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On the SL.2 ; C/ quantum 6j -symbols
and their relation to the hyperbolic volume
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Abstract. We generalize the colored Alexander invariant of knots to an invariant of graphs
and we construct a face model for this invariant by using the corresponding 6j -symbols,
which come from the non-integral representations of the quantum group Uq.sl2/. We call
it the SL.2; C/-quantum 6j -symbols, and show their relation to the hyperbolic volume of a
truncated tetrahedron.
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1. Introduction

The 6j -symbols were first introduced by Racah for studying atomic spectroscopy
and later used by Ponzano and Regge as well as Biedenharn and Louck (and many
others) in the study of the theory of gravity by using representation theory of the
Lie algebra sl2. Their quantized version first appeared in [17], where the face model
of the colored Jones invariants of knots and links was constructed using quantum

1The first author was supported by the French ANR Research Project ANR-08-JCJC-0114-01.
2The second author was partially supported by Grant-in-Aid for Scientific Research© 19540230.
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6j -symbols instead of quantum R-matrices. The quantum 6j -symbols were also
used to construct the Turaev–Viro invariant of three manifods ([25]), which turned
out to be the square of the norm of the Witten–Reshetikhin–Turaev invariant ([24]).
More recently, R. Kashaev constructed knot invariants from quantized dilogarithm
functions and observed ([12]) that certain limit of his invariants coincide with the
hyperbolic volume of the knot complement; later it turned out ([18]) that the Kashaev
invariant is the colored Jones invariant of spin n�1

2
at q D �n, where �n is the primitive

2n-th root of unity exp
�

�
p�1
n

�
. In other words, the Kashaev invariant comes from

the n dimensional irreducible representation of U�n
.sl2/.

When q D �n, there exist other invariants related to U�n
.sl2/, such as the colored

Alexander invariant ([1], [20], and [9]), the logarithmic invariant ([21]), and the
Hennings invariant ([11]). The colored Alexander invariant is related to the central
deformation of the n-dimensional irreducible representation of U�n

.sl2/, which is a
non-integral highest weight representation. Let zU�n

.sl2/ be the small (or restricted)
quantum group which is a quotient of U�n

.sl2/. Then the logarithmic invariant is
defined by using the radical part of a non-semisimple representation of zU�n

.sl2/. The
Hennings invariant is an invariant of 3-manifolds coming from the right integral given
by the finite dimensional Hopf algebra structure of zU�n

.sl2/. The logarithmic and
Hennings invariants are both related to the logarithmic conformal field theory ([6]),
and can be expressed in terms of the colored Alexander invariant ([21]).

The main purpose of this paper is to investigate the quantum 6j -symbols related to
the non-integral highest weight representations of U�n

.sl2/, and show their relations
to the hyperbolic volume of a truncated tetrahedron. In Section 2 after recalling
the basic facts about the category of non-integral highest weight representations, we
define the Clebsch–Gordan quantum coefficients (CGQC) of the tensor product of two
such modules, and then combine them to get the corresponding quantum 6j -symbols.
For n odd, these 6j -symbols were already given and used to construct a 3-manifold
invariants in [7] and [8]. Since the spin (parametrizing the irreducible representations
of U�n

.sl2/) is a continuous parameter in the above construction, we will call the
6j -symbols computed through this representation theory the SL.2; C/-symbols, while
we will call the usual quantum 6j -symbol (for instance those introduced in [17]) the
SU.2; C/-quantum 6j -symbols. For the sake of clarity, we moved all the proofs of
algebraic statements in Appendix A.

Section 3 has the goal of relating the 6j -symbols to hyperbolic geometry. Many
evidences support the idea that geometry should show up while considering asymptot-
ical limits of quantum invariants. For instance the analysis of such limits for SU.2; C/

6j -symbols, led to the (previously unknown) formulas for the volume of a hyperbolic
tetrahedron ([23], [26], and [22]). Similarly various proofs have been provided of
special cases of Kashaev’s volume conjecture (see for instance [3], [4], [12], [13],
[18], and [27]) showing that the hyperbolic volumes of link complements are indeed
related to such asymptotical limits, and a geometric explanation for this phenomenon
(even though not yet a proof) was provided by Yokota ([29]). It was observed in [20]
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and [2] that the colored Alexander invariant is related to the hyperbolic volume of
a cone manifold whose core is the given knot; this is analogous to the generalized
volume conjecture of the Kashaev invariant with deformed q in [10] and [19]. Here,
we show that the SL.2; C/ quantum 6j -symbol is related to the volume of a truncated
tetrahedron.

Theorem 3.2 (see below). Let T be a truncated hyperbolic tetrahedron with oriented
labeled edges, and let 0 < �a, �b , �c , �d , �e , �f < � be the internal dihedral
angles at the edges. Let an; bn; cn; dn; en; fn be sequences of integers such that
limn!1 2�an

n
D � � �a; : : : ; limn!1 2�fn

n
D � � �f ;. Put Nan D n � 1 � an, : : : ,

Nfn D n � 1 � fn. Using these parameters, the volume of T is given as follows:

Vol.T / D lim
n!1

�

2n
log

�²
an bn en

dn cn fn

³
tet

² Nan
Nbn Nen

Ndn Ncn
Nfn

³
tet

�
:

The proof of the theorem exploits the peculiar behavior of 6j -symbols outlined
in Lemma 2.16: they are finite sums positive real numbers each of which is growing
exponentially fast. To compute the overall exponential growth of the sum is therefore
sufficient to identify the summands with maximal growth rate. This key point is
what makes relatively easy to compute the asymptotical behavior in our case: in
general one has to deal with oscillating complex valued sums whose behavior is quite
complicated. A similar property was used in [4] for 6j -symbols associated to the
representation theory of Uq.sl2/ for generic q to prove an analogue of the generalized
volume conjecture for tetrahedra. The rest of the proof shows that the maximal growth
rate, expressed in terms of the angles of the tetrahedron, satisfies the same Schläfli
differential equation as the volume function, thus they differ by a constant and finally
that in a special case the two functions are equal.

In Section 4, interpreting graphically the morphisms between representations in
the standard way, we generalize the colored Alexander invariant to an invariant of
colored graphs (which we shall denote h�; coli) which is essentially equal to the
invariant given in [9]. After defining the invariant, we construct a face model for it by
using the SL.2; C/ quantum 6j -symbols along with the method already used in [17].
This model is a generalization of those for the Conway function and the Alexander
polynomial constructed by O. Viro [28] using the quantum supergroup gl.1 j 1/.

The following natural evolutions of the preceding results remains open.

Question 1.1. What is the asymptotical behavior (if any) if �a; : : : ; �f are complex
valued? What is the geometrical meaning of such behavior?

More in general similar questions may be asked for general trivalent graphs and
knots. The fact (proved in Remark 4.7) that the Kashaev invariant of a knot can be
computed as a limit with � ! n�1

2
(� being the color of the knot) makes it natural

to expect that the SL.2; C/ quantum 6j -symbol could be a good tool to investigate
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the volume conjecture and quantized gravity (the latter being one of the original
motivations to study the 6j -symbols). So it is natural to expect that the answer to the
following question should be related to the generalized volume conjecture ([10]).

Question 1.2. Given a hyperbolic knot K � S3 what is (if any) the asymptotical
behavior of hK; .n�1/

2
�in? What is its geometrical meaning?

Other direction of study left open by the present work are related to the Turaev–
Viro type invariant of 3-manifolds introduced in [8] using SL.2; C/ 6j -symbols.
Such invariants are defined for generic values of the parameters, and, specializing the
parameters to half-integers, it is expected that they should be related to the logarithmic
TQFT introduced in [6] and to the logarithmic invariant in [21]. This will be a subject
of future study.

Acknowledgments. The authors thank Nathan Geer, Bertrand Patureau-Mirand and
Roland van der Veen for helpful discussions. They also thank the referees for the
extremely detailed and very helpful reports.

2. Representations of U�n and their morphisms

In this section, we recall the key facts about the non-integral weight representations
of Uq.sl2/. In particular we construct the Clebsch–Gordan quantum coefficients
(CGQC) and the 6j -symbols.

2.1. Highest weight representations of Uq.sl2/. Let n 2 N and let �n be the

primitive 2n-th root of unity exp
�

�
p�1
n

�
. For a complex number a, we will denote

exp
�

�
p�1a

n

�
by �a

n . We will also use the following notations:

fag D �a
n � ��a

n .a 2 C/;

fkgŠ D
kY

jD1

fj g .k 2 N/;

Œa� D fag
f1g ;

fa; a � kg D
k�1Y
jD0

fa � j g;



SL.2; C/ quantum 6j -symbols and their hyperbolic volume 307

and, if a � b 2 f0; 1; : : : ; n � 1g,

�
a

b

�
D

a�b�1Y
jD0

fa � j g
fa � b � j g D fa; bg

fa � bgŠ :

Remark 2.1. If a 2 Z then also b 2 Z and if a > n, b < n and a � b < n then
� a

b

	
is defined but it is 0.

We will often use implicitly the following identities:

fag D fn � ag .a 2 C/;

fagŠfn � 1 � agŠ D fn � 1gŠ D p�1
n�1

n .a 2 f0; 1; : : : ; n � 1g/;�
a

b

�
D
�

n � 1 � b

n � 1 � a

�
.a; b 2 C; .a � b/ 2 f0; 1; : : : ; n � 1g/;

�
a

b

�
D .�1/a�b

�
a � n

b � n

�
.a; b 2 C; .a � b/ 2 f0; 1; : : : ; n � 1g/;

as well as the following lemma.

Lemma 2.2. For any parameter a, b and a non-negative integer c, we have

cX
sD0

�˙.aCb�cC2/s
n

�
a � s

a � c

��
b C s

b

�
D �˙.bC1/c

n

�
a C b C 1

a C b � c C 1

�
: (2.1)

Proof. In relation (2.1) replace � by q; for generic q, the relation is true for the case
that a and b are non-negative integers by (51) in [16]. Both sides of (2.1) are Laurent
polynomials with respect to the variable qa, qb , and they are equal for any positive
integers a and b. Therefore, these two polynomials are equal and the two sides of (2.1)
coincide for any a and b for generic q. Then we can specialize q to �n.

Definition 2.3. For a parameter q ¤ 0; ˙1, let Uq.sl2/ be the quantized enveloping
algebra of sl2, which is the Hopf algebra generated by E, F , K, and K�1 with
relations

ŒE; F � D K2 � K�2

q � q�1
;

KE D qEK;

KF D q�1FK;

KK�1 D K�1K D 1;
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and the Hopf algebra structure given by

�.E/ D E ˝ K C K�1 ˝ E;

�.F / D F ˝ K C K�1 ˝ F;

�.K˙1/ D K˙1 ˝ K˙1;

S.E/ D �qE;

S.F / D �q�1F;

S.K/ D K�1;

".E/ D ".F / D 0;

".K/ D 1:

From now on, we will stick to the case q D �n unless explicitly stated the contrary.
The proof of the following is a straightforward verification of the above relations.

Lemma 2.4. For each a 2 C n 1
2
Z, there is a simple representation V a of U�n

.sl2/

of dimension n whose basis is fea
0 ; ea

1 ; : : : ; ea
n�1g and on which the actions of E, F ,

and K are given by

E.ea
j / D Œj �ea

j�1;

F.ea
j / D Œ2a � j �ea

jC1;

K.ea
j / D �a�j

n ea
j ;

with ea�1 D ea
n D 0.

The basis fea
0 ; ea

1 ; : : : ; ea
n�1g of V a will be called the weight basis of V a. Two such

representations V a and V b are isomorphic if and only if a �b 2 2nZ. The represen-
tation .V a/� is isomorphic to V n�1�a, a duality pairing realizing this isomorphism
being \

a;b

.ea
i ; eb

j / D ıb;n�1�aıi;n�1�j ��.a�i/.n�1/
n : (2.2)

Similarly, an invariant vector in V a ˝ V b is given by

[
a;b

D ıb;n�1�a

n�1X
iD0

�.b�nC1Ci/.n�1/
n ea

i ˝ eb
n�1�i : (2.3)

In what follows we will represent graphically the maps \a;b and [a;b as follows:

�
�

�
�

� �

a n�1�a

i n�1�i

and

i n�1�i

�
�

�
�

� �
a n�1�a

: (2.4)
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2.2. The R-matrix. The R-matrix corresponding to the coloredAlexander invariant
is given in [1], and is also used in [20]. The construction of the representation of
U�n

.sl2/ is a little bit different from that in [20], and we define

b
aR W V a ˝ V b �! V b ˝ V a

(the morphism obtained by composing the R-matrix action with the flip) as follows:

b
aR.ea

u ˝ eb
v / D

X
m

fmgŠ�c1
n

�
u

u � m

��
2b � v

2b � v � m

�
eb

vCm ˝ ea
u�m; (2.5)

where

c1 D 2.a � u/.b � v/ � m.a � b � u C v/ � m.m C 1/

2

and m ranges in Œ0; min.n � v � 1; u/� \ N. We denote b
aR

h;k
u;v the coefficient of

R.ea
u ˝ eb

v / with respect to eb
h

˝ ea
k

.

Proposition 2.5. The morphism b
aR given above is the R-matrix of the non-integral

representations, in other words, b
aR satisfies

b
aR�.x/ D �.x/b

aR (2.6)

as mappings from V a ˝ V b to V b ˝ V a for any x 2 U�n
.sl2/, and

.c
bR ˝ id/.id ˝c

aR/.b
aR ˝ id/ D .id ˝b

aR/.c
aR ˝ id/.id ˝c

bR/ (2.7)

as mappings from V a ˝ V b ˝ V c to V c ˝ V b ˝ V a.

Proof. Let us sketch the proof of (2.6) for the generator E (the case of K and F is
similar). On one side we have

b
aR.�.E/.ea

u ˝ eb
v //

D
X

m

�b�vŒu�baR
vCm;u�1�m
u�1;v eb

vCm ˝ ea
u�1�m

C �u�aŒv�baR
v�1Cm;u�m
u;v�1 eb

v�1Cm ˝ ea
u�m:

On the other hand this must be equal to

�.E/.b
aR.ea

u ˝ eb
v //

D
X
m

b
aRvCm;u�m

u;v Œv C m��a�uCmeb
vCm�1 ˝ ea

u�m

C b
aRvCm;u�m

u;v Œu � m���bCvCmeb
vCm ˝ ea

u�m�1:
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We now use the fact that the ratio of two neighboring coefficients of b
aR is easy to

compute, for instance it holds

.b
aRvCm;u�m

u;v /�1b
aRvCmC1;u�m�1

u;v D ��.a�u�bCvCmC1/ fu � mgf2b � v � mg
fm C 1g :

Thus, comparing the coefficient of eb
vCm ˝ ea

u�m�1 on both sides and factoring out
b
aR

vCm;u�m
u;v one gets the equality

�3.b�v/�mŒu � m� C �b�v Œv�fu � mgf2b � v C 1g
fm C 1g

D Œu � m��vCm�b C �b�v fu � mgf2b � v � mgŒv C m C 1�

fm C 1g
which is equivalent to

fm C 1gf2b � 2v � mg C fvgf2b � v C 1g D fv C m C 1gf2b � v � mg:
Equation (2.7) comes from the braid relation (3.8) of [1] since our b

aR is related to
G.˛; ˇ; C/ defined by (3.5) in [1] as follows. Using the superscript ADO for symbols
introduced in (3.1)–(3.3) of [1] one sees that

.�2; m/ADO
�2 D .�1/m�

m.mC1/
2 fmgŠ

and �
m

n

�ADO

�2

D
�

m

n

�
�n.m�n/;

�
m

n

�ADO

��4b;�2

D f2b � n; 2b � mg� .m�n/.mCn�1�4b/
2 :

Observing formula (3.5) of [1], one easily sees that if the matrix G.˛; ˇ; C/ satisfies
the braid relation, then it will keep satisfying it for any choice of 	; 
; f; F; �; �.
Thus we choose ! D �2; ˛ D ��4a

n , ˇ D ��4b
n , 	 D 
 D 1=4, f D F D 1, and

� D � D 0 so that G.��4a
n ; ��4b

n ; C/ is given by

G
u;v
vCm;u�m.��4a

n ; ��4b
n ; C/

D �
2vu�2bu�2avCm.�aCuCb�v/�m.mC1/

2
n

�
u

u � m

�
f2b � v; 2b � v � mg

and so
b
aRvCmu�m

uv D �2ab
n G

u;v
vCm;u�m.��4a

n ; ��4b
n ; C/:

Hence b
aR satisfies the braid relation (2.7).



SL.2; C/ quantum 6j -symbols and their hyperbolic volume 311

The R-matrix given by (2.5) is represented graphically as follows:

b
aR

ij

kl
W

i j

�
�

��

��
���

a b

k l

and

.b
aR�1/

ij

kl
W

i j

�
�
��

��

���
a b

k l

:

2.3. Clebsch–Gordan quantum coefficients. Let us consider the tensor product
V a ˝ V b . By using standard arguments on the weight space decomposition, one can
prove the following decomposition of the tensor product.

Proposition 2.6. Let V a, V b be highest weight representations of non-half-integer
parameters a; b. If a C b is not a half-integer, then

V a ˝ V b D
M

aCb�cD0;1;:::;n�1

V c : (2.8)

The weight basis ec
t of Vc is a linear combination of the tensors ea

u ˝ eb
v of the

weight basis of V a and V b . An explicit computation of the coefficients expressing
ec

t in terms of ea
u ˝ eb

v is provided by the following theorem. (See Appendix A.1 for
a proof.)

Theorem 2.7 (Clebsch–Gordan decomposition). If a C b � c 2 f0, 1, : : : , n � 1g,
any U�n

.sl2/ module map

a;b
c W V c �! V a ˝ V b

is a scalar multiple of the inclusion map

Y a;b
c W V c ! V a ˝ V b

given by
Y a;b

c .ec
t / D

X
uCv�tDaCb�c

C
a;b;c
u;v;t ea

u ˝ eb
v ;

where

C
a;b;c
u;v;t D �

n
2

.c�a�b/.�1/.v�t/�c2
n

�
2c

2c � t

��1� 2c

a C b C c � .n � 1/

�
X

zCwDt

z;w�0

.�1/z�c3
n

�
a C b � c

u � z

��
2a � u C z

2a � u

��
2b � v C w

2b � v

�
;

(2.9)
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with

c2 D v.2b � v C 1/ � u.2a � u C 1/

2
and

c3 D .2z � t /.2c � t C 1/

2
;

and where the sum is taken over all z; w � 0 such that z � u and w � v.

The coefficient C
a;b;c
u;v;t is called the Clebsch–Gordan quantum coefficient (CGQC).

In order to get invariants of unoriented graphs, the operators associated to the
other elementary graphs must constructed by “moving a leg of the Y -shaped graph
up or down” (see Figure 1). Hence we define projectors

Lc
a;b W V a ˝ V b �! V c

out of Y
a;b
c as

Lc
a;b D


 \
a;n�1�a

˝ idc

�
B .ida ˝Y

n�1�a;c
b

/:

So, letting

Lc
a;b.ea

u ˝ eb
v / D

X
t

L
a;b;c
u;v;t ec

t ;

the coefficients are explicitly given by

L
a;b;c
u;v;t D C

n�1�a;c;b
n�1�u;t;v ��a.n�1/

n �.n�1/u
n : (2.10)

One may also define Rc
a;b

by “pulling-up the right leg” i.e. by setting

Rc
a;b D .idc ˝\n�1�b;b/ B .Y c;n�1�b

a ˝ idb/

(as in the right hand side of Figure 1), but as the following lemma shows, the two
choices are equivalent. (See Appendix A.2 for a proof.)

DD

a b

c cc

a b a b

Y c
a;b

Lc
a;b

Rc
a;b

Figure 1. The first equality is the definition of Y c
a;b

, the second is Lemma 2.8.
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Lemma 2.8. The following holds:

C
n�1�a;c;b
n�1�u;t;v ��a.n�1/

n �.n�1/u
n D C

c;n�1�b;a
t;n�1�v;u ��.n�1�b/.n�1/

n �.n�1/.n�1�v/
n :

Therefore we have well defined projectors

Y c
a;b W V a ˝ V b �! V c

(about the notation: Y
a;b

c and Y c
a;b

are distinguished by the position of the indices). In
order to have an explicit formula, applying two times Lemma 2.8 we get the following
proposition.

Proposition 2.9. The projection Y c
a;b

is given by

Y c
a;b.ea

u ˝ eb
v / D

X
t

C
n�1�b;n�1�a;n�1�c
n�1�v;n�1�u;n�1�t ec

t : (2.11)

In what follows, the Clebsch–Gordan quantum coefficients given by (2.9) will be
represented graphically as follows:

C a;b;c
m1;m2;m W

m1 m2

�
���

�
���

�

a b

c

m

and

C
n�1�b;n�1�a;n�1�c
n�1�m2;n�1�m1;n�1�m W

m

�
���

�
���

�
a b

c

m1 m2

:

(Here in the left part we use Proposition 2.9 to rewrite Y c
a;b

.) The following lemma
is proved in Appendix A.3.

Lemma 2.10. It holds

a

a

b
c

D
�

2a C n

2a C 1

�
ida : (2.12)

The decomposition of V a ˝ V b is expressed by Y
a;b
c and Y c

a;b
as follows.
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Proposition 2.11. Let id be the identity operator on V a ˝ V b . Then

id D
X

c W aCb�cD0;1;:::;n�1

�
2c C n

2c C 1

��1

Y a;b
c Y c

a;b: (2.13)

Proof. Formula (2.12) implies that

Y a;b
c Y c

a;bY a;b
c Y c

a;b D
�

2c C n

2c C 1

�
Y a;b

c Y c
a;b:

Hence,
� 2cCn

2cC1

	�1
Y

a;b
c Y c

a;b
is the identity on the subspace of V a ˝ V b isomorphic

to V c .

2.4. Quantum 6j -symbols. In this subsection, we compute the SL.2; C/ quantum
6j -symbol by using the CGQC introduced previously. The quantum 6j -symbol is
defined by the relation in Figure 2. The left diagram represents the composition of
two inclusions

V j �! V j12 ˝ V j3 and V j12 �! V j1 ˝ V j2 ;

while the right diagram represents the composition of two inclusions

V j �! V j1 ˝ V j23 and V j23 �! V j2 ˝ V j3 :

Let l and r be the resulting maps. Then Figure 2 translates the equality

l .v/ D
X
j23

²
j1 j2 j12

j3 j j23

³
�n

r .v/; v 2 V j :

The quantum 6j -symbols for non-integral highest weight representations are given
as in the following theorem. (See Appendix A.4 for a proof.)

j1 j2 j3

j

j12 D
X
j23

²
j1 j2 j12

j3 j j23

³
�n

j1 j2 j3

j

j23

Figure 2. The quantum 6j -symbol is defined by the above diagram.
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Theorem 2.12. For a, b, : : : , f 2 C n 1
2
Z satisfying

a C b � e; a C f � c; b C d � f; d C e � c 2 Z;

we have²
a b e

d c f

³
�n

D .�1/n�1CBafc

�
2f C n

2f C 1

��1 fBdecgŠfBabegŠ
fBbdf gŠfBafcgŠ

�
2e

Aabe C 1 � n

��
2e

Becd

��1

min.Bdec ;Bafc/X
zDmax.0;�Bbdf CBdec/

.�1/z

�
Aafc C 1

2c C z C 1

��
Bacf C z

Bacf

�
�

Bbfd C Bdec � z

Bbfd

��
Bdce C z

Bdf b

�
;

(2.14)

where
Axyz D x C y C z and Bxyz D x C y � z: (2.15)

Remark 2.13. These 6j -symbols were already computed in [7].

2.5. Values of tetrahedra. The following result is a straightforward consequence
of the definition of 6j -symbols and of Lemma 2.10.

Lemma 2.14. It holds

a
b

c

c

d
e

f

D
²

a b e

d c f

³
�n

�
2f C n

2f C 1

� c

c

f

a

: (2.16)

Let us define ²
a b e

d c f

³
tet

D
²

a b e

d c f

³
�n

�
2f C n

2f C 1

�
: (2.17)

We will prove later in much greater generality (Theorem 4.4) that
® a b e

d c f

¯
tet is the

value of an invariant for the tetrahedron of Figure 3 and thus it has all the symmetries
of the tetrahedron (up to switching the color of an edge with its complement to n � 1

if the symmetry changes the orientation of the edge).
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a

b

c
d

e

f

Figure 3. Colored oriented tetrahedral graph.

Using (2.15), if in
®

a b e
d c f

¯
tet one fixes the values of Bdec, Babe , Bbdf , and Bafc

in f0; 1; : : : ; n � 1g and computes the values of b, f , and c as functions of these
values and of e, a, and d , then one gets a rational function of �a

n , �d
n , and �e

n with
complex coefficients, which is actually a Laurent polynomial of �a

n and �d
n . (Indeed

the only term which is not a Laurent polynomial in (2.14) is
� 2e

Becd

	�1
.) Similarly

one can express all the variables in terms of e, b, and c or e, f , and c showing that
the function is a Laurent polynomial also of �b

n , �c
n , and �

f
n . To prove that it is also a

Laurent polynomial of �e
n , we exploit the symmetry (induced by an isotopy rotating

the picture of Figure 3 of 180B along an axis contained in the blackboard)²
a b e

d c f

³
tet

D
²

f n � 1 � b d

e c a

³
tet

and apply the same argument to the right-hand side to conclude that the left hand
side is a Laurent polynomial with respect to �e

n. Hence the value of the tetrahedron

is holomorphic with respect to the parameters a, : : : , f . This implies that
® a b e

d c f

¯
tet

is well defined even if some of parameters are half-integers, therefore from now on
we will allow half-integers values for the parameters. So, in order to exploit this, let
us set a definition.

Definition 2.15. A triple of three integers .i; j; k/ is called admissible if they satisfy
the following conditions:

0 < i; j; k < n � 1;

n � 1 < i C j C k < 2.n � 1/;

and

0 < i C j � k; j C k � i; k C i � j < n � 1

(here n is such that � D e
i�
n ).

The following lemma will be crucial in the proof of Theorem 3.2.
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Lemma 2.16. Let a, b, c, d , e, and f be integers such that .a; b; e/, .a; c; f /,
.b; d; f /, and .c; d; e/ are admissible triples. Then it holds

²
a b e

d c f

³
tet

D .�1/n�1 fBdecgŠfBabegŠ
fBbdf gŠfBafcgŠ

�
2e

Aabe C 1 � n

��
2e

Becd

��1

MX
zDm

�
Aafc C 1 � n

2c C z C 1 � n

��
Bacf C z

Bacf

��
Bbfd C Bdec � z

Bbfd

��
Bdce C z

Bdf b

�
;

(2.18)

where

m D max.0; n � 1 � 2c; b � c C e C f � n C 1; �b � c C e C f /

and

M D min.Bdec; Bafc; n � 1 � Bacf ; n � 1 � Bdce/:

Let

R.z/ D
�

Aafc C 1 � n

2c C z C 1 � n

��
Bacf C z

Bacf

��
Bbfd C Bdec � z

Bbfd

��
Bdce C z

Bdf b

�

for m < z < M . Then R.z/ is positive, and there is a unique integer z0 such that
r.z0/ � 1 and r.z0 C 1/ � 1 for

r.z/ D R.z/

R.z � 1/

D fBafc � z C 1gfBacf C zgfBdec � z C 1gfBdce C zg
f2c C z C 1 � ngfzgfBbfd C Bdec � z C 1gfBdce � Bdf b C zg :

This z0 satisfies

R.z0/ D maxfR.z/ j z 2 Z; m < z < M g: (2.19)

Proof. Formula (2.18) comes from (2.14), (2.17), and the relation

.�1/z

�
Aafc C 1

2c C z C 1

�
D .�1/Bafc

�
Aafc C 1 � n

2c C z C 1 � n

�
:

Observe that since the colors are integers the summation range Œm; M� � Œ0; n � 1�

is the set of values of z in (2.14) such that all the binomials are non-zero. Moreover,
for z satisfying m � z � M , the four binomials in R.z/ are all positive.
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For z 2�m; M� we rewrite r.z/ as

r.z/ D
sin


�

n
.Bafc � z C 1/

�
sin


�

n
.Bacf C z/

�
sin


�

n
.2c C z C 1 � n/

�
sin


�

n
z
�

�
sin


�

n
.Bdec � z C 1/

�
sin


�

n
.Bdce C z/

�
sin


�

n
.z � .Bbfd C Bdec � n C 1//

�
sin


�

n
.Bdce � Bdf b C z/

� :

Observe also that, since all colors are integers, r.z/ is continuous and real-valued for
z 2�m; M� and since r.z/ > 1 if z is close to m and 0 < r.z/ < 1 if z is close to M ,
there exist a solution x1 2 Œm; M� of r.z/ D 1; thus R.z/ attains a local maximum
at z0 D bx1c. We will now show that x1 is actually the only maximum of R on the
interval Œm; M� and this will conclude the proof. To prove this, we now show that
there is only one solution to r.z/ D 1 in �m; M� by proving that r 0.z/ < 0 for all
z 2�m; M�. It holds

r 0.z/ D �

n
r.z/f .z/;

where

f .z/ D � ctg

�

n
.Bafc � z C 1/

�
� ctg


�

n
.z � .n � 1 � 2c//

�

� ctg

�

n
.Bdec � z C 1/

�
� ctg


�

n
.z � .Bbfd C Bdec � n C 1//

�

C ctg

�

n
.Bacf C z/

�
� ctg


�

n
z
�

C ctg

�

n
.Bdce C z/

�
� ctg


�

n
.Bdce � Bdf b C z/

�
:

To conclude it is then sufficient to observe that for z 2�m; M� the following inequal-
ities hold:

� ctg

�

n
.Bafc � z C 1/

�
� ctg


�

n
.z � .n � 1 � 2c//

�
< 0;

� ctg

�

n
.Bdec � z C 1/

�
� ctg


�

n
.z � .Bbfd C Bdec � n C 1//

�
< 0;

ctg

�

n
.Bacf C z/

�
� ctg


�

n
z
�

< 0;

and

ctg

�

n
.Bdce C z/

�
� ctg


�

n
.Bdce � Bdf b C z/

�
< 0:

Indeed the latter two inequalities hold because for all 0 < y < x < � it holds
ctg.x/ � ctg.y/ < 0, and the former two because for all 0 < x; y < � such that
x C y < � it holds � ctg.x/ � ctg.y/ < 0. Thus f .z/ < 0 and so r 0.z/ < 0 for all
z 2�m; MŒ. This proves that z0 D bx1c is the only maximum of R.z/ on Œm; M�.
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2.6. Relations satisfied by the tetrahedra

Orthogonality relation. Let us define
B
® a b e

d c f

¯
�n

by

d b a

e

c

D
X
f

E
²

a b e

d c f

³
�n

d b a

f

c

:

By a simple computation, using that
� a

b

	
�n ��1

n
D � a

b

	
and (2.9) we have

C
b;a;c
v;u;t D C

a;b;c
u;v;t j�n ��1

n
:

This implies that
E
²

a b e

d c f

³
�n

D
²

a b e

d c f

³
��1

n

:

But, by inspection in (2.14), we have²
a b e

d c f

³
��1

n

D
²

a b e

d c f

³
�n

and so
E
²

a b e

d c f

³
�n

D
²

a b e

d c f

³
�n

:

Therefore we have

X
f

²
a b e

d c f

³
�n

²
d b f

a c g

³
�n

D
X
f

E
²

a b e

d c f

³
�n

²
d b f

a c g

³
�n

D ıeg

since

a b d

e

c

D
X
f

²
a b e

d c f

³
�n

a b d

f

c

D
X
f;g

²
a b e

d c f

³
�n

E
²

d b f

a c g

³
�n

a b d

g

c

:
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Therefore the following orthogonality relation holds:

X
f

�
2f C n

2f C 1

��1�2g C n

2g C 1

��1 ²
a b e

d c f

³
tet

²
d b f

a c g

³
tet

D ıeg ;

where f ranges over all the complex numbers such that both b Cd �f and f Ca�c

are in f0; 1; : : : ; n � 1g.

Pentagon relation. It holds

X
h

�
2h C n

2h C 1

��1²a b f

g c h

³
tet

²
a h g

e d i

³
tet

²
b c h

d i j

³
tet

D
²

f c g

d e j

³
tet

²
a b f

j e i

³
tet

;

where h ranges over all the complex numbers such that all of h C a � c, g C b � h,
e C h � i , a C h � g, b C c � h, and h C d � i are in f0; 1; : : : ; n � 1g. The proof of
the relation is similar to that in the generic q case and it follows from the sequence
here below:

Symmetry The symmetries are a consequence of Theorem 4.4. Since the change
of the orientation of an edge colored by i corresponds to the change of the color i to
N{ D n � 1 � i , we have a group of 24 symmetries (induced by the invariance under
isotopy) and (for instance) generated by the first 3 here below (we also specify some
other elements of the group which will be used later):²

a b e

d c f

³
tet

D
²

b Ne Na
c f d

³
tet

D
²

f Nb d

e c a

³
tet

D
² Nd Nb Nf

Na Nc Ne
³

tet

D
²

c Nf a

b e Nd
³

tet
D
²

d e c

Na f b

³
tet

D
²

e d c

Nf a Nb
³

tet
:

(2.20)
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3. Relation between the 6j -symbol and the hyperbolic volume

In this section, we investigate the relation between
® a b e

d c f

¯
tet and the hyperbolic

volume of an ideal or truncated hyperbolic tetrahedron.

3.1. Volume of an ideal tetrahedron. First, we consider an ideal tetrahedron T

with dihedral angles ˛, ˇ, and � satisfying a C ˇ C � D � . Let an, bn, and cn be
sequences of integers such that limn!1 2�an

n
D � � ˛, limn!1 2�bn

n
D � � ˇ,

limn!1 2�cn

n
D � � � , and an C bn C cn D n � 1. Then we have

²
an bn cn

an bn cn

³
tet

D
�

2cn

n � 1 � 2an

��1 n�1�2bnX
zDmax.0;2.cn�bn//

.�1/z

�
n

2bn C z C 1

��
n � 1 � 2cn C z

n � 1 � 2cn

�
�

2cn � z

n � 1 � 2an

��
n � 1 � 2cn C z

n � 1 � 2bn

�
:

The summand vanishes unless z D n � 1 � 2bn and, using

fn � 1gŠ D p�1
n�1

n;

we get²
an bn cn

an bn cn

³
tet

D .�1/n�1

�
2cn

n � 1 � 2an

��1� 2an

n � 1 � 2cn

��
2an

n � 1 � 2bn

�

D 1

n2
f2angŠf2bngŠf2cngŠ

D .�1/n�1

n2


 2anY
kD1

2 sin
k�

n

�
 2bnY
kD1

2 sin
k�

n

�
 2cnY
kD1

2 sin
k�

n

�
:

Theorem 3.1. The volume of the ideal tetrahedron T with dihedral angles ˛, ˇ, � is
given as follows:

Vol.T / D lim
n!1

�

n
log

�
.�1/n�1

²
an bn cn

an bn cn

³
tet

�
:

Moreover, letting Nan D n � 1 � an, Nbn D n � 1 � bn, and Ncn D n � 1 � cn, it also
holds

Vol.T / D lim
n!1

�

n
log

�
.�1/n�1

² Nan
Nbn Ncn

Nan
Nbn Ncn

³
tet

�
:
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Proof. The limit is computed as follows:

lim
n!1

�

n
log.�1/n�1

²
an bn cn

an bn cn

³
tet

D lim
n!1

�

n
log

1

n2


 2anY
kD1

2 sin
k�

n

2bnY
kD1

2 sin
k�

n

2cnY
kD1

2 sin
k�

n

�

D lim
n!1

�

n



� 2 log n C

2anX
kD1

log


2 sin

k�

n

�

C
2bnX
kD1

log


2 sin

k�

n

�
C

2cnX
kD1

log


2 sin

k�

n

��

D ƒ.˛/ C ƒ.ˇ/ C ƒ.�/;

which is equal to the volume of T . Here we use the Lobachevsky function

ƒ.x/ D �
Z x

0

log.2j sin xj/dx;

its relation

ƒ.� � x/ D �ƒ.x/;

and

lim
n!1

�

n

2anX
kD1

log


2 sin

k�

n

�
D
Z a

0

log.j2 sin t j/dt; (3.1)

for 0 < a < � and a sequence of integers an such that lima!1 2�an

n
D a. The

last statement is a direct consequence of the fact that changing the coloring from
an; bn; cn to Nan; Nbn; Ncn is equivalent to switching all the orientations of the edges of
the tetrahedron in Figure 3 without changing the labels, and the resulting graph is
isotopic to the initial one, thus the invariants are equal for each n.

3.2. Volume of a truncated tetrahedron. Let T be a truncated hyperbolic tetra-
hedron as in Figure 4, which has four right-angled hexagons and four triangles. Let
�a, �b , �c , �d , �e, �f be the dihedral angles at the edges a, b, : : : , f of T . Other
dihedral angles of T are all right angles. The shape of T is uniquely determined by the
angles �a, �b , : : : , �f . For precise definition of a truncated hyperbolic tetrahedron,
see Definition 3.1 in [26].
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a

b

c

d

e

f

Figure 4. A truncated hyperbolic tetrahedron T .

Theorem 3.2. Let T be the truncated tetrahedron with oriented labeled edges as in
Figure 4, and let 0 < �a, �b , �c , �d , �e , �f < � be the internal dihedral angles at the
edges. If �i , �j , �k are three dihedral angles meeting at the same vertex, then they
satisfy �i C�j C�k < � since T is a truncated tetrahedron. Let an; bn; cn; dn; en; fn

be sequences of integers such that

lim
n!1

2�an

n
D � � �a; : : : ; lim

n!1
2�fn

n
D � � �f :

Put
Nan D n � 1 � an; : : : ; Nfn D n � 1 � fn:

Using these parameters, the volume of T is given as

Vol.T / D lim
n!1

�

2n
log

�²
an bn en

dn cn fn

³
tet

² Nan
Nbn Nen

Ndn Ncn
Nfn

³
tet

�
:

Remark 3.3.
® an bn en

dn cn fn

¯
tet is defined for a tetrahedron with oriented edges, and it is

not symmetric with respect to the group of symmetries of the tetrahedron. However,

the limit of the product
® an bn en

dn cn fn

¯
tet

® Nan
Nbn Nen

Ndn Ncn
Nfn

¯
tet becomes symmetric.

Proof. For n big enough, the triples

.an; bn; en/; .an; cn; fn/; .bn; dn; fn/; .cn; dn; en/;

. Nan; Nbn; Nen/; . Nan; Ncn; Nfn/; . Nbn; Ndn; Nfn/; . Ncn; Ndn; Nen/
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are all admissible. Indeed since �a C �b C �e < � then an; bn; : : : ; fn < n
2

and so

Nan; : : : Nfn < n and 1 < anCbnCcn

n
< 2 (similarly for the other triangles). The range

of sum is reduced and the signature is determined as follows:²
an bn en

dn cn fn

³
tet

D .�1/n�1 fBdnencn
gŠfBanbnen

gŠ
fBbndnfn

gŠfBanfncn
gŠ
�

2en

Aanbnen
C 1 � n

��
2en

Bencndn

��1

M
.1/
nX

zDm
.1/
n

�
Aanfncn

C 1 � n

2cn C z C 1 � n

��
Bancnfn

C z

Bancnfn

�
�

Bbnfndn
C Bdnencn

� z

Bbnfndn

��
Bdncnen

C z

Bdnfnbn

�
;

(3.2)

and² Nan
Nbn Nen

Ndn Ncn
Nfn

³
tet

D .�1/n�1 fBbndnfn
gŠfBanfncn

gŠ
fBdnencn

gŠfBanbnen
gŠ
�

2en

Aanbnen
C 1 � n

��1� 2en

Bencndn

�
M

.2/
nX

zDm
.2/
n

�
2cn � z

Aanfncn
C 1 � n

��
Bancnfn

Bancnfn
� z

�
�

Bbnfndn

Bbnfndn
C Bdnencn

C 1 � n C z

��
Bdnfnbn

Bdncnen
� z

�
;

(3.3)

where

m.1/
n D max.n � 1 � 2cn; �bn � cn C en C fn/;

M .1/
n D min.Bdnencn

; Banfncn
/;

m.2/
n D max.0; n � 1 � bn C cn � en � fn/;

and

M .2/
n D min.Bancnfn

; Bdncnen
/:

Let

R.1/
n .z/ D

�
Aanfncn

C 1 � n

2cn C z C 1 � n

��
Bancnfn

C z

Bancnfn

�
�

Bbnfndn
C Bdnencn

� z

Bbnfndn

��
Bdncnen

C z

Bdnfnbn

�
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for m.1/ < z < M .1/ and

R.2/
n .z/ D

�
2cn � z

Aanfncn
C 1 � n

��
Bancnfn

Bancnfn
� z

�
�

Bbnfndn

Bbnfndn
C Bdnencn

C 1 � n C z

��
Bdnfnbn

Bdncnen
� z

�

for m.2/ < z < M .2/. Let

r .1/
n .z/ D R

.1/
n .z/

R
.1/
n .z � 1/

and r .2/
n .z/ D R

.2/
n .z/

R
.2/
n .z � 1/

:

Then

r .1/
n .z/

D � fBanfncn
� z C 1gfBancnfn

C zgfBdnencn
� z C 1gfBdncnen

C zg
f2cn C z C 1gfzgfBbnfndn

C Bdnencn
� z C 1gfBdncnen

� Bdnfnbn
C zg ;

and

r .2/
n .z/

D � fBanfncn
C zgfBancnfn

� z C 1gfBdnencn
C zgfBdncnen

� z C 1g
f2cn � z C 1gfzgfBbnfndn

C Bdnencn
C 1 C zgfBdnfnbn

� Bdncnen
C zg :

According to Lemma 2.16, both R
.1/
n and R

.2/
n are positive, and there are unique

integers z
.1/
n and z

.2/
n where z

.1/
n corresponds to the maximum of R

.1/
n .z/ and z

.2/
n

corresponds to the maximum of R
.2/
n .z/ at the integer points. Then we have

R.1/
n .z.1/

n /R.2/
n .z.2/

n / �
²

an bn en

dn cn fn

³
tet

² Nan
Nbn Nen

Ndn Ncn
Nfn

³
tet

� n2R.1/
n .z.1/

n /R.2/
n .z.2/

n /:

Hence

lim
n!1

�

2n
log

�²
an bn en

dn cn fn

³
tet

² Nan
Nbn Nen

Ndn Ncn
Nfn

³
tet

�

D lim
n!1

�

2n
log.R.1/

n .z.1/
n /R.2/

n .z.2/
n //:

(3.4)

Let

�.1/ D lim
n!1

2�

n
z.1/

n and �.2/ D lim
n!1

2�

n
z.2/

n :
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For 0 < ˇ < ˛ < � , we have

lim
n!1

�

n
log

2
664
j˛n

�

k
jˇn

�

k
3
775 D �ƒ.˛/ C ƒ.ˇ/ C ƒ.˛ � ˇ/

by the definition of the Riemann integral. Replacing every quantum binomial in R
.1/
n

and R
.2/
n in (3.4) by using this relation, we get

lim
n!1

�

n
log

²
an bn en

dn cn fn

³
tet

² Nan
Nbn Nen

Ndn Ncn
Nfn

³
tet

D g.�a; �b; �c ; �d ; �e; �f ; �.1// � g.�a; �b; �c; �d ; �e; �f ; ��.2//;

(3.5)

where

g.�a; �b; �c ; �d ; �e; �f ; �/

D ƒ

� � �a � �f C �c � �

2

�
C ƒ


�2�c C �

2

�
� ƒ


� � �a � �c C �f C �

2

�

C ƒ

�

2

�
� ƒ


��b C �c � �e � �f � �

2

�
C ƒ


� � �d � �e C �c � �

2

�

� ƒ

� � �d � �c C �e C �

2

�
C ƒ


��b � �c C �e C �f C �

2

�
:

Moreover, �.1/ and ��.2/ are solutions of

d

d�
g.�a; �b; �c ; �d ; �e; �f ; �/ D 0 (3.6)

satisfying

max.2�c ; �b C �c � �e � �f /

< �.1/

< min.� C �c � �d � �e; � � �a C �c � �f /;

and

max.0; �b � �c C �e C �f /

< �.2/

< min.� � �a � �c C �f ; � � �c � �d C �e/;

since

lim
n!1

�

n
log r .1/

n .zn/ D d

d�
g.�a; �b; �c ; �d ; �e; �f ; �/
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and

lim
n!1

�

n
log r .2/

n .zn/ D � d

d�
g.�a; �b; �c; �d ; �e; �f ; ��/;

where zn is a sequence such that limn!1 2�
n

zn D �. Taking the exponential of two
times both sides of (3.6), we get

N1

D1

D 1; (3.7)

where

N1 D
ˇ̌̌
cos


�a � �c C �f C �

2

�ˇ̌̌ ˇ̌̌
cos


�a C �c � �f � �

2

�ˇ̌̌
ˇ̌̌
cos


�c � �d � �e � �

2

�ˇ̌̌ ˇ̌̌
cos.

�c C �d � �e � �

2

�ˇ̌̌
and

D1 D
ˇ̌̌
sin


� � 2�c

2

�ˇ̌̌ ˇ̌̌
sin


��b C �c � �e � �f � �

2

�ˇ̌̌
ˇ̌̌
sin


��b � �c C �e C �f C �

2

�ˇ̌̌ ˇ̌̌
sin


�

2

�ˇ̌̌
:

If � D �.1/, then sin
���bC�c��e��f ��.1/

2

�
is negative and the other seven values of the

trigonometric functions in (3.7) are all positive. If � D ��.2/, then sin
���.2/�2�c

2

�
,

sin
���.2/

2

�
, and sin

���b��cC�eC�f ��.2/

2

�
are negative and the other five values of the

trigonometric functions in (3.7) are positive. Therefore, �.1/ and ��.2/ are solutions
of

N2

D2

D �1;

where

N2 D cos

�a � �c C �f C �

2

�
cos


�a C �c � �f � �

2

�

cos

�c � �d � �e � �

2

�
cos


�c C �d � �e � �

2

�
and

D2 D sin

� � 2�c

2

�
sin


��b C �c � �e � �f � �

2

�

sin

��b � �c C �e C �f C �

2

�
sin


�

2

�
;

and it is equivalent to a quadratic equation

C2z2 C C1z C C0 D 0; (3.8)
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where

z D ei� ;

C0 D abc2d C abc4d C abc3e C abc3d 2e

C bc3df C a2bc3df C ac3def C ab2c3def;

C1 D �abc2d C abc2de2 C bc2ef C a2bc2ef

� acdef � ab2cdef � ac3def � ab2c3def

C bc2d 2ef C a2bc2d 2ef C abc2df 2 � abc2de2f 2;

C2 D acdef C ab2cdef C bcde2f C a2bcde2f

C abcef 2 C abcd 2ef 2 C abde2f 2 C abc2de2f 2;

and

a D ei�a ; : : : ; f D ei�f :

The two solutions z1 D ei�.1/

and z2 D e�i�.2/

of (3.8) are given by

z1 D �C1 � 4abc2def
p

det G

2C2

and z2 D �C1 C 4abc2def
p

det G

2C2

;

where G is the Gram matrix of T given by

G D

0
BBB@

1 � cos �a � cos �b � cos �f

� cos �a 1 � cos �e � cos �c

� cos �b � cos �e 1 � cos �d

� cos �f � cos �c � cos �d 1

1
CCCA ; (3.9)

since

det G D C 2
1 � C0C2

16.abc2def /2
:

Recall that the determinant det G is a negative real number since T is a truncated
hyperbolic tetrahedron, and we assign

p
det G D i

p� det G:

To compare (3.5) with the volume of T , we use the method in [26] based on the
following Schläfli’s differential formula:

d Vol.T / D �1

2
.lad�a C lbd�b C lcd�c C ld d�d C led�e C lf d�f /; (3.10)

where la, : : : , lf are lengths of edges labeled by a, : : : , f respectively. Let Gij

denote the submatrix of G obtained by deleting the i -th row and j -th column, and let
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cij D .�1/iCj det Gij be the corresponding cofactor. Then, by (5.2) in [26] (taking
into account that with respect to the notation in [26] c and e are exchanged), the
length la is given by

2la D log

2c2

34 � c33c44 C 2c34

p� det G sin �a

c33c44

�
: (3.11)

On the other hand,

2
@

@�a

.g.�a; �b; �c ; �d ; �e; �f ; �.1// � g.�a; �b; �c ; �d ; �e; �f ; ��.2///

D log

 
cos


�a � �c C �f C �.1/

2

�
cos


�a C �c � �f C �.2/

2

�

cos

�a � �c C �f � �.2/

2

�
cos


�a C �c � �f � �.1/

2

�
!

:

(3.12)

To rationalize the denominator of the right-hand side of (3.12), we compute

cos

�a � �c C �f C �.1/

2

�
cos


�a C �c � �f C �.2/

2

�

cos

�a � �c C �f � �.2/

2

�
cos


�a C �c � �f � �.1/

2

�

D .af z1 C c/.ac C f z2/

.af z2 C c/.ac C f z1/

D .af z1 C c/2.ac C f z2/2

.af z1 C c/.af z2 C c/.ac C f z1/.ac C f z2/
;

(3.13)

where a D ei�a , : : : , f D ei�f , z1 D ei�.1/
, and z2 D e�i�.2/

as before. Then (3.13)
turns out to be equal to

2c2
34 � c33c44 � 2c34

p� det G sin �a

c33c44

D

2c2

34 � c33c44 C 2c34

p� det G sin �a

c33c44

��1

by an actual computation. Hence we get

@

@�a

�
g.�a; �b; �c; �d ; �e; �f ; �.1// � g.�a; �b; �c; �d ; �e; �f ; ��.2//

� D �la:

To see the differential with respect to �b , we use the symmetry given in (2.20),²
a b e

d c f

³
tet

D
²

b Ne Na
c f d

³
tet

:
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Note that the triples .b; Ne; Na/, .b; f; d/, .c; Ne; Na/, and .c; f; Na/ are all admissible.
Applying the above argument and the fact that cos � D cos.��/, we have

@

@�b

g.�b ; ��e; �f ; �c ; ��a; �d ; �
.1/

b
/ � g.�b; ��e; �f ; �c; ��a; �d ; ��

.2/

b
/ D �lb;

where �
.1/

b
and ��

.2/

b
are solutions of the equation

@

@�
g.�b; ��e; �f ; �c; ��a; �d ; �/ D 0

satisfying

max.2�f ; ��e C �f C �a � �d /

< �
.1/

b

< min.� C �a � �c C �f ; � � �b � �d C �f /

and

max.0; ��e � �f � �a C �d /

< �
.2/

b

< min.� � �f � �c � �a; � � �b � �f C �d /:

This implies that

@

@�b

.g.�a; �b; �c; �d ; �e; �f ; �.1// � g.�a; �b; �c; �d ; �e; �f ; ��.2/// D �lb:

Similarly, for �c , �d , �e, �f , we have

@

@�c

.g.�a; �b; �c; �d ; �e; �f ; �.1// � g.�a; �b; �c; �d ; �e; �f ; ��.2/// D �lc ;

:::

@

@�f

.g.�a; �b; �c; �d ; �e; �f ; �.1// � g.�a; �b; �c; �d ; �e; �f ; ��.2/// D �lf :

Hence there is a constant C such that

g.�a; �b; �c ; �d ; �e; �f ; �.1// � g.�a; �b; �c ; �d ; �e; �f ; ��.2// D 2 Vol.T / C C:

But g.�a; �b; �c ; �d ; �e; �f ; �.1// � g.�a; �b; �c; �d ; �e; �f ; ��.2// can be extended
continuously to the case of ideal tetrahedra whose dihedral angles satisfy �a C �b C
�e D �a C �c C �f D �b C �d C �f D �c C �d C �e D � , and Theorem 3.1 implies
that the constant C D 0. Therefore, Theorem 3.2 holds.
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4. Invariants of graphs

In this section we exploit the graphical relations satisfied by the algebraic objects
studied in the preceding sections to define an invariant of framed, oriented, colored
trivalent graphs. Then, we provide a face-model computing the invariant.

4.1. Graphical relations between symbols

Proposition 4.1. Letting
ta D a.a C 1 � n/

and using the above explained graphical convention to draw morphisms of represen-
tations, the following relations hold:

a
�
�

�
�

��
�

D �2ta
n

a

�

;

a b

�
�

�
���

�

�
���

�
c

D � tc�ta�tb
n

a b

�
���

�
���

�
c

; (4.1)

a b c

�
�
��

����

�
�

��

�

e

d

D
X
f

�
taCtd�te�tf
n

²
c a e

b d f

³
�n

a b c

�
�
��

	
	

	

���

	
	

	
		


�

f

d

; (4.2)

a b c

�
�
��

����

�

��

�

e

d

D
X
f

�
�ta�tdCteCtf
n

²
c a e

b d f

³
�n

a b c

�
�
��

	
	

	

���

	
	
	

		


�

f

d

: (4.3)

Proof. The first relation of (4.1) is easily proved by applying the operators a
aR,

[a;n�1�a and \a;n�1�a to the vector ea
0 2 V a. The second relation of (4.1) is

obtained by applying Y
b;a
c and a

b
R to the highest weight vector ec

0 in V c . Let
u D a C b � c. By using (2.5) and (2.9), we know that the coefficient of ea

0 ˝ eb
u in

a
b
R.Y

b;a
c .ec

0// is

p�1
�u

�
2.b�u/a�u.2b�uC1/

2
n

�
2c

a C b C c � .n � 1/

�
;
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while the coefficient of ea
0 ˝ eb

u in Y
a;b
c .ec

0/ is

p�1
�u

.�1/u�
u.2b�uC1/

2
n

�
2c

a C b C c � .n � 1/

�
:

Hence a
b
R B Y

b;a
c D �

tc�ta�tb
n Y

a;b
c .

Relation (4.2) is proved by using the deformation of the diagram given in Figure 5
and applying twice relation (4.1) and the definition of the 6j -symbols. The equality
used in the third step of Figure 5 is easily proved by remarking that it is sufficient to
check it for vectors of the form ec

0 ˝ e
f
u (these vectors together with their images by

the action of U�.sl2/ span V c ˝V f ) and thus checking it by means of (2.5) and (2.9).
The graphical meaning of the 6j -symbol is given in Figure 2 and we also use (4.1).
Relation (4.3) is proved similarly.

Figure 5. The sequence of deformations.

Remark 4.2. V a and V aC2n are isomorphic as representations of U�n
.sl2/, but the

twist operators are different since a … 1
2
Z. Such difference comes from the factor

�
H˝H

2 in the universal R-matrix.

4.2. Construction. Let now � be a framed oriented trivalent graph without bound-
ary in S3 and let us fix once and for all a natural number n � 2 as well as a root

�n D e
�

p
�1

n :

Let us first fix the notation we shall use in this section: let E0; : : : ; Er be the edges of
� and let us assume that the framing of � forms an orientable surface; this enables us
to always assume that, in our drawings, the framing of � lies horizontally above the
blackboard plane (indeed this can be always achieved up to modifying the diagram
of �; see [5], Lemma 2.3).

Definition 4.3 (Coloring). A coloring on � is a map

col W fedgesg �! C n 1

2
Z
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such that for each tern of edges Ei , Ej , and Ek sharing a vertex v (possibly two edges
coincide) it holds

fv.Ei / C fv.Ej / C fv.Ek/ 2 fn � 1; n; : : : ; 2n � 2g;
where fv.Ei / is col.Ei / if v is the end of Ei and n � 1 � col.Ei / otherwise.

Given a trivalent graph � embedded in S3 equipped with an orientation of its
edges, a framing and a coloring (such a datum is called colored oriented graph),
we can associate to it a complex number which we shall denote h�; colin by the
following construction.

(1) Choose an edge E0 of � and cut � open along E0.

(2) Move by an isotopy � so to put it in a .1; 1/-tangle diagram and so that the two
open strands (initially contained in E0) run off towards infinity one in the upward
direction and the other in the downward direction.

(3) Assigning \ operators to the maximal points, [ operators to the minimal points,
R-matrices to the crossing points and the Clebsch–Gordan operators Y

b;c
a and

Y c
a;b

to the trivalent vertices as in [17], we associate to the diagram D of �

obtained in (2) an operator

op.D/ W V col.E0/ �! V col.E0/

and hence, by Schur’s lemma, a scalar �.D/ 2 C.

(4) Define the scalar associated to D as

i.D/ D �.D/

�
2 col.E0/ C n

2 col.E0/ C 1

��1

:

Theorem 4.4. The scalar i.D/ is independent on all the choices of the above con-
struction and is therefore an invariant h�; colin 2 C of the colored oriented graph
embedded in S3.

Proof. Cut open G along an edge E0; the fact that �.D/ (and hence i.D/) is an
invariant up to isotopy of the colored framed .1; 1/-tangle represented by D is a
standard consequence of the properties of representations of quantum groups and in
particular of U�n

.sl2/. So we need to prove that cutting � open along a different
edge, say E1 and repeating the construction we get the same invariant.

So let us cut � open along E0 and E1 and, up to isotopy, put the result in a position
of a .2; 2/-tangle whose boundary strands are oriented towards the bottom and are
included one in E0 and one in E1 both at the top and at the bottom. Let D be a diagram
of � in such a position, col.E0/ D a and col.E1/ D b. The operator represented
by D is op.D/ W V a ˝ V b ! V a ˝ V b and by Clebsch–Gordan decomposition and
Schur’s lemma there exist scalars haCb�k.D/ 2 C; k 2 f0; 1; : : : ; n � 1g such that
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op.D/ restricted to the submodule V aCb�k of V a ˝ V b is haCb�k.D/ id. Let us call
i.D0/ and i.D1/ the invariant computed out of D by closing E1 (i.e. cutting open �

along E0) and closing E0 (i.e. cutting � open along E1) respectively. Then it clearly
holds

i.D0/ D
lDaCbX

lDaCb�nC1

hl.D/i

 a

a

b
l

!
;

and

i.D1/ D
lDaCbX

lDaCb�nC1

hl.D/i

 b

b

l
a

!
:

But then i.D0/ D i.D1/ as a consequence of Lemma 2.10.

Remark 4.5. (1) We have

i



a

b

c

�
D 1: (4.4)

(2) Colored graphs include colored links, and for links the invariant defined above
coincides with the colored Alexander invariant given in [1] and discussed in [9]
and [20]. Lemma 2.10 gives a new proof for the independence of the string to cut to
make a (1, 1)-tangle. This was first proved in [1] by computation, and then refined
and extended to more general settings in [9] by means of theoretical arguments.
Comparing with the proof in [9], we see that

� 2aCn

2aC1

	�1
corresponds to d.a/ in

Definition 2.3 of [9] expressing the “virtual degree” of the representation V a.

4.3. Face model for the invariant. In this subsection, we construct a face model
for the invariant h�; colin which in particular include the colored Alexander invariant
defined in [20] by the method already used in Section 6 of [17].

Let .�; col/ be a colored, oriented, framed trivalent graph. Let us cut it open
along the edge E1 and put it in a .1; 1/-tangle like position so that the two strands
which were contained in E1 are directed towards the bottom. The diagram T� just
constructed splits the plane into regions R0; : : : ; Rk , where we let R0 and R1 be
respectively the leftmost and the rightmost regions. Let a0, a1 2 C n 1

2
Z be complex

numbers satisfying a0 C col.E1/ � a1 2 f0; 1; : : : ; n � 1g. We define a state of T�

as a mapping

' W fR0; R1; R2; : : : ; Rd g �! C

which satisfies the following conditions:
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n�1��2

n�1��2

R0

R1

R2

R3

R4

R5

R6

�1

�2�2

K1 K2

 !

L TL

Figure 6. A tangle diagram TL related to the link L and its regions: the colors of the edges are
�i and if an arc is directed upwards the color is counted as n � 1 � �i .

(1) '.R0/ D a0, '.R1/ D a1;

(2) if Ri and Rj are adjacent along ek , Ri is on the left of ek (with respect to the
reader) and Rj is on the right of ek , then

'.Ri / C col.ek/ D '.Rj / C l

or, if ek is oriented upwards,

'.Ri/ C n � 1 � col.ek/ D '.Rj / C l;

where l is an integer and 0 � l � n � 1;

(3) '.Ri / is not a half-integer for any i .

Note that the third condition is a genericity condition for a0. Let Za0;a1
.T�/ be

the state sum

Za0;a1
.T�/

D
X

' W states

Y
p W maximum

Wmax.p/
Y

p W minimum

Wmin.p/
Y

p W crossing

Wc.p/
Y

p W vertex

Wv.p/;

(4.5)
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where Wmax.p/, Wmin.p/, Wcrossing.p/, and Wvertex.p/ are given as follows (in the
pictures we denote by �; 	; � the colors of the edges of � and by a; b; c the states of
the regions):

a

�

p��
� b

������!
Wmax.p/

�
2a C n

2a C 1

�
;

a

��
�

b

p

� ������!
Wmin.p/

�
2b C n

2b C 1

��1

(the left one corresponds to (2.12) and the right one corresponds to (2.13)),

� �

�
�

�
���

��

���

d

a b

c

�����!
Wc.p/

�
taCtb�tc�td
n

²
	 a c

� b d

³
�n

;

� �

�
�
�
���

��

���

d

a b

c

�����!
Wc.p/

�
�ta�tbCtcCtd
n

²
	 a c

� b d

³
�n

;

� �

�
���

�
���

�

a

b c

	

�����!
Wv.p/

²
	 � �

b c a

³
�n

;

and

	

�
���

�
���

�

a

b c

� �

�����!
Wv.p/

�
2� C n

2� C 1

�²
b � a

	 c �

³
�n

:

(The first two correspond to (4.2) and (4.3).)

Theorem 4.6 (Face model for h�; colin). Let

zZa0;a1
.T�/ D

�
2 col.E1/ C n

2 col.E1/ C 1

��1

Za0;a1
.T�/:



SL.2; C/ quantum 6j -symbols and their hyperbolic volume 337

Then
zZa0;a1

.T�/ D h�; colin:

In particular, if � is a link, then

1

n
p�1

n�1
zZa0;a1

.T�/

is equal to the colored Alexander invariant in [20].

Proof. The first statement can be proved as in Section 6 of [17] about the correspon-
dence of vertex models and IRF models (see also [5]), we sketch here the basic ideas
(see Figure 7).

As explained previously, the diagram T� induces an operator

op.T�/ W V col.E1/ �! V col.E1/

and hence a scalar (which we previously called �.T�/). Fix a height function

t W T� �! Œ0; 1�

and let now `t be the horizontal line at height t . Intersecting T� with a generic
`t , we get an ordered sequence of colors col.Ei1/, col.Ei2/, : : : , col.Eik / (where
Ei1 ; : : : ; Eik are the edges of T� intersecting `t , read from left to right); if moreover
a state s is fixed on T� then there is an induced sequence of colors c0; : : : ; ck of the
segments composing ` n ` \ T� , such that in particular c0 D a0 and ck D a1; we
will denote this sequence sj`t

. Therefore, for each line ` and state s we can consider
the morphism

op.`; sj`/ W V a1 �! V a0 ˝ V col.E1/

defined as follows. First define a map

opbottom.`; sj`/ W V a1 �! V a0 ˝ V col.Ei1
/ ˝ � � � ˝ V col.Eik

/

as the composition

Y
c0;col.Ei1

/

c1
B � � � B Y

ck�2;col.Eik�1
/

ck�1
B Y

ck�1;col.Eik
/

a1
:

Then let
opTop.`; sj`/ W V col.Ei1

/ ˝ � � � ˝ V col.Eik
/ �! V col.E1/

be defined as explained in the previous section using the part of T� lying above `.
Then let

op.`; sj`/ D .ida0
˝ opTop.`; sj`// B opbottom.`; sj`/:
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�1

�1�1

�2

�2

�2

a2a2

a6

a6

a5 a5

a3

a3
a4

a4

a1 a1
a1a0

a0 a0

�! �!

Figure 7. Vertex-IRF correspondence in [17].

To prove the theorem it is sufficient to prove that if t1 and t2 are two levels such
that the preimage of the interval Œt1; t2� by the height function contains exactly only
one extremum or trivalent vertex or crossing of T� , then

op.`t1 ; sj`t1
/ D

X
s0

c.s0/ op.`t2 ; s0j`t2
/;

where s0 ranges over all the states s0 of the subdiagram of T� lying between `t1 and
`t2 and such that s0j`t1

D sj`t1
. This is sufficient because following these equalities

while t goes from 0 to 1 we get

op.`0; sj`0
/ D Za0;a1

.T�/ op.`1; sj`1
/;

where both sj`0
and sj`1

are the sequence .a0; a1/ and by construction

op.`0; sj`0
/ D ida0

˝.�.T�/ idcol.E1// B Y a0;col.E1/
a1

and
op.`1; sj`1

/ D Y a0;col.E1/
a1

;

so that Za0;a1
.T�/ D �.T�/.

So to conclude, the reader can check that the coefficients c.s/ associated to maxima
are those computed in Lemma 2.10, those associated to minima are computed in
equation (2.13), those associated to a vertex with one leg on the bottom of the picture
are 6j -symbols (by the definition of 6j -symbols), those associated to a vertex with
two legs on the bottom come from the equality expressed in (A.2), and finally those
associated to crossings come from equations (4.2) and (4.3).

To prove the last statement let us note that the left diagram of Figure 7 represents
the scalar operator

On
TL

.�1; : : : ; �r/ W V�1
�! V�1
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defined by the vertex model in [20]. On the other hand, the right diagram of Figure 7
represents Za0;a1

.TL/. Hence Za0;a1
.TL/ D On

TL
.�1; : : : ; �r/ and, by comparing

with the definition in [20],
zZa0;a1

.TL/p�1
n�1

n
is equal to the colored Alexander invariant

since fn � 1gŠ D p�1
n�1

n.

Remark 4.7. (1) Independence of the choice of a0 and a1. As a corollary of Theo-
rem 4.6 the scalar zZa0;a1

.TL/ does not depend on a0 and a1.

(2) Face model for the Kashaev invariant. Clearly the invariant provided in The-
orem 4.4 depends continuously on the colors of the graph; moreover it still makes
sense for a link whose colors are n�1

2
and in that case it coincides with Kashaev’s

invariant. To check this, in (2.5) set a D b D n�1
2

and j D n�1
2

� u; i D n�1
2

� v;
then using the arithmetic identities at the beginning of Section 2.1 one sees that the
R-matrix b

aR equals the R matrix used to compute the colored Jones polynomial pro-

vided in [15], Corollary 2.32. Moreover the self-duality of V
n�1

2 provided by the \
operator coincides with that provided in [15], Theorem 2.13, because

�
n�1

k

	 D 1, for
all k � n � 1. Thus the invariant computed through the procedure of cutting a strand
of a knot open is equal to the standard polynomial associated to the n-dimensional
representation of Uq.sl2/ for generic q divided by Œn� and evaluated at q D �n which
is known to be equal to the Kashaev invariant of the link ([18]). But by Theorem 4.6
the invariant can be computed by taking the limit of a face model in which no color
is a half integer. If we consider the limit when the colors �i tend to .n � 1/=2, we
have

lim
�!.n�1/=2

�
2� C n

2� C 1

�
D .�1/n�1

and, by using this limit, we get that lim�1;:::;�r!n�1
2

.�1/n�1 zZa0;a1
.TL/ is equal to

the Kashaev invariant. Therefore, as long as all the colors of the regions in each state
are not half-integers (and this is satisfied for a generic choice of a0 and a1) every
term in the state sum is well-defined, while the face model introduced in [17] is not
well-defined if the color of some component is n�1

2
.

(3) Face model for the classical Alexander invariant. The case n D 2 corresponds
to the classical Alexander polynomial and the Conway potential function for knots
and links. Indeed, setting n D 2 and a D b in (2.5), one gets the R-matrix

R D p�1
2a2�2a

0
BBBBB@

p�1
2a

0 0 0

0 0 1 0

0 1
p�1

2a � p�1
�2a

0

0 0 0 �p�1
�2a

1
CCCCCA ;
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where the order of basis is given by ea
0 ˝ ea

0 , ea
0 ˝ ea

1 , ea
1 ˝ ea

0 , ea
1 ˝ ea

1 . Letting

q D p�1
2a

, one sees that this R-matrix is obtained from the R-matrix RKS of the
Alexander polynomial given by (1.19) in [14] as

R D p�1
2a2�2a

PRKSP

where P is the permutation P.u ˝ v/ D v ˝ u. Therefore, the framed link invariant

obtained from R is equal to the Alexander polynomial times
p�1

.2a2�2a/w
where

w is the writhe of the link.
A direct way to see the relation between the resulting invariant and the Alexander

polynomial is check that the R-matrix
p�1

2a�2a2

R satisfies the skein relation of the
Conway polynomial, and, by using the operators \a;b and [a;b , it is easy to see that
the resulting invariant does not depend on the framing. Hence, the invariant obtained

from
p�1

�2a2C2a
R is equal to the Alexander polynomial.

For the Alexander polynomial and Conway potential function of links, a face
model was already constructed in [28] by using the representation theory of quantum
supergroup gl.1 j 1/ from another point of view.

A. Proofs of algebraic statements

A.1. Proof of Theorem 2.7. The coefficient of ea
r ˝ eb

p in

�.E/

 X

uCvDaCb�c

C
a;b;c
u;v;0 ea

u ˝ eb
v

�

is
Œr C 1��b�p

n C
a;b;c
rC1;p;0 C Œp C 1���aCr

n C
a;b;c
r;pC1;0

which (using also �
n
2 D p�1) equals

.�1/p
p�1

c�a�b
�

.pC1/.2b�p/�.rC1/.2a�r/
2

n�
2c

a C b C c � .n � 1/

��
a C b � c

r

�
.Œa C b � c � r� � Œp C 1�/:

This is 0 because a C b � c D r C p C 1. The coefficient of ea
r ˝ eb

p in

�.F /

 X

uCv�tDaCb�c

C
a;b;c
u;v;t ea

u ˝ eb
v

�

is
Œ2a � r C 1��b�p

n C
a;b;c
r�1;p;t C Œ2b � p C 1���aCr

n C
a;b;c
r;p�1;t ;
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which after shifting the summation indices in (2.9) becomes

.�1/p�t
p�1

c�a�b
�C1

n

�
2c

2c � t

��1� 2c

a C b C c � n C 1

�
�

Œ2a � r C 1��C2
n

X
zCwDtC1;

z�1

.�1/z�1�C3
n

�
a C b � c

r � z

�

�
2a � r C z

2a � r C 1

��
2b � p C w

2b � p

�

� Œ2b � p C 1���C2
n

X
zCwDtC1;

w�1

.�1/z�C4
n

�
a C b � c

r � z

�

�
2a � r C z

2a � r

��
2b � p C w

2b � p C 1

��

D .�1/p�t�1
p�1

c�a�b
�C1

n

�
2c

2c � t

��1� 2c

a C b C c � n C 1

�
X

zCwDtC1

.�1/z�C4
n

�
a C b � c

r � z

�
�

2a � r C z

2a � r

��
2b � p C w

2b � p

�
.��C2

n Œw� C �C5
n Œz�/;

with

C1 D p.2b � p C 1/ � r.2a � r C 1/

2
;

C2 D a C b � r � p C 1;

C3 D .2z � t � 2/.2c � t C 1/

2
;

C4 D .2z � t /.2c � t C 1/

2
;

and

C5 D a C b � r � p � 2c C t;

which is easily seen to be equal to Œ2c � t �C
a;b;c
r;p;tC1. Hence we have

�.F /

 X

uCvDaCb�cCt

C
a;b;c
u;v;t ea

u ˝ eb
v

�
D Œ2c � t �

X
rCpDaCb�cCtC1

C
a;b;c
r;p;tC1ea

r ˝ eb
p :
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These relations imply that the subspace of V a ˝ V b spanned byX
uCvDaCb�c

C
a;b;c
u;v;0 ea

u ˝ eb
v ;

X
uCvDaCb�cC1

C
a;b;c
u;v;1 ea

u ˝ eb
v ;

: : : ;X
uCvDaCb�cCn�1

C
a;b;c
u;v;n�1ea

u ˝ eb
v

is isomorphic to the highest weight module with the highest weight c and Y
a;b
c is a

U�n
.sl2/ module map. The unicity statement is a consequence of Schur’s lemma and

of Proposition 2.6.

A.2. Proof of Lemma 2.8. It is sufficient to prove the identity for a single tern
.u; v; t / because the space of morphisms from V a ˝ V b to V c is at most one dimen-
sional (this is a consequence of Proposition 2.6 and of the fact that V c and V cCi are
never isomorphic if i 2 f1, : : : , 2n � 1g).

Therefore let us fix u D 0, v D a C b � c, and t D 0. Then the above equality
becomes

A1

X
zCwDaCb�c

.�1/z�C6
n

�
n � 1 C c � a � b

c � a � b C z

��
n � 1 � 2a C z

n � 1 � 2a

��
c C a C b � z

2c

�

D B1

�
2a

c C a � b

�
;

(A.1)

where

A1 D p�1
aCb�c�nC1

.�1/aCb�c��a.n�1/
n �

�.n�1/.n�2a/
2

n ;

B1 D p�1
aCb�c�nC1

.�1/n�1�a�bCc�.n�1/.c�a/
n �

.n�1�a�bCc/.n�1Ca�b�cC1/
2

n ;

and

C6 D .2z � a � b C c/.b C c � a C 1/

2
;

but the summands on the left hand side of (A.1) are non-zero only for z D a C b � c.
Therefore, after some simplification, the equality reduces to�

n � 1 � a C b � c

n � 1 � 2a

�
D
�

2a

c C a � b

�
:
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A.3. Proof of Lemma 2.10. By Schur’s lemma the diagram in eq. (2.12) represents a
multiple of ida, thus it is sufficient to compute its action on ea

0 . Using Proposition 2.9,
we need to prove

�
2a C n

2a C 1

�
D

n�1Cc�b�aX
tD0

C
b;n�1�c;n�1�a

aCb�cCt;n�1�t;n�1
C

c;n�1�b;a

t;n�1Cc�a�b�t;0
:

By Lemma 2.8 it holds

C
b;n�1�c;n�1�a
n�1�v;n�1�t;n�1 D �.n�1/.n�1�b�v�a/

n C
n�1�c;a;n�1�b
n�1�t;0;v I

moreover noting that if v D 0 in (2.9), then the sum reduces to the only term with
z D t , we have

X
tCvDcCn�1�b�a

C
c;n�1�b;a
t;v;0 �.n�1/.n�1�b�v�a/

n C
n�1�c;a;n�1�b
n�1�t;0;v

D
X

tCvDcCn�1�b�a

�p�1
aCb�c�nC1

.�1/v�C7
n

�
2a

a C c � b

�
�

c C n � 1 � b � a

t

��
�p�1

c�a�b
�C8

n �C9
n

�
2n � 2 � 2b

2n � 2 � 2b � v

��1� 2n � 2 � 2b

n � 1 � c � b C a

�

�C10
n

�
2.n � 1/ � c � a � b

n � 1 � 2c C t

��
;

where

C7 D v.2.n � 1 � b/ � v C 1/ � t .2c � t C 1/

2
;

C8 D .n � 1/.n � 1 � b � v � a/;

C9 D .t � n C 1/.n � 2c C t /

2
;

and

C10 D v.2.n � 1/ � 2b � v C 1/

2
:
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Simplifying the above formula and applying to the last binomial the third of the
identities recalled at the beginning of Section 2.1, this reduces toX

tCvDcCn�1�b�a

C
c;n�1�b;a
t;v;0 �.n�1/.n�1�b�v�a/

n C
n�1�c;a;n�1�b
n�1�t;0;v

D .�1/aCb�c�.n�1�a�bCc/.nCa�b�c/
n

�
2a

a � b C c

�
n�1�a�bCcX

tD0

��2.aC1/t
n

�
2c � t

a C b C c � n C 1

��
n � 1 C a � b � c C t

n � 1 C a � b � c

�

D .�1/aCb�c

�
2a

a � b C c

��
a � b C c C n

2a C 1

�

D
�

2a C n

2a C 1

�
;

where the first equality is proved by using the relation (2.1) given in Lemma 2.2.

A.4. Proof of Theorem 2.12. Using the value of the theta graph (2.12), we have the
relations

a f

c

e

b

d D
²

a b e

d c f

³
�n

a f

b
d

f

c

D
�

2f C n

2f C 1

�²
a b e

d c f

³
�n

a f

c

:

(A.2)

This gives the expression of the quantum 6j -symbol

�
2f C n

2f C 1

�²
a b e

d c f

³
�n

D .C a;f;c
m2;m1;m3

/�1
X

m4;m5;m6

C
n�1�d;n�1�b;n�1�f
n�1�m4;n�1�m5;n�1�m1

C a;b;e
m2;m5;m6

C e;d;c
m6;m4;m3

:
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In the above formula we used Proposition 2.9. Let us put

m1 D 0; m3 D 0; and m4 D ˛:

Then we have

m2 D a C f � c;

m5 D b C d � f � ˛;

and

m6 D e C d � c � ˛:

Using (2.9), letting

fx; x � hg D
h�1Y
kD0

fx � kg;

and applying Lemma 2.8 to C
n�1�d;n�1�b;n�1�f
n�1�m4;n�1�m5;n�1�m1

, we compute the quantum
6j -symbol as follows (in the computation n1 D n � 1):�

2f C n

2f C 1

�²
a b e

d c f

³
�n

D .C a;f;c
m2;m1;m3

/�1
X

m4;m5;m6

.��.f �dC˛/.n�1/
n C

n�1�b;f;d
n�1�m5;m1;m4

/

C e;d;c
m6;m4;m3

C a;b;e
m2;m5;m6

D E1

BdecX
˛D0

E2E3E4;

where

E1 D
�p�1

�Bafc
�
�Bafc

2
.BacfC1/

n

�
2c

Aafc � n1

���1

;

E2 D ��n1.f �dC˛/
n

p�1
Bbdf �n1

.�1/�˛�
.Bbdf �n1�˛/.n�˛�Bbfd /

2
n

f˛gŠ
f2d; 2d � ˛g

f2d; Bdf bg
fBbdf gŠ

.�1/˛�
˛.2d�˛C1/

2
n

fn1 � Bbfd ; n1 � Bbfd � ˛g
f˛gŠ ;

E3 D p�1
�Bedc

.�1/˛�C11
n

f2c; Aedc � n1gfBedcgŠ
fn1 � BedcgŠfBedc � ˛gŠf˛gŠ ;

with

C11 D ˛.2d � ˛ C 1/ � .Bedc � ˛/.Becd C ˛ C 1/

2
;
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and

E4 D p�1
�Babe

.�1/bCc�e�f �C12
n E4:1

X
zCwDBdec�˛;

Bdec�Bbdf �z�Bafc

.�1/z�C13
n E4:2E4:3E4:4;

with

C12 D .Bbdf � ˛/.Bbfd C ˛ C 1/ � Bafc.Bacf C 1/

2
;

C13 D .z � w/.Becd C ˛ C 1/

2
;

and

E4:1 D fBedc � ˛gŠ
f2e; Becd C ˛g

f2e; Aabe � n1g
fn1 � BabegŠ ;

E4:2 D fBabegŠ
fBafc � zgŠfb C c � e � f C zgŠ ;

E4:3 D fBacf C z; Bacf g
fzgŠ ;

E4:4 D fBbfd C Bdec � z; Bbfd C ˛g
fBdec � ˛ � zgŠ I

so�
2f C n

2f C 1

�²
a b e

d c f

³
�n

D p�1
BafcCBbdf �n1�Bedc�Babe

.�1/bCc�e�f ��n1.f�d/
n

�
2c

Aafc � n1

��1

F1;

with

F1 D
BdecX
˛D0

�C14
n

N3

D3

X
zCwDBdec�˛;

Bdec�Bbdf �z�Bafc

.�1/z�C13
n

N4

D4

;

where

C14 D ˛ C ˛.2d � ˛ C 1/ C .Bbdf � n1 � ˛/.n � ˛ � Bbfd /

2

� .Bedc � ˛/.Becd C ˛ C 1/

2
C .Bbdf � ˛/.Bbfd C ˛ C 1/

2
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and

N3 D fBbfd C ˛; Bbfd gf2d � ˛; Bdf bgf2c; Aedc � n1g
fBedcgŠ2fBabegŠ2f2e; Aabe � n1g;

D3 D fBbdf gŠfn1gŠ2f˛gŠf2e; Becd C ˛g;

N4 D fBacf C z; Bacf gfBbfd C Bdec � z; Bbfd C ˛g;
D4 D fBafc � zgŠfBbdf � Bdec C zgŠfzgŠfBdec � ˛ � zgŠ I

therefore

�
2f C n

2f C 1

�²
a b e

d c f

³
�n

D p�1
Bafc�BedcCBbdf �Babe

.�1/n1CbCc�e�f �C15
n�

2c

Aafc � n1

��1 N5

D5

BdecX
˛D0

X
zCwDBdec�˛;

Bdec�Bbdf �z�Bafc

.�1/z�C13
n

N6

D6

�C16
n �C17

n

N7

D7

;

with

C15 D Bbdf .Bdf b C 1/ � Bedc.Bced C 1/

2
;

C16 D .Bbdf � ˛/.Bbfd C ˛ C 1/

2
;

C17 D �.n1 � c/˛ C .n1 � f /.Bbdf � ˛/;

and

N5 D fBedcgŠ2fBabegŠ2f2c; Aedc � n1gf2e; Aabe � n1g;
D5 D fBbdf gŠ.fn1gŠ/2;

N6 D fBacf C z; Bacf gfBbfd C ˛ C w; Bbfdg;
D6 D fBafc � zgŠfBbdf � ˛ � wgŠfzgŠfwgŠ ;

N7 D f2d � ˛; Bdf bg;
D7 D f2e; Becd C ˛gf˛gŠ I
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and then

�
2f C n

2f C 1

�²
a b e

d c f

³
�n

D .�1/n1CBdec ��Bdec.BcedC1/
n

N8

D8

min.Bdec ;Bafc/X
zDmax.0;�Bbdf CBdec/

.�1/z�z.BcedC1/
n

N9

D9

Bdec�zX
˛D0

�.zC2c�2nC2/˛
n

N10

D10

;

with

N8 D N5 D fBedcgŠ2fBabegŠ2f2c; Aedc � n1gf2e; Aabe � n1g;
D8 D fBbdf gŠfBafcgŠf2c; Aafc � n1gfn1gŠ ;

N9 D fBacf C z; Bacf gfBbfd C Bdec � z; Bbfd g;
D9 D fBafc � zgŠfBbdf � Bdec C zgŠfzgŠ ;

N10 D N7 D f2d � ˛; Bdf bg;
D10 D f2e; Becd C ˛gf˛gŠfBdec � z � ˛gŠ :

Now using the equality

f2d � ˛; Bdf bgf2d; Bdce C zg
f2d; Bdf bg D f2d � ˛; Bdce C zg

we get

�
2f C n

2f C 1

�²
a b e

d c f

³
�n

D .�1/n1CBdec ��Bdec .BcedC1/
n

N11

D11

min.Bdec ;Bafc/X
zDmax.0;�Bbdf CBdec/

.�1/z�z.BcedC1/
n

N12

D12

Bdec�zX
˛D0

�.zC2c�2nC2/˛
n

�
2d � ˛

Bdce C z

��
Becd C ˛

Becd

�
;
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where

N11 D fBedcgŠ2fBabegŠ2f2c; Aedc�n1gf2e; Aabe�n1gf2d; Bdf bg;
D11 D fBbdf gŠfBafcgŠf2c; Aafc � n1gfn1gŠf2e; Becdg;

N12 D fBacf C z; Bacf gfBbfd C Bdec � z; Bbfd g;
D12 D fBafc � zgŠfBbdf � Bdec C zgŠfzgŠf2d; Bdce C zg:

By using (2.1), the formula above is equal to�
2f C n

2f C 1

�²
a b e

d c f

³
�n

D .�1/n�1CBdec
N11

D11

min.Bdec ;Bafc/X
zDmax.0;�Bbdf CBdec/

.�1/zN12

D12

�
Aedc C 1

2c C z C 1

�

D .�1/n�1CBafc
fBdecgŠfBabegŠ
fBbdf gŠfBafcgŠ

�
2e

Aabe � n1

��
2e

Becd

��1

min.Bdec ;Bafc/X
zDmax.0;�BbdfCBdec /

.�1/z

�
Aafc C 1

2c C z C 1

��
Bacf C z

Bacf

�
�

Bbfd C Bdec � z

Bbfd

��
Bdce C z

Bdf b

�
:

In the last equality we used the identity

fAedc C 1; 2c C z C 1gf2c; Aedc � n1g
f2c; Aafc � n1g D fAafc C 1; 2c C z C 1g.�1/aCf�e�d

which is a direct consequence of the definition of the symbol fx; x � kg.
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