�1

k
/�1 BH k�1

k
if k � i;

gki C dB BGk�1
i C Gki B dA if k < i;
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and so

.bi B h/k D
8<
:b

k
i B gkkC1 C bki B dB B .bk�1

k
/�1 BH k�1

k
if k � i;

bki B gki C bki B dB B Gk�1
i C bki BGki B dA if k < i;

D

8̂̂̂
<̂
ˆ̂̂̂:

bki B .bkkC1/
�1 B ak

kC1
CdAi

B bk�1
i B .bk�1

k
/�1 BH k�1

k
if k � i;

bki B .bki /�1 B aki
CdAi

B bk�1
i BGk�1

i C bki B Gki B dA if k < i;

D

8̂̂<
ˆ̂:
f ki B � � � B f kk B akkC1

CdAi
B f k�1

i B � � � B f k�1
k�1 BH k�1

k
if k � i;

aki C dAi
B bk�1

i BGk�1
i C bki BGki B dA if k < i:

Using (3.8) we compute

f ki B � � � B f kk B akkC1

D aki � dAi
B .H k�1

i C f k�1
i BH k�1

iC1 C � � � C f k�1
i B � � � B f k�1

k�1 BH k�1
k /

� .H k
i C f ki BH k

iC1 CCf ki B � � � B f kk�1 BH k
k / B dA

and

.bi B h/k D

8̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂:

aki � dAi
B .H k�1

i C f k�1
i BH k�1

iC1 C � � �
Cf k�1

i B � � � B f k�1
k�2 BH k�1

k�1 /
�.H k

i C f ki BH k
iC1 C � � �

Cf ki B � � � B f kk�1 BH k
k
/ B dA if k � i C 2;

aiC1i � dAi
BH i

i � .H iC1
i C f iC1i BH iC1

iC1 / B dA if k D i C 1;
aii �H i

i B dA if k D i;
ai�1i C dAi

B bi�2i B Gi�2i if k D i � 1;
aki C dAi

B bk�1
i B Gk�1

i C bki BGki B dA if k � i � 2;
from which it is evident that bi B h ' ai .

The next result shows that if a complex is “infinitely” homologically negligible,
then it is contractible.

Lemma 3.17. If jA�jh D1, then A� is contractible.

The following proof is taken from [18].
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Proof. Since jA�jh D1 we have that A� ' A�
i for complexes A�

i which are Oh.mi /
with limi!1mi D 1. We have the following diagram in which each map is a
homotopy equivalence

A�
f0 44

A�
1

��

g0

�� � � � 44
55 A�

i

fi 66
55 A�

iC1
gi

55
44 � � �77 I

in particular idAi
�gi Bfi D dAi

BHi CHi BdAi
where theHi are chain homotopies

(and A�
0 D A�).

Now, define maps

Qfi D fi B � � � B f0;
Qgi D g0 B � � � B gi ;

and
QHi D H0 C Qg0 BH1 B Qf0 C � � � C Qgi�1 BHi B Qfi�1:

which are related by

idA� Qgi B Qfi D dA B QHi C zHi B dA: (3.9)

The equality limi!1mi D1 implies that the maps zHi stabilize in each homological
degree as i !1, so we can define their stable limit zH . Equation (3.9) stabilizes as
well (for the same reason) to give

idA D dA B zH C zH B dA
which shows that A� is contractible.

We can now prove a uniqueness result concerning limits in K.A/.

Proposition 3.18. The limit of a Cauchy sequence A is unique up to homotopy
equivalence.

Proof. Since A is Cauchy we can construct the limit B � as in the proof of Theo-

rem 3.15. If A� is another K-limit, then Lemma 3.16 gives a map A� h�! B � so that
the triangles

A�

h

��

ai

..  
  
  
  

A�
i B �

bi

��

commute (up to homotopy) for all i .
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Lemma 3.14 gives that

jcone.h/jh � minfjcone.bi /jh C 1; jcone.ai /jhg
for all i . Taking the limit of the right hand side as i ! 1 and using the fact that
both A� and B � are K-limits, we find jcone.h/jh D1. Lemma 3.17 then shows that
cone.h/ is contractible, which is equivalent to h being a homotopy equivalence.

We conclude this section with two easy results concerning K-limits.

Proposition 3.19. Let A D .A�
0 A�

1

f0�� � � �f1�� / be a Cauchy system such that

liml!1 jA�
l
jh D1. Then limK A ' 0.

Proof. The maps Qfl D .0 �� A�
l
/ satisfy the condition required in Definition 3.13.

The result then follows from Proposition 3.18.

Proposition 3.20. If A D .A�
0 A�

1

f0�� � � �f1�� / is a Cauchy system in K.A/ and
A is a tensor category then

B � ˝ A D .B � ˝ A�
0 B � ˝ A�

1

id ˝f0�� � � �id ˝f1�� /

is a Cauchy system and limK.B
� ˝ A/ ' B � ˝ limK A.

Proof. Consider the maps limK A
Qfl �� A�

l
which satisfy

lim
l!1
j cone. Qfl /jh D1:

These give maps B � ˝ limK A
id ˝ Qfl �� B � ˝ A�

l
which also satisfy

lim
l!1
j cone.id˝ Qfl//jh D1

since cone.id˝ Qfl / D B �˝ cone. Qfl/. The result then follows from Proposition 3.18.

4. Categorified sl3 projectors

In this section we construct the categorified projectors and prove Theorems 2.5
and 2.6. Subsection 4.1 contains the construction of zPw for w D .C � � �C/; in Sub-
section 4.2 we show that in this case �. zPw/ D Pw . The case w D .C � � � C � � � ��/
is treated in Subsection 4.3 and the results for general w are given in Subsection 4.4.
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4.1. zPw for w D .C � � �C/. We begin by constructing the categorified projectors
zPw and giving a proof of Theorem 2.5 whenw D .C � � �C/. The general case differs

from this one only in the technical details.
We will refer to the process of applying equations (2.9), (2.10), and (2.11) to

express a web in terms of the direct sum of webs with fewer digon, square, and
circular faces as reduction. Recall that a web which has no digon, square, or circular
faces is called non-elliptic and that any web can be reduced to a direct sum of non-
elliptic webs. When we write the complex �D� for a tangle diagram D we will
assume that we have reduced all webs appearing to direct sums of non-elliptic webs.
If we would like to consider the complex with terms unreduced we will denote it by�D�un.

A shifted version of sl3 knot homology will be useful for our considerations.
Given a tangle diagram D, define the shifted complex by

�D�s D �D� Œc��f3c� � 2cCg
where c˙ is the number of˙ crossings inD; the complex �D�uns is defined similarly.
This complex is not an invariant of the tangle corresponding toD as it acquires shifts
in both homological and quantum degree under R1 and R2 Reidemeister moves (but
is invariant up to homotopy under R3). Nevertheless, this shifting convention will
prove useful. In particular, for any diagramD the shifted complex �D�s is supported
in non-negative homological degree.

We begin with a basic result describing the complex assigned to a Y -web attached
to a positive crossing.

Lemma 4.1. There are homotopy equivalences�
��

11!!!
,,$$

$ � ��
��
	
s
' �

��
11!!!
,,$$

$
	
s
Œ1�f2g

and � ��
�� � ��$$
$,,
!!!11

	
s
' �

��$$
$,,
!!!11

	
s
Œ1�f2g:

Proof. We have

�
��

11!!!
,,$$

$ � ��
��
	
s
D ��

11!!!
,,$$

$

�
id�
�
��
�
��

11!!!
,,$$

$ ˚ q2 ��
11!!!
,,$$

$
�

and � ��
�� � ��$$
$,,
!!!11

	
s
D ��$$

$,,
!!!11

�
id�
�
��
�

��$$
$,,
!!!11 ˚ q2 ��$$

$,,
!!!11
�
:

The result then follows from Proposition 3.1.

Now consider the complex 

:::

��
��m
�un
s
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assigned to the diagram of a full twist on m strands and note that every web W
appearing in the complex except the lone identity web in homological degree zero
takes the form

W D ��$$
$,,
!!!11

��

��
�W 0 � ��

11!!!
,,$$

$
��

��
(4.1)

where we have omitted multiplicities from the identity strands (we will often do this
to simplify notation). Since reduction cannot affect such a decomposition, we find
that

� :::
��
��m�s D . m�� /

z �� C 1 �� C 2 �� � � �
D cone.� m�� �s z �� C Œ�1��/Œ1�

where every web appearing in each C i is of the form (4.1) and non-elliptic (by
definition we take C h D 0 for h � 0). We thus have the distinguished triangle

� m�� �s z �� C Œ�1�� ��



:::
��
��m
�
s
Œ�1� gŒ�1� �� � m�� �s Œ�1�

where the map g is the identity in homological degree zero and zero in all other
homological degrees. This implies that there is a homotopy equivalence

C Œ�1�� ' cone
�
 :::

��
��m
�
s

g �� � m�� �s�:
We now consider the inverse system

Tw D � m�� �s 

:::

��
��m
�
s

g0��
�

:::
��
��m

2
�
s

g1�� � � ��� (4.2)

for w D .C � � �C/„ ƒ‚ …
m

where gk is defined as



:::

��
��m
�
s
�

�
:::

��
��m

k
�
s

g�id �� � m�� �s � �
:::

��
��m

k
�
s

:

Here
:::

��
��m

k

denotes k full twists on m strands.

Proposition 4.2. The inverse system Tw is Cauchy.
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Proof. We inductively construct complexes C �
k

satisfying the following conditions:

(1) CkŒ�1�� ' cone.gk/;

(2) C �
k

is Oh.2k C 1/;
(3) every web appearing in C �

k
takes the form (4.1).

Let C �
0 D C � and suppose we have constructed C �

0; : : : ; C
�
k�1 as above. Proposi-

tion 3.5 gives that

cone.gk/ D cone.gk�1/ �



:::
��
��m
�
s

' Ck�1Œ�1�� �



:::
��
��m
�
s

so we must show that

C �
k�1 �



:::

��
��m
�
s

is homotopy equivalent to a complex satisfying the second and third of the above
conditions.

To this end, consider the tangled web

��

��

��
��				
�����

� � :::

��

��
m :

Using Reidemeister 3 moves, we can pull the crossings on the two strands aligning
with the Y -web through so that they take place before any other crossings, giving the
tangled web

��

��

��
��				
�����

� �
��

��

��
�� � :::

��
��

��

��
m :

The rightmost tangle above is the result after pulling the crossings on the two strands
through and out of the twist; we shall denote such a tangle in this way for the duration.
Lemma 4.1 gives the homotopy equivalence� ��

��

��
��				
�����

� �
��

��

��
�� � :::

��
��

��

��
m

��
s

'
� ��

��

��
��				
�����

� � :::
��
��

��

��
m

��
s

Œ2�f4g

so we have homotopy equivalences



W � :::

��
��m
�
s
'

�W � :::
��
��

��

��
m

��
s

Œ2�f4g (4.3)
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for each web W appearing in C �
k�1. Proposition 3.4 now gives that the complex

C �
k�1 �



:::

��
��m
�
s

is homotopy equivalent to a complex which is Oh.2k C 1/ and whose terms come
from complexes taking the same form as the right side of equation (4.3); define C �

k

to be this complex. Since all such webs take the form (4.1), the result follows.

Since Tw is Cauchy, Theorem 3.15 implies that limK Tw exists. Let zPw denote
the limiting complex for Tw explicitly constructed using the proof of Theorem 3.15.
The next result follows from analysis of the details of that proof.

Proposition 4.3. Let w D .C � � �C/. The web idw D . m�� / appears only once in
zPw and does so in quantum and homological degree zero. All other webs appearing

in zPw take the form

��$$
$,,
!!!11

��

��
�W � ��

11!!!
,,$$

$
��

��
:

Proof. The limit of the Cauchy sequence is given as the Kom-limit of the stabilizing
system B constructed in the proof of Theorem 3.15. In the current case, we see that

B �
0 D � m�� �s;

B �
1 D cone.� m�� �sŒ1�! C �

0/;

:::

B �
k D cone.B �

k�1Œ1�! C �
k�1/:

The result now follows from our description of the complexes C �
k

above.

Proposition 4.4. Let w D .C � � �C/. If wt.v/ < wt.w/ then zPw �W1 ' 0 for any
W1 2 Hom�.w; v/ and W2 � zPw ' 0 for any W2 2 Hom�.v; w/.

Proof. Let W1 2 Hom�.w; v/ and note that it suffices to consider the case when W1
is non-elliptic. Proposition 2.3 then implies that

W1 D ��$$
$,,
!!!11

��

��
�W 0

1

for some W 0
1. Lemma 4.1 gives the homotopy equivalence

�
:::

��
��m

k

� ��$$
$,,
!!!11

��

��

�
s

'

�� :::
��
��

��

��
m

k

� ��$$
$,,
!!!11

��

��

���
s

Œ2k�f4kg
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so we have ˇ̌̌
ˇ
�

:::
��
��m

k

�W1
�
s

ˇ̌̌
ˇ
h

� 2k:
Propositions 3.19 and 3.20 now give

zPw �W1 D .lim
K

Tw/ �W1
' lim

K
.Tw �W1/

' 0:
The proof concerning W2 is completely analogous.

Proposition 4.5. Let w D .C � � �C/, then

zPw � zPw ' zPw :
Proof. Proposition 4.3 gives that

zPw D .. m�� /
z �� D1 �� D2 �� � � �/

where each web appearing in Di takes the form (4.1). Setting Di D 0 for i � 0 we
have

zPw D cone.� m�� �s ! DŒ�1��/Œ1�
which gives the distinguished triangle

zPw �� � m�� �s �� DŒ�1�� :
This in turn gives the distinguished triangle

zPw � zPw �� zPw �� DŒ�1�� � zPw
so by Proposition 3.2 it suffices to show that D� � zPw ' 0.

We can write
D� D cone.D1Œ2�! t�2D�/

whereD1 stands for the complex with all terms zero exceptD1 sitting in homological
degree zero and t�kD� denotes the truncation ofD� from below. As above, this gives
the distinguished triangle

t�2D� � zPw �� D� � zPw �� D1Œ1� � zPw :

Proposition 4.4 implies that D1Œ1� � zPw ' 0 so t�2D� � zPw ' D� � zPw . Repeating
this procedure gives

t�kD� � zPw ' D� � zPw
for all k > 0. Lemma 3.17 then implies that D� � zPw ' 0.
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Propositions 4.3, 4.4, and 4.5 give the proof of Theorem 2.5 whenw D .C � � �C/.
Moreover, uniqueness of zPw follows from the argument used in the proof of Propo-
sition 4.5. Indeed, if zP 0

w is another complex supported in non-negative homological
degree satisfying Propositions 4.3 and 4.4 then similar reasoning shows that the com-
plex zPw � zP 0

w is homotopy equivalent to both zPw and zP 0
w .

4.2. Decategorification for w D .C � � � C/. We now aim to show that�. zPw / D Pw
whenw D .C � � �C/. Observe that doing so requires two steps. First, we must show
that it is possible to define and compute �. zPw/ since � is generally not well-defined
for complexes in KC.F /. Second, we must show the desired equality.

To resolve the first issue, we consider a full subcategory of KC.F / where we
restrict the support of complexes A�. By definition, supp.A�/ is the set of pairs
.h; l/ 2 Z2 for which Ah has a non-zero summand in quantum degree ql . We shall
identify supp.A�/ with the corresponding discrete subset in R2 and abuse notation
slightly by calling this the .h; q/-plane.

If we wish to translate a subset of R2 we will use the same notation which we
use to shift complexes, viewing homological degree as the horizontal direction and
quantum degree as the vertical direction. For instance,

f.h; q/ j h � 2 and q � 1gŒ2�f1g D f.h; q/ j h � 4 and q � 2g:
Consider now the subset of R2 given by

Rt D f.h; q/ 2 R2 j h � 0 and q � t � hg
and let y� 0 denote the sl3 spider considered over the ring ZŒq�1; q�� defD ZŒŒq��Œ 1

q
�. The

following conditions are sufficient to guarantee that the Euler characteristic �.A�/ of
a complex A� in KC.F / is a well defined element in y� 0:
(1) supp.A�/ � Rt Œa�fbg for some t > 0 and a; b 2 Z;

(2) all webs appearing in A� are non-elliptic;

(3) only finitely many distinct webs appear in A�.
Denote by K†.F / the full subcategory of KC.F /whose objects satisfy the above

conditions. Note that this subcategory is closed under taking direct sums, cones,
and tensor product. The horizontal composition of two complexes in K†.F / is
isomorphic (in KC.F /) to a complex in K†.F / via reduction. In this sense, we can
view K†.F / as closed under horizontal composition.

We now aim to show that zPw is an object in K†.F /. Before doing so, we need
some preparatory lemmata. Our first result enables us to bound the quantum degree
of the webs appearing when we express a web as a direct sum of non-elliptic webs.

Lemma 4.6. Let W be a web with no closed components. When reducing W to a
direct sum of non-elliptic webs we can assume that no closed component forms. If
W has r faces, W Š ˚siD1qki �Wi is the direct sum decomposition into non-elliptic
webs resulting from reduction, and ri is the number of faces in Wi , then ki � ri � r .
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Proof. Suppose that a reduction does produce a closed component. We can assume
that no reductions are possible which do not split off a closed component; otherwise,
perform these reductions. Since a closed component can only form upon application
of equation (2.10), we have that

W D
�
U �

�� ��
�� �� � V

�
and hence the isomorphism

W Š
�
U � � V

�
˚
�
U � � V

�
:

We can assume that � V has no internal digon faces. Indeed, if a digon face is
formed then we must have V D '' ��

�� '' � V 0 so we can instead consider the reduction
corresponding toW D U 0�

�� ��
�� ���V 0 whereU 0 D U �'' ���� ''. Similarly, we can assume that

�V has at most one internal square face since otherwise we have V D V 00 �
�� ��
�� ���V 0

and again we can consider the reduction corresponding toW D U 00 �
�� ��
�� ���V 0 where

U 00 D U �
�� ��
�� �� � V 00.

We analyze the closed web
C D � V

which has at most one internal square face and no internal digon faces. The orien-
tations of edges around vertices shows that all faces must have an even number of
edges. Considering the web on the surface of the 2-sphere creates an external face
which may have any (even) number of edges. Since every edge borders two regions
we compute

eC � 1

2
.6.fC � 2/C 4C 2/ D 3.fC � 1/

where eC is the number of edges in C and fC is the number of faces bounded on the
2-sphere by C . Since C is trivalent we have vC D 2

3
eC where vC is the number of

vertices in C. We thus find

2 D fC � eC C vC
D fC � 1

3
eC

� fC C .1 � fC / D 1;
a contradiction.

The second statement follows from the first by noticing that each reduction lowers
the number of internal faces and that (2.11) need never be used.

Given a diagramD, define the 0-resolution as the unique web appearing in �D�uns
in homological degree zero. Concretely, this is the web obtained by taking the smooth
resolution of each positive crossing and the singular resolution

'' ��
�� '' of each negative

crossing. Define the smooth resolution of D to be the web obtained by taking the
smooth resolution of both positive and negative crossings.
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Lemma 4.7. Let D be a tangle diagram and let the smooth resolution of D have no
closed components. Let r be the number of internal faces in the 0-resolution of D
and cC be the number of positive crossings in D, then the complex �D�s satisfies

supp
��D�s� � R1=cC

f�r � 1g:
If a web W appearing in �D�s has rW internal faces then that term is supported in
R1=cC

frW � r � 1g. Moreover, ifD has no negative crossings then the �1 shifts can
be omitted from both statements.

Proof. Since any web in �D�uns is obtained from the smooth resolution by switching
smoothings of crossings to singular resolutions, no web appearing in this complex
has closed components. Also, note that changing the resolution of a crossing from the
smooth resolution to the singular resolution produces at most one new internal face
while changing from the singular resolution to the smooth resolution cannot produce
new internal faces.

It follows that a web V appearing in �D�uns in homological degree h has at most
rCmin.h; cC/ internal faces. Next, note that the complex �D�uns is supported along
the line h D q in the .h; q/-plane. Hence by Lemma 4.6, if qlW appears in �D�s in
homological degree h then

l � hC rW � r �min.h; cC/

� rW � r � 1C h

cC
which gives the result.

For the final statement, note that ifD has no negative crossing then the 0-resolution
and the smooth resolution agree. All webs appearing in �D�uns are thus obtained
from the smooth resolution by changing a crossing to the singular resolution. Since
no internal faces are formed when the first resolution is changed, we find that a web
V appearing in �D�uns in homological degree h > 0 has at most r Cmin.h; cC/� 1
internal faces. The result then follows as above.

Proposition 4.8. Let w D .C � � �C/. The categorified projector zPw lies in K†.F /.

Proof. Recall that there are only finitely many non-elliptic basis webs in

Hom�.w; w/:

Since the terms of zPw are the stable limit of the terms from the complexesBk given in
the proof of Proposition 4.3 and all webs appearing there are non-elliptic, it suffices
to show that the complexes C �

k
from the proof of Proposition 4.2 can (additionally)

be chosen to lie in A1=t for some fixed t > 0.

Lemma 4.7 gives that each web W appearing in � :::
��
��m�s is supported in

A1=M frW g where M D m.m � 1/ and rW is the number of internal faces in W .
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It follows that the same is true for webs appearing in C �
0. We now show, via induc-

tion, that the same result holds for the complexes C �
k

.

Recalling how C �
k

is constructed from C �
k�1 � � :::

��
��m�s , it suffices to show that

if W is a web appearing in C �
k�1 then any web V appearing in�W � :::

��
��

��

��
m

��
s

Œ2�f4g

is supported in A1=M frV � rW g. Since the zero (D smooth) resolution of

W � :::
��
��

��

��
m

is simply W there are rW internal faces and no closed components. The result then
follows from Lemma 4.7.

We hence can consider the ZŒq�1; q��-linear combination of webs�. zPw/. A slight
extension of the results from [17] shows that Euler characteristic is invariant under
homotopy in K†.F /; Proposition 4.5 then gives that

�. zPw/ � �. zPw/ D �. zPw/
and Proposition 4.4 gives that if wt.v/ < wt.w/ then

�. zPw/ �W1 D 0
for any W1 2 Hom�.w; v/ and

W2 � �. zPw/ D 0
for any W2 2 Hom�.v; w/. Propositions 4.3 and 4.8 show that

�. zPw/ D idw C
rX
iD1

fi .q/ �Wi

with fi 2 ZŒq�1; q�� and where Wi 2 Hom�.w; w/ X idw are non-elliptic webs.
These facts, together with Proposition 2.2, give a proof of Theorem 2.6 in the case
that w D .C � � �C/.

Example 4.9. The computations given in [14], Section 6.1, show that

zP.CC/ D
��
��

z �� q
((
(
88
)))
99 ��

)))
99

((
(
88
 � �� q3

((
(
88
)))
99 ��

)))
99

((
(
88
 C �� q5

((
(
88
)))
99 ��

)))
99

((
(
88
 � �� q7

((
(
88
)))
99 ��

)))
99

((
(
88
 C �� � � �
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where  ˙ are the morphisms defined in that section. Note that

�. zP.CC// D
��
�� � .q � q3 C q5 � q7 C � � � /

((
(
88
)))
99 ��

)))
99

((
(
88

D ��
�� � 1

Œ2�

((
(
88
)))
99 ��

)))
99

((
(
88

D P.CC/

by Proposition 2.1.

4.3. zPw and decategorification for w D .C � � �C � � � ��/. We now construct zPw
for

w D .C � � �C„ ƒ‚ …
m

� � � ��„ƒ‚…
n

/:

Since we have already considered the case n D 0 (and m D 0 by taking duals) we
assume m; n > 0. We proceed by mimicking the proof for w D .C � � �C/. Let

:::
��

��
m

n

denote a full twist onmCn strands directed as indicated. The first step is to construct
a map �

:::
��

��
m

n

�
s

g ��

 ��
��

m

n

�
s

and use it to build the inverse system

Tw D

 ��
��

m

n

�
s

�
:::

��
��

m

n

�
s

g0��
�

:::
��

��
m

n

2
�
s

g1�� � � ��� :

This is trivial whenw D .C � � �C/ since the degree zero term of the complex assigned
to a single twist is the identity tangle. This fails for w D .C � � � C � � � ��/, but we
shall see that it holds up to homotopy, which is sufficient to define the map g.

We begin with a lemma showing this for the case m D 1 D n, which will also be
of use later.

Lemma 4.10. � ��
�� �s ' � ::

;;
s �� q2

""
<<

ct� �� q4
""

<<

�
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Here s is a saddle cobordism and ct� D ctL� ctR where ctL denotes the foam which
is the identity foam on the right arc and has a “choking torus”:

   !!!!     

on the left arc. The foam ctR is defined similarly.

Proof. We have

� ��
�� �

s
D ::

;; ˚
""

<<
A �� q2

""
<< ˚

""
<< ˚ q2

""
<< ˚

""
<<

B �� q4
""

<< ˚ q2
""

<< ˚
""

<<

where

A D

0
BB@
s �
0 id
s �
0 id

1
CCA

and

B D
0
@� � � �
� � id �
0 � 0 � id

1
A :

Using Gaussian elimination, we find that

� ��
�� �s ' ::

;;
s �� q2

""
<<

�� q4
""

<< :

We deduce the second map since, up to scalar multiple, it is the only degree zero
map which makes the diagram a complex. A computation shows that it is indeed
non-zero.

We now prove the general case.

Proposition 4.11.�
:::

��
��

m

n

�
s

'
� ��
��

m

n

�
�� C 1 �� C 2 �� � � �

where every web appearing in C � is non-elliptic and takes the form

WL �W �WR (4.4)
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for

WL D
��

��
��

��$$
$,,
!!!11 or

��
��

��
��

00$$$
..!!!

or

��

==
��

and

WR D
��

��
��

��
11!!!
,,$$

$ or

��
��

��
�� !!!..$$$00 or

��

>>
��

where the strands involved in the Y -webs and U -webs have multiplicity one (and the
other strands can have higher multiplicities).

Proof. We proceed via induction on m, noting that the result holds trivially in the
cases m D 0 or n D 0. We have�

:::

��

��

m

n

�
s

'
�
��

??

 m�1

n

�
s

�
� ��

:::

��

��

m�1
n

�
s

where the first tangle diagram on the right hand side indicates one strand wrapping
around the others and the second denotes the tensor product of a strand with a full twist
on mC n � 1 strands, directed as indicated. By induction, the second complex has
the desired form. Since the composition of two webs of the form (4.4) is isomorphic
to a q-linear direct sum of non-elliptic webs of this form, it suffices to show that the
first complex has the desired form. We have�

��

??

 m

n

�
s

D
�
��

��
��
m�1

n

�
s

�
� ��

��
��

m�1

n

�
s

�
�
��

��
��m�1

n

�
s

where the middle term on the right side is the tensor product of m � 1 strands with
a single strand wrapping around n strands (which do not twist themselves - note the
subtle difference in notation!). Since the two outside terms on the right side have the
desired form, it now suffices to show that�

��
��

n

�
s

has this form. We claim that this complex is homotopy equivalent to a complex

� ��
�� n

�
�� D1 �� D2 �� � � � (4.5)
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where each web in Di takes the form

:::

���
or

'' ��
�� ''
� �

or
'' ��
�� ''
�

�
or

'' ��
�� ''
� �

or
'' ��
�� ''
�

**

**
���

++

++

���
��

�� ��

��

�� ��

l

(4.6)

for l � 0.
We proceed via induction on n. The n D 1 case follows from Lemma 4.10. We

now compute�
��

��
n

�
s

D
�
�� ��
�� n�1

�
s

�
� ��

��
�� n�1

�
s

�
� ����

�� n�1

�
s

'
�
�� ��
�� n�1

�
s

� cone

� � ��
��

�� n�1

�
�� ��
D�Œ�1�

�
Œ1� �

� ����

�� n�1

�
s

:

Here
��
D� denotes the tensor product of the complex D� with a single strand. By

Proposition 3.5, the above complex is homotopy equivalent to

cone

 � ��
�� �� n�1

�
s

��
�
�� ��
�� n�1

�
s

� ��D�Œ�1� �
� ����

�� n�1

�
s

!

which has the form (4.5). Since reducing a web of the form (4.6) gives webs of the
form (4.4), the result follows.

There thus exists a map �
:::

��
��

m

n

�
s

g�!

 ��
��

m

n

�
s

which we use to construct the inverse system

Tw D

 ��
��

m

n

�
s

�
:::

��
��

m

n

�
s

g0��
�

:::
��

��
m

n

2
�
s

g1�� � � ��� (4.7)

for w D .C � � � C � � � ��/; gk is defined as�
:::

��
��

m

n

�
s

�
�

:::
��

��
m

n

k
�
s

g�id ��

 ��
��

m

n

�
s
�

�
:::

��
��

m

n

k
�
s

:

In the case w D .C � � �C/ both the proof that the limit of the system exists (i.e.
that the system is Cauchy) and that the limit lies in K†.F / involve analysis of the
complexes cone.gk/. We thus combine them into one result.
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Proposition 4.12. Let w D .C � � �C� � � ��/. The inverse system Tw is Cauchy and
its limit lies in K†.F /.

Of course, since limits are unique only up to homotopy, we mean that there is a
representative of the homotopy class of the limit which lies in K†.F /.

Proof. As before, it will suffice to construct complexes C �
k

satisfying the following
conditions.

(1) C �
k
Œ�1� ' cone.gk/.

(2) C �
k

is Oh.2k C 1/.
(3) Every web appearing in C �

k
is non-elliptic and takes the form (4.4).

(4) C �
k

is supported in A1=M for some fixed M . Moreover, if a web W in C �
k

has
rW internal faces then that web is supported in A1=M frW g.

We shall see that it suffices to take M D 2.mC n/2, so fix this value.
We begin by reconsidering the complex�

:::
��

��
m

n

�
s

and showing that it is homotopic to a complex of the form� ��
��

m

n

�
�� C 1 �� C 2 �� � � �

which is supported in A1=M and where each web in C i takes the form (4.4). Using
only R3 moves we find that the tangle

:::
��

��
m

n

is isotopic to the tangle

��

??

 m�1

n

�
��
??


@@
m�2

n

� � � � �
��
��

��

m�1

n

�
��

:::
��

��
n

m

(4.8)

where all the strands directed to the right wrap (one by one, starting with the top
strand) around the strands directed to the left at the beginning. We consider the
complex assigned to this tangle. We next use Lemma 4.10 and Proposition 3.5 to
express this complex in terms of complexes assigned to tangles obtained from (4.8)
by replacing the tangle

��
��

��

m�1

n
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with tangles of the form
��

;;

��

��

��
m�1

n�p�1

p :

We can then use R2 moves to slide the left strand which “turns back” through the
entire tangle. We now repeat the procedure for all terms in (4.8), moving leftward
from ��

��

��

m�1

n

and one by one expressing complexes assigned to tangles of the form

��

??

 x

y

in terms of complexes assigned to

��

;;

��

��

��

x

y�z�1

z

then sliding the left strand which turns around through the tangle. In the end we find
that the terms in the complex assigned to (4.8) come from the complexes assigned to
tangles � which, for example, take the form

77

��

��

��

��

��

��

�� : (4.9)

It hence suffices to show that ���s , suitably shifted to take into account the shifts in
quantum and homological degree that arise from the Gaussian elimination homotopies
and R2 moves, is supported in A1=M .
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We first establish some notation. Noting that� 	
s
' � �s Œ1�f1g

for all possible orientations of the strands, we call an R2 move which reduces the
number of crossings in a tangle a good R2 move. These moves are “good” in the
sense that the corresponding Gaussian elimination homotopy equivalence yields a
complex whose support is (properly) contained in that of the original complex.

Now, if m0 is the number of strands which turn back on the left side of � then,
assuming m0 > 1, we make at least

2

m0�1X
iD1

i D .m0/2 �m0

good R2 moves to arrive at such a presentation. The right hand side of this formula
also works in the cases when m0 D 0; 1.

Next, let l denote half the total number of negative crossings in � . We can apply
l good R2 moves to eliminate all negative crossings involving the strands which turn
back on the right to produce a tangle of the form

� D AABB
�1

�2 �� P3

P2P1 ��
��

��

�� ��

��

m

n

m0 (4.10)

where the Pi are positive braids. The �i are negative braids, but of a particular sort
– every braid determines an element of the symmetric group and these braids are
the simplest ones corresponding to their particular element (i.e. there is no twisting).
The braid �2 has the further property that all crossings consist of a strand leaving P3
crossing under a strand leaving �1.

All of the internal faces in the 0-resolution of (4.10) come from the tangle

N D BB
�� �1

�2�� ��

�� m�m0

n�m0

m0 (4.11)

and it follows from inspection that if r is the number of such faces then

r � l � 1
unless l D 0 in which case there are no negative crossings in (4.10) and no internal
faces in the zero resolution. We assume for now that we are not in the exception case
l D 0.



44 D. E. V. Rose

For later use, we’ll bound the values for l . The number of crossings in �1 is
bounded by �

m0

2

�
D 1

2
m0.m0 � 1/;

the length of the longest element in the symmetric group. The remaining crossings
come from �2 where some of the n � m0 strands pass underneath some of the m0
strands leaving �1, producing at most m0.n �m0/ crossings. We thus have

l � 1

2
m0.m0 � 1/Cm0.n�m0/ D 1

2
m0.2n�m0 � 1/ < mn:

Lemma 4.7 gives that any web W appearing in ���s is supported in

A1=cC
f�r � 1C rW g 	 A1=cC

f�l C 1� 1C rW g
where rW is the number of internal faces in W and cC is the number of positive
crossings in �. Since

cC � .mC n/.mC n� 1/ < M
we see such a web is supported in

A1=M f�l C rW g:
Considering all the shifts due to Gaussian elimination homotopies and good R2 moves,
we see that the contribution to �

:::
��

��
m

n

�
s

is given by

���s Œ.m0/2 �m0 C a�f.m0/2 �m0 C agŒm0 C b�f2m0 C 2bgŒl �flg
where a � m2� .m0/2�mCm0 � m2 and b � m0 � m. Indeed, the shifts of Œ1�f1g
come from the good R2 moves and the shifts of Œ1�f2g come via Lemma 4.10 from
the strands which turn back. The web W is hence supported in

A1=M Œ.m
0/2 C aC b C l�f.m0/2 Cm0 C aC 2b C rW g:

We have
.m0/2 C aC b C l � 2m2 CmCmn �M

so we see that each web W in the contribution to�
:::

��
��

m

n

�
s

coming from ���s with l ¤ 0 is supported in A1=M frW g (we have used the fact that
l ¤ 0 implies m0 � 1 so .m0/2 Cm0 C aC 2b � 1).
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In the case that l D 0, i.e. there are no negative crossings in � , it follows from
Lemma 4.7 that any webW contributing to�

:::
��

��
m

n

�
s

is supported in A1=M frW g.
We have thus shown that�

:::
��

��
m

n

�
s

'
� ��
��

m

n

�
�� C 1 �� C 2 �� � � �

where each web W in C i is supported in A1=M frW g and comes from the tan-
gles (4.10). It is easy to see that all such tangles take the form (4.4). It will be
useful for our further considerations to note that every web of the form (4.4) is of the
form

W 0 � R; W 0 �
��

��

��
�� !!!..$$$00 ; or W 0 �

��

��
��

��
11!!!
,,$$

$ (4.12)

where R is a non-elliptic web of the form
��

S
��

��
��

m�u

n�u

u
u

and S is a non-elliptic web with no left boundary. While the latter two webs in (4.12)
do not preclude the first, we employ the convention that if we claim a web has either
of these two forms it is implicit that it does not have the first. We will also assume
that u is chosen maximal for the first type of web.

We now proceed with our construction of the complexes C �
k

. Let C �
0 be the

complex constructed above with the degree zero term truncated off. We now construct
C �
k

assuming we have constructed C �
k�1; we have

cone.gk/Œ1� D cone.gk�1/Œ1� �
�

:::
��

��
m

n

�
s

' C �
k�1 �

�
:::

��
��

m

n

�
s

:

Since each web W in C �
k�1 has the form (4.12) (and also (4.4)), is supported in

A1=M frW g, and has homological degree at least 1C 2.k� 1/, it suffices to show that
each of the complexes�

W 0 �R � :::
��

��
m

n

�
s

;

�
W 0 �

��
��

��
�� !!!..$$$00 �

:::
��

��
m

n

�
s

;

�
W 0 �

��

��
��

��
11!!!
,,$$

$ � :::
��

��
m

n

�
s

is homotopic to a complex with terms of the form (4.4), minimal homological degree
2, and with webs V supported inA1=M frV � rW gwithW D W 0 �R orW 0. We shall
analyze each case separately.
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Case 1. We consider �
W 0 �R � :::

��
��

m

n

�
s

:

We compute�
W 0 �R � :::

��
��

m

n

�
s

D
�
W 0 �

��

S
��

��
��

m�u

n�u
u
u � :::

��
��

m

n

�
Œc��f3c� � 2cCg (4.13)

which is homotopy equivalent to the complex�
W 0 � :::

��
��

m�u
n�u �

��

S
��

��
��

m�u

n�u
u
u �

��

��

:::
��

��
u

u

�
Œc�� 2

3
��f3c�� 2cC� 8

3
�g (4.14)

where c˙ is the number of˙-crossings in

:::
��

��
m

n

and � is the change in writhe between the right side of (4.13) and (4.14). The shifts
involving � can be deduced from (2.12).

We have the formulae

cC D m2 �mC n2 � n
c� D 2mn

and

� D 0:
Taking into account the shifts due to the changes in the number of crossings, this
gives that �

W 0 �R � :::
��

��
m

n

�
s

is homotopy equivalent to�
W 0 � :::

��
��

m�u
n�u �

��

S
��

��
��

m�u

n�u
u
u �

��

��

:::
��

��
u

u

�
s

Œ2u.mC n� 2u/�f2u.mC n� 2u/g:

Similarly, taking into account the change in writhe, we compute�
S

��
��
u
u �

:::
��

��
u

u

�
s

' �
S

��
��
u
u

	
s
Œ2u2�f2u.uC 2/g

and so �
W 0 �R � :::

��
��

m

n

�
s
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is homotopy equivalent to�
W 0 � :::

��
��

m�u
n�u �

��

S
��

��
��

m�u

n�u

u
u

�
s

Œ2u.mC n� u/�f2u.mC n � uC 2/g: (4.15)

Since u � 1 and mC n � u � 1 and each web appearing in (4.15) takes the form
W 0 �R, it suffices to show that every web V appearing in this complex is supported
in A1=M frV � r.W 0�R/g.

We have

supp

 �
W 0 � :::

��
��

m�u
n�u �

��

S
��

��
��

m�u

n�u
u
u

�
s

!
	 supp

��
W 0 � :::

��
��

m�u
n�u

�
s

�

so we will consider complexes �
W 0 � :::

��
��

Om
On

�
s

for Om < m and On < n. As before, we can express the complex assigned to the twist
in terms of the complexes assigned to tangles

O� D AABB
O�1

O�2 �� OP3

OP2OP1 ��
��

��

�� ��

��

Om

On
Om0 : (4.16)

We must show that the complexes �W 0 � O��s , with appropriate shifts, are supported
in A1=M . Let On0 be the number of strands which leave yP3 and actually cross strands
in O�2. Refining our earlier estimate, if r is the number of internal faces in the zero
resolution of � then

r � max.0; Ol � On/
where Ol is the number of negative crossings in (4.16). The 0-resolution of W 0 � O�
hence has at most

rW 0 C Ol � On0 C 2 Om0 C On0 � 1 D rW 0 C Ol C 2 Om0 � 1
internal faces where rW 0 is the number of internal faces in W 0 (the additional 2 Om0 C
On0 � 1 possible faces come from gluing W 0 to O�).

Since we chose u maximal, the smooth resolution of W 0 � O� has no closed com-
ponents; Lemma 4.7 gives that �W 0 � O��s is supported in

A1=M f�rW 0 � Ol � 2 Om0g:
The contribution to �

W 0 � :::
��

��
m0

n0

�
s
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is obtained considering the shifts. As before we find it is given by

�W 0 � O��s Œ. Om0/2 � Om0 C a�f. Om0/2 � Om0 C agŒ Om0 C b�f2. Om0 C b/gŒ Ol�fOlg
with a � Om2 and b � Om so this complex is supported in

A1=M Œ. Om0/2 C aC b C Ol�f. Om0/2 � Om0 C aC 2b � rW 0g:
Since . Om0/2 C aC b C Ol �M we see that this support is contained in

A1=M f�rW 0 � 1g:
The contribution to �

W 0 �R � :::
��

��
m

n

�
s

is supported in

A1=M Œ2u.mC n� u/�f2u.mC n� uC 2/ � rW 0 � 1g
which is contained in A1=M f�rW 0g since 1 � u � min.m; n/ and

2u.mC n � u/ �M:
Moreover, applying the second statement from Lemma 4.7 throughout the preceding
argument, we see that any web V in the contribution to�

W 0 �R � :::
��

��
m

n

�
s

is supported in A1=M frV � r.W 0�R/g.

Case 2. We consider �
W 0 �

��
��

��
�� !!!..$$$00 �

:::
��

��
m

n

�
s

:

We assume that

W 0 �
��

��

��
�� !!!..$$$00

does not take the form W 0 � R above. We begin by using R3 moves to express the
tangle

:::
��

��
m

n

as in (4.8). We then use R3 moves to pull the two strand twist which “lines up” with
�� !!!..$$$00 to the left through the tangle. Lemma 4.1 gives�

W 0 �
��

��

��
�� !!!..$$$00 �

:::
��

��
m

n

�
s

'
�
W 0 �

��
��

��
�� !!!..$$$00 � T

�
s

Œ2�f4g
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where

T D
��

??

 m�1

n

�
��
??


@@
m�2

n

� � � � �
��
��

��

m�1

n

�
��

:::
����
��

��
n

m

:

As in our analysis of the complex assigned to a single twist, we use Lemma 4.10
starting with

��
��

��

m�1

n

and moving left to express �T �s in terms of complexes ���s or�
� �

��
��

��

��
��

�
s

with � as in (4.10). In the latter case the top strand of the crossing in
��

��

��

��
��

turns back to the right in �; this case arises due to the pair of non-twisting strands in T
which prevent the use of a good R2 move which in our previous analysis removed
the crossing.

We hence analyze the complexes�
W 0 �

��
��

��
�� !!!..$$$00 � �

�
s

and

�
W 0 �

��
��

��
�� !!!..$$$00 � � �

��
��

��

��
��

�
s

noting that every web appearing takes the form (4.4). It suffices to consider the
support of such complexes and we begin with the former (and slightly easier) case.
The smooth resolution of

W 0 �
��

��

��
�� !!!..$$$00 � �

takes the form

W 0 �
��

��

��
�� !!!..$$$00 �

�� m�m0

--
m0

22

�� n�m0

which has no closed components, since

W 0 �
��

��

��
�� !!!..$$$00 ¤ W 0 �R:

The 0-resolution of

W 0 �
��

��

��
�� !!!..$$$00 � �
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has at most

rW 0 C l � n0 C 2m0 C n0 � 1 D rW 0 C l C 2m0 � 1
internal faces, where n0 is the number of strands in � leaving P3 and crossing under
strands in �2.

Lemma 4.7 now gives that any web V appearing in�
W 0 �

��
��

��
�� !!!..$$$00 � �

�
s

is supported in A1=M frV � rW 0 � l � 2m0g. The contribution to�
W 0 �

��
��

��
�� !!!..$$$00 �

:::
��

��
m

n

�
s

is computed considering the shifts and as before we see it is given by�
W 0 �

��
��

��
�� !!!..$$$00 � �

�
s

Œ.m0/2�m0C a�f.m0/2�m0C agŒm0C b�f2.m0C b/gŒl �flgŒ2�f4g

with a � m2 and b � m. Any web V in this complex is supported in

A1=M Œ.m
0/2 C aC b C l C 2�f.m0/2 �m0 C aC 2b C rV � rW 0 C 4g

and since .m0/2 C aC b C l C 2 �M this is contained in A1=M frV � rW 0g.
We now consider �

W 0 �
��

��

��
�� !!!..$$$00 � � �

��
��

��

��
��

�
s

:

The smooth resolution of

W 0 �
��

��

��
�� !!!..$$$00 � � �

��
��

��

��
��

takes the form

W 0 �
��

��

��
�� !!!..$$$00 �

�� m�m0

--
m0

22

�� n�m0

which again has no closed components. Due to the alignment of the negative crossing,
the 0-resolution has the same number of internal faces as the case where it is not
present. It follows that the only difference from the previous case is that we make
one less good R2 move. It follows that any web V in the contribution to�

W 0 �
��

��

��
�� !!!..$$$00 �

:::
��

��
m

n

�
s

is supported in

A1=M Œ.m
0/2 C aC b C l C 1�f.m0/2 �m0 C aC 2b C rV � rW 0 C 3g

which is contained inA1=M frV � rW 0g and has minimal homological degree 2 (since
we necessarily have l � 1).
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Case 3. We consider �
W 0 �

��

��
��

��
11!!!
,,$$

$ � :::
��

��
m

n

�
s

:

This case can be handled completely analogously to case 2 above. In some detail,
begin by rotating the diagram

W 0 �
��

��
��

��
11!!!
,,$$

$ � :::
��

��
m

n

180B about a horizontal axis and reversing the direction of all strands. We are then in
case 2 (withm and n switched). Apply the above analysis (noting thatM is symmetric
inm and n) then rotate every web appearing in the complexes 180B about a horizontal
axis and reverse the direction of all strands.

Now, let zPw be the limit of Tw lying in K†.F / constructed using the complexes
C �
k

from the above proof.

Proposition 4.13. Letw D .C � � �C� � � ��/. The web idw appears only once in zPw
and does so in quantum and homological degree zero; all other webs in the complex
take the form (4.4). If wt.v/ < wt.w/ then zPw �W1 ' 0 for anyW1 2 Hom�.w; v/
and W2 � zPw ' 0 for any W2 2 Hom�.v; w/. Finally, zPw � zPw ' zPw .

Proof. The first statement follows as in the proof of Proposition 4.3 from the de-
scription of the complexes C �

k
in the proof of Proposition 4.12. The third statement

follows from the first and second as in the proof of Proposition 4.5.
It hence suffices to prove the second statement. Pulling the strands lining up with

a U -web through the twist and using the homotopy equivalence

� �� �
s
' � @@ �

s
Œ2�f6g (4.17)

we see that ˇ̌̌
ˇ
�

:::
��

��
m

n

k

�
��

CC��

�
s

ˇ̌̌
ˇ
h

� 2k:
A similar analysis using Lemma 4.1 shows the same for the complexes�

:::
��

��
m

n

k

�
��

��
��

��$$
$,,
!!!11

�
s

and

�
:::

��
��

m

n

k

�
��

��

��
��

00$$$
..!!!

�
s

:

Using Proposition 2.3 and following the proof of Proposition 4.4, we have that zPw �
W1 ' 0. The result for W2 follows similarly.

This gives Theorem 2.5 for the casew D .C � � �C� � � ��/. Since we have already
seen that zPw lies in K†.F /, Theorem 2.6 follows as in the case w D .C � � �C/.

The methods used to show that zPw is supported in K†.F / can be employed to
simplify their computation. We exhibit this in the following computation of zP.C�/.
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Proposition 4.14. We have

zP.C�/ D
::

;;
s �� q2

""
<<

ct� �� q4
""

<<

1
3
ctB �TC �� q8

""
<<

ct� �� � � � (4.18)

where ctB D ctL B ctR with ct�, ctL and ctR as in Lemma 4.10. TC D TL C TR
where TL is the identity foam on the right arc and is the foam:

on the left arc; TR is defined similarly.

Proof. Lemma 4.10 gives that

� ��
�� �

s
' cone

� � ::
;; � s�!

�
q2

""
<<

�ct� �� q4
""

<<

��
Œ1�

from which we compute that � ��
�� �

s
� � ��

�� �
s

is homotopy equivalent to

cone
� � ::

;; � s�!
�
q2

""
<<

�ct� �� q4
""

<<

��
Œ1� � � ��

�� �s
' cone

� � ��
�� �

s

f 0

�!
�
q2

""
<<

�ct� �� q4
""

<<

�
Œ2�f6g

�
Œ1�

D ::
;;

s �� q2
""

<<
ct� �� q4

""
<<

f �� q8
""

<<
ct� �� q10

""
<< :

A direct (and tedious!) computation shows that f D 1
3
ctB � TC, although it can

be argued based on degree that f must be a multiple of this map. Repeating this
procedure inductively to compute�

��
��

k�1 �
s

� � ��
�� �

s

shows that �
��

��

k
�
s

is given by the complex in equation (4.18) truncated at homological degree 2k.
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4.4. zPw and decategorification for non-segregated words. In the decategorified
case, we construct the projector Pw for a non-segregated word w by considering
the segregated projector of the same weight and (horizontally) composing with (a
composition of) H -webs on both sides. This procedure works in the categorified
setting as well.

Indeed, suppose thatw0 is a word for which we have constructed zPw 0 satisfying the
conditions of Theorem 2.5 andw is a word of the same weight obtained by transposing
one pair of adjacent C and � signs in w0. Let h be the web in Hom�.w0; w/ given
by the tensor product of

'' ��
�� '' (oriented appropriately) and identity webs. Consider

Nh � zPw 0 � h where Nh is the web in Hom�.w; w0/ obtained from h by reversing the
orientation of the strands in

'' ��
�� ''. If V is a web in Hom�.v; w/ with wt.v/ < wt.w/

then

V � Nh Š
M
˛

ql˛W˛

for W˛ in Hom�.v; w0/. Since wt.v/ < wt.w0/ we have that

V � Nh � zPw 0 � h Š
�M

˛

ql˛W˛

�
� zPw 0 � h

Š
M
˛

.ql˛W˛ � zPw 0/ � h

' 0:

A similar computation shows that Nh � zPw 0 � h � V ' 0 for V in Hom�.w; v/ with
wt.v/ < wt.w/.

If h is as above, h � Nh Š idw ˚W where W � zPw 0 ' 0 so we have

. Nh � zPw 0 � h/ � . Nh � zPw 0 � h/ Š Nh � zPw 0 � .idw ˚W / � zPw 0 � h
' Nh � zPw 0 � zPw 0 � h
' Nh � zPw 0 � h:

Since all non-identity webs appearing in zPw 0 factor through a word of lower weight,
these webs will not contribute an identity web to Nh � zPw 0 � h. Noting that Nh � h is the
direct sum of an identity web and a web factoring through a word of lower weight,
this shows that Nh � zPw 0 � h gives the categorified projector zPw .

Since any word can be obtained from the segregated word of the same weight
via a sequence of permutations of the symbols C and �, this proves Theorem 2.5
for arbitrary w. Theorem 2.6 also follows since K†.F / is (essentially) closed under
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horizontal composition and

�. zPw/ D �. Nh � zPw 0 � h/
D Nh � �. zPw 0/ � h
D Nh � Pw 0 � h
D Pw :

Since the above construction of zPw for non-segregated w is somewhat indirect, a
natural question to ask is whether this projector can also be realized as the stable limit
of torus braids. In fact, the answer is yes. To illustrate this, let w0 be a segregated
word and suppose that w is the word that results from switching the lastC inw0 with
the first �. We then have

zPw D
��

��

���� 		 ��
��		 �� ����
�
�

lim
k!1

�
:::

��
��

k
�
s

�
�

��

��	
	�� �� ��
���

� �� 		��

' lim
k!1

� ��

��

���� 		 ��
��		 �� ����
� :::

��
��

k

�
��

��	
	�� �� ��
���

� �� 		��
�
s

' lim
k!1

� ��

��

�� ���� ��

���� ��		

��

 ����
� :::

k
w

�
s

' lim
k!1

�
:::
k

w

�
s

˚ lim
k!1

� ����
����
� :::

k
w

�
s

' lim
k!1

�
:::
k

w

�
s

where

:::
k

w

denotes k full twists on strands oriented according to w. The fact that

lim
k!1

� ����
����
� :::

k
w

�
s

is null-homotopic follows from equation (4.17) and Lemma 3.17. Repeating this
argument to switch all desired C’s and �’s gives the general result.
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5. The categorified sl3 Reshetikhin–Turaev invariant of tangles

We now use the categorified projectors zPw to give a categorification of the sl3
Reshetikhin–Turaev invariant of framed tangles. Recall that this invariant assigns
an element of C.q/ for each labeling of the components of the tangle by irreducible
representations. We now describe a combinatorial method, given in [10], for com-
puting this invariant. For each component of the tangle, consider any2 word which
specifies the highest weight of the representation. Cable the component according to
the framing with the number and direction of strands given by the word. Insert the
corresponding projector anywhere along the cabling and then evaluate the resulting
webs in the sl3 spider. We define the categorified invariant analogously.

Definition 5.1. The categorified sl3 Reshetikhin–Turaev invariant of a framed tangle
T with i th component labeled by the irreducible representation corresponding to the
word wi , denoted �T �.w1;:::;wr /

, is computed by cabling each component according
to the framing with strands directed according to the corresponding word, inserting
the categorified projector, and evaluating to obtain a complex in K†.F /.

To prove that this defines an invariant of framed tangles it suffices to show that
the resulting complex is invariant up to homotopy under R2 and R3 Reidemeister
moves and under choice of where the projector is inserted. We first establish some
diagrammatic notation. Let �

w
	 defD zPw I

this notation will prove useful when considering the horizontal composition of cate-
gorified projectors with complexes assigned to tangles.

The following result is the analog in our setting of Lemma 5:2 from [4].

Lemma 5.2. Let w be a word. We have�
w

�
'

�
w

�
'

�
w

�
where the vertical strand can be oriented in either direction. A similar result holds
for sliding a categorified projector over a strand.

Proof. It suffices to show the first homotopy equivalence. We have (dropping the
word specifying the projector)� �

D
� �

� .C 0 �� C 1 �� � � �/

2The apparent dependence on the choice of word is immaterial; the invariant is independent of the
choice of words labeling closed components and the invariants obtained by labeling components with
boundary by different words of the same weight are isomorphic.
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where C i is a (q-linear) direct sum of webs annihilated by zPw for i > 0 and C 0

is the direct sum of an identity web with webs annihilated by zPw . If V is one such
(non-identity) web, equation (2.12) gives�

� V
�
'

�
� V �

�
' 0:

It then follows, using Propositions 3.4 and 3.17, that� �
'

�
� C 0

�
'

� �
:

Proposition 5.3. The complex assigned to a labeled, framed tangle according to
Definition 5.1 is invariant up to homotopy under R2 and R3 Reidemeister moves and
under choice of where along a component the categorified projector is inserted.

Proof. The preceding lemma shows that the categorified projector can be slid along
a component to any desired location without changing the complex up to homotopy.
Invariance under R2 and R3 Reidemeister moves follows since we can assume that
the projector is not located in the region of the knot diagram where the moves take
place.

Theorem 2.8 follows from Proposition 5.3, Theorem 2.6, and the similarities in
the definitions of the categorified and decategorified invariants.

We conclude with some explicit computations of this invariant.

Example 5.4. Using Example 4.9 we find that����
0

��

�����
.CC/

D

���� ����

�����
D ���� z �� q �� �� ��

0 �� q3 �� �� ��
p �� q5 �� �� ��

0 �� � � �
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where p is the foam which zips and then unzips along the two downward arcs. Using
Gaussian elimination (and a somewhat involved foam calculation), we find that this
complex is homotopy equivalent to the complex

q�2 �� 0 �� q2
T �� q6

0 �� q6
T �� q10

0 �� � � �

where

T D

and we have omitted the orientation of the circles. Applying the functor bHom.;;�/
which assigns the graded vector space of (not necessarily degree-zero) foams from ;
to closed webs, we obtain a complex of graded vector spaces. We have that

bHom.;; / D C ˚ C

,,--,,

˚ C

in gradings 2, 0, and �2 respectively (see [14]) and the map bHom.;; T / has rank 1,
giving the cohomology as

H i;j

0
@�

0

��

�
.CC/

1
A

D

8̂̂̂
<̂
ˆ̂̂̂:

C if i D 0 and j D �4;�2; 0;
C if i D 2k and j D 4k � 4; 4k � 2 for k > 0;

C if i D 2k C 1 and j D 4k C 2; 4k C 4 for k > 0;

0 else.

In the above formula, i denotes homological degree while j denotes the vector space
grading.
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Example 5.5. Using Proposition 4.14 we compute���
0

��

����
.C�/

D

��� ����

����
D s �� q2

0 �� q4
�3T �� q8

0 �� q10
�3T �� � � �

' q�2 ˚ �� 0 �� q4
T �� q8

0 �� q10

T �� q14
0 �� � � �

where again we have omitted the orientation of the circles. Applying bHom.;;�/ and
taking cohomology gives

H i;j

0
@�

0

��

�
.C�/

1
A

D

8̂̂̂
ˆ̂̂̂̂̂
<
ˆ̂̂̂̂̂
ˆ̂̂:

C2 if i D 0 and j D �2; 0;
C if i D 0 and j D �4; 2;
C if i D 2k and j D 6k � 4; 6k � 2 for k > 0;

C if i D 2k C 1 and j D 6k C 2; 6k C 4 for k > 0;

0 else.

References

[1] D. Bar-Natan, Khovanov’s homology for tangles and cobordisms. Geom. Topol. 9 (2005),
1443–1499. MR 2174270 Zbl 1084.57011

[2] D. Bar-Natan, Fast Khovanov homology computations. J. Knot Theory Ramifications 16
(2007), 243–255. MR 2320156 Zbl 1234.57013

[3] J. W. Barrett and B. W. Westbury, Spherical categories. Adv. Math. 143 (1999), 357–375.
MR 1686423 Zbl 0930.18004

http://www.ams.org/mathscinet-getitem?mr=2174270
http://zbmath.org/?q=an:1084.57011
http://www.ams.org/mathscinet-getitem?mr=2320156
http://zbmath.org/?q=an:1234.57013
http://www.ams.org/mathscinet-getitem?mr=1686423
http://zbmath.org/?q=an:0930.18004


Categorification of quantum sl3 projectors 59

[4] B. Cooper and V. Krushkal, Categorification of the Jones–Wenzl projectors. Quantum
Topol. 3 (2012), 139–180. MR 2901969 Zbl 06033706

[5] I. B. Frenkel, C. Stroppel, and J. Sussan, Categorifying fractional Euler character-
istics, Jones–Wenzl projectors and 3j -symbols. Quantum Topol. 3 (2012), 181–253.
MR 2901970 Zbl 1256.17006

[6] I. B. Frenkel and M. G. Khovanov, Canonical bases in tensor products and graphical
calculus for Uq.sl2/. Duke Math. J. 87 (1997), 409–480. MR 1446615 Zbl 0883.17013

[7] M. G. Khovanov, sl.3/ link homology. Algebr. Geom. Topol. 4 (2004), 1045–1081.
MR 2100691 Zbl 1159.57300

[8] D. Kim, Jones–Wenzl idempotents for rank 2 simple Lie algebras. Osaka J. Math. 44
(2007), 691–722. MR 2360947 Zbl 1133.57008

[9] G. Kuperberg, The quantum G2 link invariant. Internat. J. Math. 5 (1994), 61–85.
MR 1265145 Zbl 0797.57008

[10] G. Kuperberg, Spiders for rank 2 Lie algebras. Comm. Math. Phys. 180 (1996), 109–151.
MR 1403861 Zbl 0870.17005

[11] M. Mackaay and P. Vaz, The universal sl3-link homology. Algebr. Geom. Topol. 7 (2007),
1135–1169. MR 2336253 Zbl 1170.57011

[12] V. Mazorchuk and C. Stroppel, A combinatorial approach to functorial quantum slk knot
invariants. Amer. J. Math. 131 (2009), 1679–1713. MR 2567504 Zbl 1258.57007

[13] S. Morrison, A diagrammatic category for the representation theory of Uq.sln/. Univer-
sity of California, Berkeley. 2007. Ph.D. Thesis. MR 2710589 http://tqft.net/thesis

[14] S. Morrison and A. Nieh, On Khovanov’s cobordism theory for su3 knot homology.
J. Knot Theory Ramifications 17 (2008), 1121–1173. MR 2457839 Zbl 05375320

[15] T. Ohtsuki and S. Yamada, Quantum SU.3/ invariant of 3-manifolds via linear skein
theory. J. Knot Theory Ramifications 6 (1997), 373–404. MR 1457194 Zbl 0949.57011

[16] N. Yu. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from
quantum groups. Comm. Math. Phys. 127 (1990), 1–26. MR 1036112 Zbl 0768.57003

[17] D. E. V. Rose, A note on the Grothendieck group of an additive category. Preprint 2011.
arXiv:1109.2040

[18] L. Rozansky, An infinite torus braid yields a categorified Jones–Wenzl projector.
Preprint 2010. arXiv:1005.3266

[19] P. Selinger, A survey of graphical languages for monoidal categories. In B. Coecke (ed.),
New structures for physics. Lecture Notes in Physics 813. Springer, Heidelberg, 2011.
MR 2767048 Zbl 1217.18002

[20] E. H. Spanier, Algebraic topology. McGraw–Hill Series in Higher Mathematics.
McGraw–Hill Book Co., New York etc., 1966. MR 0210112 Zbl 0145.43303

[21] C. Stroppel and J. Sussan, Categorified Jones–Wenzl projectors: a comparison. Preprint
2011. arXiv:1105.3038

Received November 1, 2011

David E. V. Rose, Department of Mathematics, University of Southern California,
Los Angeles, CA 90089, U.S.A.

E-mail: davidero@usc.edu

http://www.ams.org/mathscinet-getitem?mr=2901969
http://zbmath.org/?q=an:06033706
http://www.ams.org/mathscinet-getitem?mr=2901970
http://zbmath.org/?q=an:1256.17006
http://www.ams.org/mathscinet-getitem?mr=1446615
http://zbmath.org/?q=an:0883.17013
http://www.ams.org/mathscinet-getitem?mr=2100691
http://zbmath.org/?q=an:1159.57300
http://www.ams.org/mathscinet-getitem?mr=2360947
http://zbmath.org/?q=an:1133.57008
http://www.ams.org/mathscinet-getitem?mr=1265145
http://zbmath.org/?q=an:0797.57008
http://www.ams.org/mathscinet-getitem?mr=1403861
http://zbmath.org/?q=an:0870.17005
http://www.ams.org/mathscinet-getitem?mr=2336253
http://zbmath.org/?q=an:1170.57011
http://www.ams.org/mathscinet-getitem?mr=2567504
http://zbmath.org/?q=an:1258.57007
http://www.ams.org/mathscinet-getitem?mr=2710589
http://tqft.net/thesis
http://www.ams.org/mathscinet-getitem?mr=2457839
http://zbmath.org/?q=an:05375320
http://www.ams.org/mathscinet-getitem?mr=1457194
http://zbmath.org/?q=an:0949.57011
http://www.ams.org/mathscinet-getitem?mr=1036112
http://zbmath.org/?q=an:0768.57003
http://arxiv.org/abs/1109.2040
http://arxiv.org/abs/1005.3266
http://www.ams.org/mathscinet-getitem?mr=2767048
http://zbmath.org/?q=an:1217.18002
http://www.ams.org/mathscinet-getitem?mr=0210112
http://zbmath.org/?q=an:0145.43303
http://arxiv.org/abs/1105.3038
mailto:davidero@usc.edu

	Introduction
	Background and summary of results
	Homological algebra
	Categorified sl_3 projectors
	The categorified sl_3 Reshetikhin–Turaev invariant of tangles
	References

