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Abstract. In this paper we categorify the q-Schur algebra Sq.n; d/ as a quotient of Khovanov
and Lauda’s diagrammatic 2-category U.sln/ [16]. We also show that our 2-category contains
Soergel’s [33] monoidal category of bimodules of typeA, which categorifies the Hecke algebra
Hq.d/, as a full sub-2-category if d � n. For the latter result we use Elias and Khovanov’s
diagrammatic presentation of Soergel’s monoidal category of type A; see [8].
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1. Introduction

There is a well-known relation, called Schur–Weyl duality or reciprocity, between
the polynomial representations of homogeneous degree d of the general linear group
GL.n;Q/ and the finite-dimensional representations of the symmetric group on d
letters Sd . Recall that all irreducible polynomial representations of GL.n;Q/ of
homogeneous degree d occur in the decomposition of V ˝d , where V D Qn is the
natural representation of GL.n;Q/. Instead of the GL.n;Q/-action, we can consider
the U.gln/-action, without loss of generality. A key observation for Schur–Weyl
duality is that the permutation action of Sd on V ˝d commutes with the action of
U.gln/. Furthermore, we have

QŒSd � Š EndU.gln/.V
˝d /

if n � d .
By definition, the Schur algebra is the other centralizer algebra

S.n; d/ D EndSd
.V ˝d /:

It is well known that both U.sln/ and U.gln/ map surjectively onto S.n; d/, for any
d > 0. Therefore we can also define S.n; d/ as the image of the map

U.gln/! EndQ.V
˝d /;

which is the definition used in this paper. Both S.n; d/ and QŒSd � are split semi-
simple finite-dimensional algebras, and the double centralizer property above implies
that the categories of finite-dimensional modules S.n; d/ � mod and Sd �mod are
equivalent, for n � d .

There are two more facts of interest to us. The first is that there actually exists a
concrete functor which gives rise to the above mentioned equivalence. For n � d ,
there exists an embedding of QŒSd � in S.n; d/, which induces the so called Schur
functor

S.n; d/-mod �! Sd -mod:

As it turns out, this functor is an equivalence.
The second fact of interest to us is that the Schur algebras S.n; d/ for various

values of n and d are related. If n � m, then S.n; d/ can be embedded into S.m; d/.
A more complicated relation is the following: for any k 2 N, there is a surjection

S.n; d C nk/ �! S.n; d/:

This surjection is compatible with the projections of U.gln/ and U.sln/ onto the Schur
algebras. With these surjections, the Schur algebras form an inverse system. As it
turns out, the projections of U.sln/ onto the Schur algebras give rise to an embedding

U.sln/ �
n�1M
dD0

lim
 k

S.n; d C nk/:
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To get a similar embedding for U.gln/, one needs to consider generalized Schur
algebras. We do not give the details of this generalization, because we will not need
it. We refer the interested reader to [7].

All the facts recollected above have q-analogues, which involve the quantum
groups Uq.gln/ and Uq.sln/, the Hecke algebraHq.d/, the q-Schur algebraSq.n; d/,
and their respective finite-dimensional representations over Q.q/.

If one is only interested in the finite-dimensional representations of Uq.gln/ and
Uq.sln/, which can all be decomposed into weight spaces, it is easier to work with
Lusztig’s idempotented version of these quantum groups, denoted PU.gln/ and PU.sln/.
In these idempotented versions, the Cartan subalgebras are “replaced” by algebras
generated by orthogonal idempotents corresponding to the weights. The kernel of
the surjection PU.gln/ ! Sq.n; d/ is simply the ideal generated by all idempotents
corresponding to the gln-weights which do not appear in the decomposition of V ˝d .
The same is true for the kernel of PU.sln/ ! Sq.n; d/, using sln-weights. We will
say more about PU.gln/ and PU.sln/ in the next section.

We are interested in the categorification of the q-algebras above, the relations
between them and the applications to low-dimensional topology. By a categorification
of a q-algebra we mean a monoidal category or a 2-category whose Grothendieck
group, tensored by Q.q/, is isomorphic to that q-algebra.

As a matter of fact, all of them have been categorified already, and some of them
in more than one way. Soergel defined a category of bimodules over polynomial rings
in d variables, which he proved to categorify Hq.d/. Elias and Khovanov gave a
diagrammatic version of the Soergel category. Grojnowski and Lusztig [12] were the
first to categorifySq.n; d/, using categories of perverse sheaves on products of partial
flag varieties. Subsequently Mazorchuk and Stroppel constructed a categorification
using representation theoretic techniques [28] and so did Williamson [39] for n D d
using singular Soergel bimodules. Khovanov and Lauda have provided a diagram-
matic 2-category U.sln/ which categorifies PU.sln/. Rouquier [32] followed a more
representation theoretic approach to the categorification of the quantum groups. The
precise relation of his work with Khovanov and Lauda’s remains unclear. We note
that the categorifications mentioned above have been obtained for arbitrary root data.
However, this paper is only about type A and we will not consider other types.

Our interest is in the diagrammatic approach, by which Hq.d/ and Uq.sln/ have
already been categorified. The goal of this paper is to define a diagrammatic categori-
fication of Sq.n; d/. Recall that the objects of U.sln/ are the weights of sln, which
label the regions in the diagrams which constitute the 2-morphisms. Our idea is quite
simple: define a new 2-category U.gln/ just as U.sln/, but switch to gln-weights,
which we conjecture to give a categorification of PU.gln/. Next we mod out U.gln/
by all diagrams which have regions labeled by weights not appearing in the decom-
position of V ˝d . This way we obtain a 2-category �.n; d/ and the main result of
this paper is the proof that it indeed categorifies Sq.n; d/.

There are two good reasons for switching to gln-weights, besides giving a con-
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jectural categorification of PU.gln/. It is easier to say explicitly which gln-weights do
not appear in V ˝d , as we will show in the next section. Also, while working on our
paper we found a sign mistake in what Khovanov and Lauda call their signed cate-
gorification of PU.sln/; see [17]. Fortunately it does not affect their unsigned version,
but the corrected signed version loses a nice property, the cyclicity. We discovered
that with gln-weights there is a different sign convention which solves the problem,
at least for �.n; d/.

On our way of proving the main result of this paper we obtain some other inter-
esting results.

� For n � d , we define a fully faithful 2-functor from Soergel’s category of
bimodules to �.n; d/, which categorifies the well-known inclusion Hq.d/ �
Sq.n; d/ explained in Section 2.

� We define functors �.n; d/ ! �.m; d/ when n � m. We are not (yet) able
to prove that these are faithful, although we strongly suspect that they are. We
know that they are not full, but suspect that they are “almost full” in a sense that
we will explain in Section 7.

� We define essentially surjective full 2-functors

�.n; d C kn/ �! �.n; d/

which categorify the surjections above.

� We show that Khovanov and Lauda’s 2-representation of U.sln/ on the equiv-
ariant cohomology of flag varieties descends to �.n; d/.

� We conjecture how to categorify the irreducible representations ofSq.n; d/ using
�.n; d/. Khovanov and Lauda’s categorification of these representations, using
the so-called cyclotomic quotients, should be equivalent to a quotient of ours.

Understanding the precise relation with the other categorifications of Sq.n; d/

would be very important, but is left for the future. As a matter of fact, Brundan
and Stroppel have already established a link between the category O approach to
categorification and Khovanov and Lauda’s (see for example [2]), which perhaps can
be used to obtain an equivalence between Mazorchuk and Stroppel’s categorification
of the q-Schur algebra and ours. For n D d , Williamson’s 2-category of Soergel’s
singular bimodules is equivalent to Khovanov and Lauda’s 2-category build out of
the equivariant cohomology of partial flag varieties (of flags in Qd ) and we expect
both to be equivalent to �.d; d/.

Besides the intrinsic interest of �.n; d/, with its combinatorics and its link to
representation theory, there is also a potential application to knot theory. First recall
that there is a natural surjection of the braid group ontoHq.d/. The Jones–Ocneanu
trace of the image of a braid in Hq.d/ is equal to the so called HOMFLYPT knot
polynomial of the braid closure. This construction has been categorified: Rouquier
defined a complex of Soergel bimodules for each braid and Khovanov discovered
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that its Hochschild homology categorifies the Jones–Ocneanu trace, showing that in
this way one obtains a homology which is isomorphic to the Khovanov–Rozansky
HOMFLYPT-homology. Using Elias and Khovanov’s work, Elias and Krasner [9]
worked out the diagrammatic version of Rouquier’s complex. Their work still remains
to be extended to include the Hochschild homology. Besides this approach, which
is the one most directly related to the results in this paper, we should also mention
a geometric approach due to Webster and Williamson in [37] and a representation
theoretic approach due to Mazorchuk and Stroppel [29].

More generally, there is a natural homomorphism from the colored braid group,
with n strands colored by natural numbers whose sum is equal to d , to Sq.n; d/. It
is not as widely advertised as the non-colored version, but one can easily obtain it
from Lusztig’s formulas in Section 5.2.1 in [22] or from the second part of the paper
by Murakami–Ohtsuki–Yamada [30]. One can also define a colored version of the
Jones–Ocneanu trace on Sq.n; d/ to obtain the colored HOMFLYPT knot invariant.
Naturally the question arises how to categorify the colored HOMFLYPT knot polyno-
mial. In [5] Chuang and Rouquier defined a colored version of Rouquier’s complex
for a braid, using a representation theoretic approach. They proved invariance un-
der the second braid-like Reidemeister move and conjectured invariance under the
third move. In [25] we defined a complex of singular Soergel bimodules, which is
equivalent to the Chuang–Rouquier complex. We conjectured that the Hochschild
homology of such a complex categorifies the colored HOMFLYPT knot polynomial
of the braid closure. We were only able to prove our conjecture for the colors 1
and 2, due to the complexity of the calculations for general colors. Webster and
Williamson subsequently showed our conjecture to be true, using a generalization
of their geometric approach [38]. Cautis, Kamnitzer and Licata [3] also studied the
Chuang–Rouquier complex from a geometric point of view. By the above mentioned
2-representation of �.n; d/ into singular Soergel bimodules, it is natural to expect
that one should be able to define the Chuang–Rouquier complex in �.n; d/ such that
its 2-representation gives exactly the complex of singular Soergel bimodules which
we conjectured. In a forthcoming paper we will come back to this. In the mean-
while, papers have appeared in which the colored HOMFLYPT homology has been
constructed using matrix factorizations; see [40], [41], [42], [43], and [44].

The outline of this paper is as follows.

� In Section 2 we recall some results on the above mentioned q-algebras. Our
choice has been highly selective in an attempt to prevent this paper from becom-
ing too long. We have only included those results which we categorify or which
we need in order to categorify. We hope that this introduction makes up for what
we left out.

� In Section 3 we define the 2-categories U.gln/ and �.n; d/. As said before, the
first one is just a copy of Khovanov and Lauda’s definition of U.sln/, but with
a different set of weights and a different sign convention. The second one is a
quotient of the first one.
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� To understand some of the properties of �.n; d/, we first define its 2-representa-
tion in the 2-category of bimodules over polynomial rings in Section 4. Except
for the different sign convention, it is the factorization of the 2-representation
of [16] through �.n; d/. The only new feature is our interpretation of this
2-representation in terms of the categorified MOY-calculus, which we developed
in [25].

� Section 5 is devoted to comparing the structure of the 2-HOM spaces of U.sln/
to those of �.n; d/. The latter ones remain a bit of a mystery to us and we can
only prove just enough about them for what we need in the rest of this paper.

� In Section 6 we define a fully faithful embedding of Soergel’s categorification
of Hq.d/ into �.n; d/. We have not yet attributed any notation to Soergel’s
category in this introduction, because there are actually two slightly different
versions of it and we will need both, one for d D n and the other for d < n.

� In Section 7 we prove that �.n; d/ indeed categorifies Sq.n; d/. We also con-
jecture how to categorify the Weyl modules of Sq.n; d/.

2. Hecke and q-Schur algebras

In this section we recollect some facts about the q-algebras mentioned in the introduc-
tion. For details and proofs see [6] and [27] unless other references are mentioned.
We work over the field Q.q/, where q is a formal parameter.

2.1. The quantum general and special linear algebras. Let us first recall the
quantum general and special linear algebras. The gln-weight lattice is isomorphic
to Zn. Let "i D .0; : : : ; 1; : : : ; 0/ 2 Zn, with 1 being on the i-th coordinate, and
˛i D "i � "iC1 2 Zn, for i D 1; : : : ; n � 1. We also define the Euclidean inner
product on Zn by ."i ; "j / D ıi;j .

Definition 2.1. The quantum general linear algebra Uq.gln/ is the associative unital
Q.q/-algebra generated by Ki ; K

�1
i , for 1; : : : ; n, and E˙i , for i D 1; : : : ; n � 1,

subject to the relations

KiKj D KjKi ;

KiK
�1
i D K�1

i Ki D 1;

EiE�j �E�jEi D ıi;j

KiK
�1
iC1 �K�1

i KiC1

q � q�1
;

KiE˙j D q˙."i ; j̨ /E˙jKi ;
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E2˙iE˙j � .q C q�1/E˙iE˙jE˙i C E˙jE
2˙i D 0; if ji � j j D 1;

E˙iE˙j �E˙jE˙i D 0; else:

Definition 2.2. The quantum special linear algebra Uq.sln/ � Uq.gln/ is the unital
Q.q/-subalgebra generated by KiK

�1
iC1 and E˙i , for i D 1; : : : ; n � 1.

Recall that the Uq.sln/-weight lattice is isomorphic to Zn�1. Suppose that V is
a Uq.gln/-weight representation with weights � D .�1; : : : ; �n/ 2 Zn, i.e.

V Š
M

�

V�

and Ki acts as multiplication by q�i on V�. Then V is also a Uq.sln/-weight repre-

sentation with weights N� D . N�1; : : : ; N�n�1/ 2 Zn�1 such that N�j D �j � �jC1 for
j D 1; : : : ; n � 1. Conversely, given a Uq.sln/-weight representation with weights
� D .�1; : : : ; �n�1/, there is not a unique choice of Uq.gln/-action on V . We can
fix this by choosing the action ofK1 � � �Kn. In terms of weights, this corresponds to
the observation that, for any d 2 Z the equations

�i � �iC1 D �i (1)

and
nX

iD1

�i D d (2)

determine � D .�1; : : : ; �n/ uniquely, if there exists a solution to (1) and (2) at all.
To fix notation, we define the map 'n;d W Zn�1 ! Zn [ f�g by

'n;d .�/ D �;
if (1) and (2) have a solution, and put 'n;d .�/ D � otherwise.

Recall that Uq.gln/ and Uq.sln/ are both Hopf algebras, which implies that the
tensor product of two of their representations is a representation again.

Both Uq.gln/ and Uq.sln/ have plenty of non-weight representations, but we are
not interested in them. Therefore we can restrict our attention to the Beilinson–
Lusztig–MacPherson [1] idempotented version of these quantum groups, denoted
PU.gln/ and PU.sln/ respectively. To understand their definition, recall that Ki acts as
q�i on the �-weight space of any weight representation. For each � 2 Zn adjoin an
idempotent 1� to Uq.gln/ and add the relations

1�1� D ı�;�1�;

E˙i1� D 1�˙˛i
E˙i ;

Ki1� D q�i 1�:
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Definition 2.3. The idempotented quantum general linear algebra PU.gln/ is defined
by

PU.gln/ D
M

�;�2Zn

1�Uq.gln/1�:

For i D .˛1i1; : : : ; ˛mim/, with ij 2 f1; : : : ; n � 1g and j̨ D ˙, define

Ei D E˛1i1 : : : E˛n�1in�1

and define iƒ 2 Zn to be the n-tuple such that

Ei1� D 1�CiƒEi:

Similarly for Uq.sln/, adjoin an idempotent 1� for each � 2 Zn�1 and add the
relations

1�1� D ı�;�1�;

E˙i1� D 1�˙ N̨iE˙i ;

KiK
�1
iC11� D q�i1�:

Definition 2.4. The idempotented quantum special linear algebra PU.sln/ is defined
by

PU.sln/ D
M

�;�2Zn�1

1�Uq.sln/1� :

Note that PU.gln/ and PU.sln/ are both non-unital algebras, because their units
would have to be equal to the infinite sum of all their idempotents. Furthermore, the
only Uq.gln/ and Uq.sln/-representations which factor through PU.gln/ and PU.sln/,
respectively, are the weight representations. Finally, note that there is no embedding
of PU.sln/ into PU.gln/, because there is no embedding of the sln-weights into the
gln-weights.

2.2. The q-Schur algebra. Let d 2 N and let V be the natural n-dimensional
representation of Uq.gln/. Define

ƒ.n; d/ D
n
� 2 Nn W

nX
iD1

�i D d
o

and

ƒC.n; d/ D f� 2 ƒ.n; d/ W d � �1 � �2 � � � � � �n � 0g:
Recall that the weights in V ˝d are precisely the elements of ƒ.n; d/, and that the
highest weights are the elements of ƒC.n; d/. The highest weights correspond ex-
actly to the irreducibles V� that show up in the decomposition of V ˝d .

As explained in the introduction, we can define the q-Schur algebra as follows.
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Definition 2.5. The q-Schur algebra Sq.n; d/ is the image of the representation
 n;d W Uq.gln/! EndQ.V

˝d /.

For each � 2 ƒC.n; d/, the Uq.gln/-action on V� factors through the projection
 n;d W Uq.gln/ ! Sq.n; d/. This way we obtain all irreducible representations of
Sq.n; d/. Note that this also implies that all representations ofSq.n; d/ have a weight
decomposition. As a matter of fact, it is well known that

Sq.n; d/ Š
Y

�2ƒC.n;d/

EndQ.V�/:

Therefore Sq.n; d/ is a finite-dimensional split semi-simple unital algebra and its
dimension is equal to

X
�2ƒC.n;d/

dim.V�/
2 D

�
n2 C d � 1

d

�
:

Since V ˝d is a weight representation,  n;d gives rise to a homomorphism

PU.gln/ �! Sq.n; d/;

for which we use the same notation. This map is still surjective and Doty and Gi-
aquinto, in Theorem 2.4 of [7], showed that the kernel of  n;d is equal to the ideal
generated by all idempotents 1� such that � 62 ƒ.n; d/. Let PS.n; d/ be the quotient
of PU.gln/ by the kernel of  n;d . Clearly we have PS.n; d/ Š Sq.n; d/. By the above
observations, we see that PS.n; d/ has a Serre presentation. As a matter of fact, by
Corollary 4.3.2 in [4], this presentation is simpler than that of PU.gln/: one does not
need to impose the last two Serre relations, involving cubical terms, because they are
implied by the other relations and the finite dimensionality.1

Lemma 2.6. PS.n; d/ is isomorphic to the associative unital Q.q/-algebra generated
by 1�, for � 2 ƒ.n; d/, and E˙i , for i D 1; : : : ; n � 1, subject to the relations

1�1� D ı�;�1�;X
�2ƒ.n;d/

1� D 1;

E˙i1� D 1�˙˛i
E˙i ;

EiE�j �E�jEi D ıij

X
�2ƒ.n;d/

Œ N�i �1�:

We use the convention that 1�X1� D 0, if � or � is not contained inƒ.n; d/. Recall
that Œa� is the q-integer .qa � q�a/=.q � q�1/.

1We thank Raphaël Rouquier for pointing this out to us and giving us the reference.
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Although there is no embedding of PU.sln/ into PU.gln/, the projection

 n;d W Uq.gln/! Sq.n; d/

can be restricted to Uq.sln/ and is still surjective. This gives rise to the surjection

 n;d W PU.sln/ �! PS.n; d/;
defined by

 n;d .E˙i1�/ D E˙i1'n;d .�/; (3)

where 'n;d was defined below equations (1) and (2). By convention we put 1� D 0.
As mentioned in the introduction, the q-Schur algebras for various values of n

and d are related. Let m � n and d be arbitrary. There is an obvious embedding of
the set of Uq.gln/-weights into the set of Uq.glm/-weights, given by

.�1; : : : ; �n/ 7�! .�1; : : : ; �n; 0; : : : ; 0/:

For fixed d , this gives an inclusion ƒ.n; d/ � ƒ.m; d/, which we can use to define

�n;m D
X

�2ƒ.n;d/

1� 2 PS.m; d/:

Note that �n;m ¤ 1 unless n D m.

Definition 2.7. There is a well-defined homomorphism

�n;m W PS.n; d/ �! �n;m
PS.m; d/�n;m

given by

E˙i 7�! �n;mE˙i�n;m and 1� 7�! �n;m1��n;m D 1�:

It is easy to see that this is an isomorphism.

Definition 2.8. Suppose d 0 D d C nk, for a certain k 2 N. Then we define a
homomorphism

�d 0;d W PS.n; d 0/ �! PS.n; d/
by

1� 7�! 1��.kn/ and E˙i 7�! E˙i :

It is easy to check that �d 0;d is well-defined and surjective. It is also easy to see
that

�d 0;d n;d 0 D  n;d

and that �d 0;d induces a linear isomorphism

V� ! V��.kn/;
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which intertwines the PS.n; d 0/ and PS.n; d/ actions, if � � .kn/ 2 ƒC.n; d/. Of
course V� and V��.kn/ are isomorphic as Uq.sln/ representations. Furthermore, note
that for any d D 0; : : : ; n � 1 the set

.Sq.n; d C nk/; �dCnk;d /k2N (4)

forms an inverse system, so we can form the inverse limit algebra

lim
 �k

Sq.n; d C nk/:

The following lemma is perhaps a bit surprising.

Lemma 2.9. The map
P

d

Q
k  n;dCnk , with d D 0; : : : ; n � 1 and k 2 N, gives

an embedding

Uq.sln/ �
n�1M
dD0

lim
 �k

Sq.n; d C nk/:

We also have

PU.sln/ �
n�1M
dD0

lim
 �k

Sq.n; d C nk/: (5)

The reader should remember this embedding when reading Corollary 5.2. The results
in this paragraph were taken from [1].

We need to recall two more facts about q-Schur algebras and their representa-
tions. The first is that the irreducibles V�, for � 2 ƒC.n; d/, can be constructed as
subquotients of PS.n; d/, called Weyl modules. Let < denote the lexicographic order
on ƒ.n; d/.

Lemma 2.10. For any � 2 ƒC.n; d/, we have

V� Š PS.n; d/1�=Œ� > ��:

Here Œ� > �� is the ideal generated by all elements of the form 1�x1�, for some
x 2 PS.n; d/ and � > �.

Finally, we recall a well-known anti-involution on PS.n; d/, which we will need
in this paper.

Definition 2.11. We define an algebra anti-involution

� W PS.n; d/ �! PS.n; d/op

by

�.1�/ D 1�;
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�.1�C˛i
Ei1�/ D q�1�N�i 1�E�i1�C˛i

;

�.1�E�i1�C˛i
/ D q1CN�i1�C˛i

Ei1�:

Note that up to a shift t 0, we have

1�Es1
Es2

: : : Esm�1
Esm

1�q
t 7�! 1�E�sm

E�sm�1
: : : E�s2

E�s1
1�q

�tCt 0 :

Our � is the analogue of the one in [16].

2.3. The Hecke algebra. Recall thatHq.n/ is a q-deformation of the group algebra
of the symmetric group on n letters.

Definition 2.12. The Hecke algebra Hq.n/ is the unital associative Q.q/-algebra
generated by the elements Ti , i D 1; : : : ; n � 1, subject to the relations

T 2
i D .q2 � 1/Ti C q2;

TiTj D TjTi if ji � j j > 1;
TiTiC1Ti D TiC1TiTiC1:

Note that some people write q where we write q2 and use v D q�1 in their
presentation of the Hecke algebra. It is also not uncommon to find t instead of our q.

For q D 1 we recover the presentation of QŒSn� in terms of the simple trans-
positions 	i . For any element 	 2 Sn we can define T� D Ti1 : : : Tik , choosing a
reduced expression 	 D 	i1 : : : 	ik . The relations above guarantee that all reduced
expressions of 	 give the same element T� . The T� , for 	 2 Sn, form a linear basis
of Hq.n/.

There is a simple change of generators, which is convenient for categorification
purposes. Write bi D q�1.Ti C 1/. Then the relations above become

b2
i D .q C q�1/bi ;

bibj D bj bi ; if ji � j j > 1;
bibiC1bi C biC1 D biC1bibiC1 C bi :

These generators are the simplest elements of the so called Kazhdan–Lusztig basis.
Although the change of generators is simple, the whole change of linear bases is very
complicated.

As mentioned in the introduction, there is a q-version of Schur–Weyl duality.
There is a q-permutation action ofHq.d/ on V ˝d , which is induced by theR-matrix
of Uq.gln/ or Uq.sln/ and commutes with the actions of these quantum envelop-
ing algebras. With respect to these actions, Hq.d/ and PS.n; d/ have the double
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centralizer property. Furthermore, their respective categories of finite-dimensional
representations are equivalent.

Suppose n � d . We explicitly recall the embedding of Hq.d/ into PS.n; d/. Let
1d D 1.1d /. Note that the Uq.gln/-weight .1d / gives the zero Uq.sln/-weight, for
n D d , and a fundamental Uq.sln/-weight for n > d . We define the following map

	n;d W Hq.d/ �! 1d
PS.n; d/1d

by

	n;d .bi / D 1dE�iEi1d D 1dEiE�i1d ;

for i D 1; : : : ; d � 1. It is easy to check that 	n;d is well-defined. It turns out that
	n;d is actually an isomorphism, which induces the q-Schur functor

PS.n; d/-mod �! Hq.d/-mod;

where “mod” denotes the category of finite-dimensional modules. This functor is an
equivalence. Let us state explicitly an easy implication of this equivalence, which we
need in the sequel.

Lemma 2.13. Let 0 < d � n and let A be a unital associative Q.q/-algebra.
Suppose that

� W PS.n; d/ �! A

is a surjection of Q.q/-algebras such that

� B 	n;d W Hq.d/ �! A

is an embedding. Then A Š PS.n; d/.

Proof. Recall that
PS.n; d/ Š

Y
�2ƒC.n;d/

EndQ.q/.V�/:

The fact that the q-Schur functor is an equivalence means that the projection of
	n;d .Hq.d// onto EndQ.q/.V�/ is non-zero, for any � 2 ƒC.n; d/. Since all
EndQ.q/.V�/ are simple algebras, A has to be isomorphic to the product

Y
�2ƒ0

EndQ.q/.V�/;

for a certain subsetƒ0 � ƒC.n; d/. But� B	n;d is an embedding, soƒ0 D ƒC.n; d/
has to hold.
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3. The 2-categories U.gln/ and �.n; d/

In this section we define two 2-categories, U.gln/ and �.n; d/, using a graphical
calculus analogous to Khovanov and Lauda’s in [16]. We thank Khovanov and Lauda
for letting us copy their definition of U!.sln/. Taking their definition, we first
introduce a change of weights to obtain U.gln/. Then we divide by an ideal to obtain
�.n; d/.

As remarked in the introduction, our signs are slightly different from those in [16].
Khovanov and Lauda [17] corrected their sign convention in U!.sln/. As it turns out,
the corrected U!.sln/ is no longer cyclic, which makes working with that sign con-
vention awkward. Fortunately Khovanov and Lauda’s non-signed version, U.sln/, is
still correct and cyclic and is isomorphic to the corrected U!.sln/; see [16] and [17].
However, the sign convention in U.sln/ is not so practical for the 2-representation
into bimodules, so we have decided to stick to our own sign convention in this paper.
To get from our signs back to Khovanov and Lauda’s (corrected) signs in U!.sln/,
apply the 2-isomorphism which is the identity on all objects, 1- and 2-morphisms
except the left cups and caps, on which it is given by

�� i;� 7�! .�1/�iC1C1
�� i;� and ��

i;�
7�! .�1/�iC1

��

i;�
: (6)

The various parts of our definition of U.gln/ and �.n; d/ below have exactly
the same order as the corresponding parts of Khovanov and Lauda’s definition of
U!.sln/, so the reader can compare them in detail. From now on we will always
write U.sln/, instead of U!.sln/, for the corrected signed categorification of PU.sln/.
Since we will never work with the unsigned version, there should be no confusion.

3.1. The 2-category U.gln/. As already remarked in the introduction, the idea
underlying the definition of U.gln/ is very simple: it is obtained from U.sln/ by
passing from sln-weights to gln-weights.

From now on let n 2 N>1 be arbitrary but fixed and let I D f1; 2; : : : ; n� 1g. In
the sequel we use signed sequences i D .˛1i1; : : : ; ˛mim/, for anym 2 N, j̨ 2 f˙1g
and ij 2 I . The set of signed sequences we denote SSeq. For i D .˛1i1; : : : ; ˛mim/ 2
SSeq we define iƒ D ˛1.i1/ƒ C � � � C ˛m.im/ƒ, where

.ij /ƒ D .0; 0; : : : ; 1;�1; 0 : : : ; 0/;
such that the vector starts with ij�1 and ends withk�1�ij zeros. To understand these
definitions, the reader should recall our definition of Ei and iƒ below Definition 2.3.
We also define the symmetric Z-valued bilinear form on QŒI � by i �i D 2, i �.iC1/ D
�1 and i � j D 0, for ji � j j > 1. Recall that N�i D �i � �iC1.

Definition 3.1. U.gln/ is an additive Q-linear 2-category. The 2-category U.gln/
consists of the following data.
� Objects: � 2 Zn.
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The hom-category U.gln/.�; �
0/ between two objects �, �0 is an additive Q-linear

category consisting of the following data.

� Objects2 of U.gln/.�; �
0/: a 1-morphism in U.gln/ from � to �0 is a formal

finite direct sum of 1-morphisms

Ei1�ftg D 1�0Ei1�ftg D E˛1i1 � � �E˛mim1�ftg
for any t 2 Z and signed sequence i 2 SSeq such that �0 D � C iƒ and �,
�0 2 Zn.

� Morphisms of U.gln/.�; �
0/: for 1-morphisms Ei1�ftg and Ej1�ft 0g in U.gln/,

the hom sets
U.gln/.Ei1�ftg;Ej1�ft 0g/

of U.gln/.�; �
0/ are graded Q-vector spaces given by linear combinations of

degree t � t 0 diagrams, modulo certain relations, built from composites of the
following 2-morphisms.

i) Degree zero identity 2-morphisms 1x for each 1-morphism x in U.gln/; the
identity 2-morphisms 1ECi 1�

ftg and 1E�i 1�
ftg, for i 2 I , are represented

graphically by

1ECi 1�ftg 1E�i 1�ftg

��

i

i

��C iƒ and ��

i

i

�� � iƒ

deg 0 deg 0

for any �C iƒ 2 Zn and any � � iƒ 2 Zn, respectively.

More generally, for a signed sequence i D .˛1i1; ˛2i2; : : : ˛mim/, the iden-
tity 1Ei1�ftg 2-morphism is represented as

: : :

i1 i2 im

i1 i2 im

��C iƒ

2We refer to objects of the category U.gln/.�; �0/ as 1-morphisms of U.gln/. Likewise, the mor-
phisms of U.gln/.�; �0/ are called 2-morphisms in U.gln/.
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where the strand labeled ik is oriented up if ˛k D C and oriented down if
˛k D �. We will often place labels with no sign on the side of a strand and
omit the labels at the top and bottom. The signs can be recovered from the
orientations on the strands.

ii) For each � 2 Zn the 2-morphisms

Notation:
��

	
i;� ��

	
i;�

�������
������� i;j;� ����

��
�
��
��

��
�

i;j;�

2-morphism:
��

i

	
��C iƒ ��

i

	
� �C iƒ ����

i j

�
����i j

�

Degree: i � i i � i �i � j �i � j

Notation: ��

i;�

��

i;�
�� i;� �� i;�

2-morphism:
�� 		

i
�



��

i
�

��

i �
�� ��

i �

Degree: 1C N�i 1 � N�i 1C N�i 1 � N�i

� Biadjointness and cyclicity.

i) 1�CiƒECi 1� and 1�E�i 1�Ci� are biadjoint, up to grading shifts:

8̂̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂:

�� �� ��

�

�C iƒ
D ��

��C iƒ
;

�� �� ��

�C iƒ

�

D ��

�C iƒ�

;

(7)

8̂̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂:

������

�

�C iƒ

D ��

��C iƒ
;

������

�C iƒ

�

D ��

�C iƒ�

:

(8)
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ii)

��

��

��

	

�C iƒ

�

i

D
��

	
� �C iƒ

i

D ��

��

��

	
�C iƒ

� i

. (9)

iii) All 2-morphisms are cyclic with respect to the above biadjoint structure.3

This is ensured by the relations (9), and the relations

��

����

��

����

�� ��

�

ji

j i

D
�� ��

i j

� D
�� ��

�� ���� ��

����

�

i j

ij

: (10)

Note that we can take either the first or the last diagram above as the def-
inition of the up-side-down crossing. We have chosen the last one above,
because it is the one which matches Khovanov and Lauda’s signs. The
cyclic condition on 2-morphisms expressed by (9) and (10) ensures that
diagrams related by isotopy represent the same 2-morphism in U.gln/.

It will be convenient to introduce degree zero 2-morphisms:

��

��j

i � D
��

�� ��

����

�

i j

ij

D
��

����

�� ��

�

ji

j i

; (11)

��

��

i

j� D
��

����

�� ��

�

ji

j i

D
��

�� ��

����

�

i j

ij

: (12)

where the second equality in (11) and (12) follow from (10). Again we have
indicated which choice of twists we use to define the sideways crossings,
which is exactly the choice which matches Khovanov and Lauda’s sign
conventions.

3See [20] and the references therein for the definition of a cyclic 2-morphism with respect to a biadjoint
structure.
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iv) All dotted bubbles of negative degree are zero. That is,8̂̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂:

i
����

	
m

�

D 0 if m < N�i � 1,

i
����

	
m

�

D 0 if m < �N�i � 1,

(13)

for allm 2 ZC, where a dot carrying a labelm denotes them-fold iterated
vertical composite of

��

	
i;�

or
��
	

i;�
depending on the orientation. A dotted

bubble of degree zero equals ˙1:8̂̂̂
ˆ̂̂̂̂̂
<
ˆ̂̂̂̂̂
ˆ̂̂:

i
����

	N�i�1

�

D .�1/�iC1 for N�i � 1,

i
����

	�N�i�1

�

D .�1/�iC1�1 for N�i � �1.

(14)

v) For the following relations we employ the convention that all summations
are increasing, so that a summation of the form

Pm
fD0 is zero if m < 0.8̂̂̂

ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
<
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂:

���

��

��

��

i

D �P�N�i

fD0

�
��

i

i
����

	N�i�1Cf

	�N�i�f

;

� ��

��

��

��

i

DP N�i

gD0

�

��

i

i
����

	
�N�i�1Cg

	 N�i�g

;

(15)

�� ��

i i

�� D ����

��

�� �

i i

�
N�i�1X
fD0

fX
gD0

�

����	f�g

��
��

	N�i�1�f
i

����

	�N�i�1Cg

; (16)
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�� ��

i i

�� D ��

��

��

�� �

i i

�
�N�i�1X
fD0

fX
gD0

����	f �g

��
��

	�N�i�1�f
i

����

	N�i�1Cg

�

; (17)

for all � 2 Zn (see (11) and (12) for the definition of sideways crossings).
Notice that for some values of � the dotted bubbles appearing above have
negative labels. A composite of

��

	
i;�

or
��
	

i;�
with itself a negative number

of times does not make sense. These dotted bubbles with negative labels,
called fake bubbles, are formal symbols inductively defined by the equation

�
i ���� 	�N�i�1

�

C
i ���� 	�N�i�1C1

�

t C � � � C
i ���� 	�N�i�1Cr

�

tr C : : :
�

�
�

i
����

	N�i�1

�

C � � � C
i

����

	N�i�1Cr

�

tr C : : :
�
D �1

(18)

and the additional condition

i
����

	�1

�

D .�1/�iC1 and
i

����

	�1

�

D .�1/�iC1�1 if N�i D 0.

Although the labels are negative for fake bubbles, one can check that the
overall degree of each fake bubble is still positive, so that these fake bubbles
do not violate the positivity of dotted bubble axiom. The above equation,
called the infinite Grassmannian relation, remains valid even in high degree
when most of the bubbles involved are not fake bubbles. See [20] for more
details.

vi) NilHecke relations:

����

���� �

i i

D 0;
����

����

����

i i i

� D
�� ��

�� ��

�� ��

i ii

�; (19)

����

�
i i

D
��

	
��

i i

� �
��	��

i i

�

D
����	

i i

� �
����

	i i

� :

(20)

We will also include (10) for i D j as an sl2-relation.
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� For i ¤ j
��

��

��

��

�

i j

D ���� �

i j

; ��

��

��

��

�

i j

D ���� �

i j

: (21)

� The analogue of the R.
/-relations.

i) For i ¤ j

��

��

��

�� �

i j

D

8̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂:

���� �

i j

if i � j D 0,

.i � j /
0
@ ����
	

�

i j

� ��
	

�� �

i j

1
A if i � j D �1.

(22)

Notice that .i � j / is just a sign, which takes into account the standard
orientation of the Dynkin diagram.

��	��

i j

� D
��

	
��

i j

� ;

����	
i j

� D
����

	i j

� : (23)

ii) Unless i D k and i � j D �1

��

��

��

��

��

��

�

i j k

D
��

��

��

��

��

��

�

kji

: (24)

For i � j D �1

��

����

��

��

��

�

i j i

�
��

�� ��

��

��

��

�

iji

D .i � j / �� ���� �

i j i

: (25)

� The additive Z-linear composition functor

U.gln/.�; �
0/ 
U.gln/.�

0; �00/ �! U.gln/.�; �
00/

is given on 1-morphisms of U.gln/ by

Ej1�0ft 0g 
 Ei1�ftg 7�! Eji1�ft C t 0g (26)
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for iƒ D � � �0, and on 2-morphisms of U.gln/ by juxtaposition of diagrams

0
BBBBBB@

��

	

��

	

��

	

��

	
��

		
����

��

����

	
����

	 �0�00

1
CCCCCCA



0
BBBBBB@

	
	
	

�� ��

	
��

�0 �

1
CCCCCCA

7�!

��

	

��

	

��

	

��

	
��

		
����

��

����

	
����

	�00
	
	
	

�� ��

	
��

�

:

This concludes the definition of U.gln/. In the next subsection we will show
some further relations, which are easy consequences of the ones above.

3.1.1. Further relations in U.gln/. The following U.gln/-relations result from
the relations in Definition 3.1 and are going to be used in the sequel.

Bubble slides:

�

��

j

i
����

	
�N�i�1Cm

D

8̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂:

Pm
fD0

.f �m � 1/
�C jƒ

��

j

i
����

	
�.�Cjƒ/i�1Cf

	 m�f

if i D j ,

�C jƒ

��

j

i
����

	
�.�Cjƒ/i�1Cm

if i � j D 0,

(27)

�

��

iC1

i
����

	
�N�i�1Cm

D
�C .i C 1/ƒ

��

iC1

i
����

	
�.�C.iC1/ƒ/i�2Cm

	
�

�C .i C 1/ƒ
��

iC1

i
����

	
�.�C.iC1/ƒ/i�1Cm

; (28)
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�

��

iC1

i
����

	
�N�i�1Cm

D �
X

fCgDm

� � .i C 1/ƒ
��

iC1

i
����

	
�.��.iC1/ƒ/i�1Cg

	f

;

�

��

iC1

i
����

	N�i�1Cm

D �
X

fCgDm

�C .i C 1/ƒ
��

iC1

i
����

	
.�C.iC1/ƒ/i�1Cg

	f
; (29)

�

��

iC1

i
����

	N�i�1Cm

D
� � .i C 1/ƒ

��

iC1

i
����

	
.��.iC1/ƒ/i�2Cm

	
�

� � .i C 1/ƒ
��

iC1

i
����

	
.��.iC1/ƒ/i�1Cm

:

If we switch labels i and iC1, then the r.h.s. of the above equations gets a minus sign.
Bubble slides with the vertical strand oriented downwards can easily be obtained from
the ones above by rotating the diagrams 180 degrees.

More Reidemeister 3 like relations. Unless i D k D j we have

��

��

��

�� ��

��

�

i j k

D
��

��

��

����

��

�

kji

(30)

and when i D j D k we have

����

��

����

��

�

i i i

�
��

��

�� ��

��

�� �

iii

D
X �� 	

f1

�� 	f3

i ����

	�N�i�3Cf4

��

	f2

�

C
X

��

	g2 �� ��	g1

����	
g3

i
����

	N�i�1Cg4

�

(31)

where the first sum is over all f1; f2; f3; f4 � 0 with f1 C f2 C f3 C f4 D N�i and
the second sum is over all g1; g2; g3; g4 � 0with g1Cg2Cg3Cg4 D N�i �2. Note
that the first summation is zero if N�i < 0 and the second is zero when N�i < 2.

Reidemeister 3 like relations for all other orientations are determined from (24),
and (25), and the above relations using duality.
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3.1.2. Enriched Hom spaces. For any shift t , there are 2-morphisms

��

	
�

i

W ECi 1�ftg H) ECi 1�ft � 2g;

����

i j

� W ECiECj 1�ftg H) ECj ECi 1�ft � i � j g;

�� 		

i �

W 1�ftg H) E�iECi 1�ft � .1C N�i /g;

�� ��

i � W E�iECi 1�ftg H) 1�ft � .1 � N�i /g;

in U.gln/, and the diagrammatic relation

����

����

����

i i i

� D
�� ��

�� ��

�� ��

i ii

�

gives rise to relations in U.gln/
�
Ei i i 1�ftg;Ei i i 1�ft C 3i � ig

�
for all t 2 Z.

Note that for two1-morphismsx andy in U.gln/ the 2hom-space HomU.gln/.x; y/

only contains 2-morphisms of degree zero and is therefore finite-dimensional. Fol-
lowing Khovanov and Lauda we introduce the graded 2hom-space

HOMU.gln/.x; y/ D
M
t2Z

HomU.gln/.xftg; y/;

which is infinite-dimensional. We also define the 2-category U.gln/
� which has the

same objects and 1-morphisms as U.gln/, but for two 1-morphisms x and y the vector
space of 2-morphisms is defined by

U.gln/
�.x; y/ D HOMU.gln/.x; y/: (32)

3.2. The 2-category �.n; d/. Fix d 2 N>0. As explained in Section 2, the q-Schur
algebra PS.n; d/ can be seen as a quotient of PU.gln/ by the ideal generated by all
idempotents corresponding to the weights that do not belong to ƒ.n; d/. It is then
natural to define the 2-category �.n; d/ as a quotient of U.gln/ as follows.

Definition 3.2. The 2-category �.n; d/ is the quotient of U.gln/ by the ideal gener-
ated by all 2-morphisms containing a region with a label not in ƒ.n; d/.
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We remark that we only put real bubbles, whose interior has a label outside
ƒ.n; d/, equal to zero. To see what happens to a fake bubble, one first has to write it
in terms of real bubbles with the opposite orientation using the infinite Grassmannian
relation (18).

4. A 2-representation of �.n; d/

In this section we define a 2-functor

FBim W �.n; d/� �! Bim�;

where Bim is the graded 2-category of bimodules over polynomial rings with rational
coefficients. Recall that in the previous section – formula (32) – we have defined
the � version of a graded 2-category, as the 2-category with the same objects and
1-morphisms, while the 2-morphisms between two 1-morphisms can have arbitrary
degree.

In [16] Khovanov and Lauda defined a 2-functor �G
d

from U.sln/ to a 2-category
equivalent to a sub-2-category of Bim�. As one can easily verify,�G

d
kills any diagram

with labels outsideƒ.n; d/, so it descends to �.n; d/. In this section we have rewrit-
ten this 2-functor, which we denote FBim, in terms of categorified MOY-diagrams,
because we think it might help some people to understand its definition more easily.
For further comments see Section 4.3.

4.1. Categorified MOY diagrams. Before proceeding with the definition of FBim,
we first specify our notation for MOY diagrams and their categorification.

A colored MOY diagram [30], is an oriented trivalent graph whose edges are
labeled by natural numbers (this label is also called the color or the thickness of the
corresponding edge). At each trivalent vertex we have at least one incoming and
one outgoing edge, and we require that at each vertex the sum of the labels of the
incoming edges is equal to the sum of the labels of the outgoing edges. Moreover, in
this paper we assume that all edges in MOY diagrams are oriented upwards.

To obtain a bimodule corresponding to a given colored MOY diagram, we proceed
in the following way: To each edge labeled a, we associate a variables, say x D
.x1; : : : ; xa/, and to different edges we associate different variables. At every vertex
(like the ones in Figure 1), we impose the relations

ei .z1; : : : ; zaCb/ D ei .x1; : : : ; xa; y1; : : : ; yb/;

ei .z
0
1; : : : ; z

0
aCb/ D ei .x

0
1; : : : ; x

0
a; y
0
1; : : : ; y

0
b/;

for all i 2 f1; : : : ; a C bg, where ei is the i-th elementary symmetric polynomial.
In other words, at every vertex we require that an arbitrary symmetric polynomial in
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the variables corresponding to the incoming edges, is equal to the same symmetric
polynomial in the variables corresponding to the outgoing edges.

Now, to an arbitrary diagram � , we associate the ring R� of polynomials over Q
which are symmetric in the variables on each strand separately, modded out by the
relations corresponding to all trivalent vertices.

In particular, to a graph without trivalent vertices (just strands)

c b a

: : :

z y x

we associate the ring of partially symmetric polynomials QŒx; y; : : : ; z�Sa�Sb�����Sc .

In this way, the ring R� associated to a MOY diagram � , is a bimodule over
the rings of partially symmetric polynomials associated to the top (right action) and
bottom end (left action) strands, respectively (remember that we are assuming that
all MOY diagrams are oriented upwards, so they have a top and a bottom end).
Bimodules are graded by setting the degree of any variable equal to 2.

In the rest of the paper, we will often identify the MOY diagram and the corre-
sponding bimodule. Also, by abuse of notation, we shall call the elements of the
bimodule R� polynomials.

There is another way to describe these bimodules associated to MOY diagrams;
see e.g. [13], [25], and [39]. Fix the polynomial ring R D QŒx1; : : : ; xd �. For
any .a1; : : : ; an/ 2 ƒ.n; d/, let Ra1;:::;an be the sub-ring of polynomials which are
invariant under Sa1


 � � � 
 San
. To the first diagram in Figure 1 one associates the

RaCb �Ra;b-bimodule

ResRaCb

Ra;b R
a;b;

where one simply restricts the left action on Ra;b to RaCb � Ra;b . To the second
diagram in Figure 1 one associates the Ra;b �RaCb-bimodule

IndRa;b

RaCbR
aCb D Ra;b ˝RaCb RaCb:

In this way, to every MOY-diagram � one associates a tensor product of bimodules,
which is isomorphic to the bimodule R� that we described in the paragraph above.

In this paper we always use R� , since it is computationally easier to use polyno-
mials than to use tensor products of polynomials.
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a b

aC b

x1; : : : ; xa y1; : : : ; yb

z1; : : : ; zaCb

a b

aC b

x0
1

; : : : ; x0a y0
1

; : : : ; y0
b

z0
1

; : : : ; z0
aCb

Figure 1. trivalent vertices

4.2. Definition of FBim. Now we can proceed with the definition of

FBim W �.n; d/� �! Bim�:

Let z1; : : : ; zd be variables. For convenience we shall use Khovanov and Lauda’s
notation ki D �1 C � � � C �i , for i D 1; : : : ; n.

On objects � 2 ƒ.n; d/, the 2-functor FBim is given by

� D .�1; : : : ; �n/ 7�! QŒz1; : : : ; zd �
S�1
�����S�n :

On 1-morphisms we define FBim as follows:

1�ftg 7�! QŒz1; : : : ; zd �
S�1
�����S�n ftg:

In terms of MOY diagrams this is presented by:

1�ftg 7�!
�n �2 �1

: : :

Note that we are drawing the entries of � from right to left, which is compatible
with Khovanov and Lauda’s convention.

The remaining generating 1-morphisms are mapped as follows:

ECi 1�ftg 7�!
�n �iC1 �i �1

1

�iC1 � 1 �i C 1

: : : : : : ft C 1C ki�1 C ki � kiC1g;

E�i 1�ftg 7�!
�n �iC1 �i �1

1

�iC1C 1 �i � 1

: : : : : : ft C 1 � kig:
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In both cases, the partition corresponding to the bottom strands is �C jƒ (with j
being Ci or �i). Thus, the condition we imposed on �.n; d/ that all regions have
labels fromƒ.n; d/ (i.e. no region can have labels with negative entries), ensures that
on the RHS above we really have MOY diagrams.

The composite FBim.Ei1�Cjƒ
Ej 1�/ is given by stacking the MOY diagram cor-

responding to Ej 1� on top of the one corresponding to Ei1�Cjƒ
. The shifts add under

composition.

To define FBim on 2-morphisms, we give the image of the generating 2-morphisms.
In the definitions the divided difference operator @xy is used. For p 2 QŒx; y; : : : � it
is given by

@xyp D p � pjx$y

x � y ; (33)

where pjx$y is the polynomial obtained from p by swapping the variables x and y.
Moreover, for x D .x1; : : : ; xa/, we use the shorthand notation

@xy D @x1y@x2y : : : @xay ; (34)

@yx D @yx1
@yx2

: : : @yxa
: (35)

Before listing the definition of FBim, we explain the notation we are using. We
denote a bimodule map as a pair, the first term showing the corresponding MOY
diagrams (of the source and target 1-morphism), and the second being an explicit
formula of the map in terms of the (classes of) polynomials that are the elements of
the corresponding rings. In a few cases we have added an intermediate MOY-diagram,
in order to clarify the definition. Finally, in order to simplify the pictures, in each
formula we only draw the strands that are affected, while on the others we just set
the identity. Also in every line we require that the polynomial rings corresponding
to the top (respectively bottom) end strands are the same throughout the movie.
Furthermore, we only write explicitly the variables of the strands that are relevant in
the definition of the corresponding bimodule map:

��

�

i

7�! id

0
B@

�iC1 �i

1

1
CA ;

��

	 r

�

i

7�!

0
B@

�iC1 �i

1

#

x

�!
�iC1 �i

1

; p 7�! xrp

1
CA ;
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��

�

i

7�! id

0
B@

�iC1 �i

1

1
CA ;

��

	 r

�

i

7�!

0
B@

�iC1 �i

1

#

x

�!
�iC1 �i

1

; p 7�! xrp

1
CA ;

����

i i

� 7�!

0
B@

�iC1 �i
#

x2

"
x1

�!
�iC1 �i

2

�!
�iC1 �i

#

x1

"
x2

; p 7�! @x1x2
p

1
CA ;

�� ��i i

� 7�!

0
B@

�iC1 �i
#

x1

"
x2

�!
�iC1 �i

2

�!
�iC1 �i

#

x2

"
x1

; p 7�! @x1x2
p

1
CA ;

��

��i i

� 7�!

0
B@

�iC1 �i
#

x1

"
y

�!
�iC1 �i

#

y

"
x2

; p 7�! pjx1 7!x2

1
CA ;

��

��

i i

� 7�!

0
B@

�iC1 �i
#

x1

"

y

�!
�iC1 �i

#

y

"
x2

; p 7�! pjx1 7!x2

1
CA ;

����

i iC1

� 7�!

0
B@

�iC2 �iC1 �i

1

1

�!
�iC2 �iC1 �i

1

1

; p 7�! p

1
CA ;

����

iC1 i

� 7�!

0
B@

�iC2 �iC1 �i

1

1

#

x

#

y

�!
�iC2 �iC1 �i

1

1

#

x

#

y

; p 7�! .x � y/p

1
CA ;

�� ��iC1 i

� 7�!

0
B@

�iC2 �iC1 �i

1

1

�!
�iC2 �iC1 �i

1

1

; p 7�! p

1
CA ;

�� ��i iC1

� 7�!

0
B@

�iC2 �iC1 �i#

x

#

y
1

1

�!
�iC2 �iC1 �i#

y

#

x
1

1

; p 7�! .x � y/p

1
CA ;
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��

��i iC1

� 7�!

0
B@

�iC2 �iC1 �i

1

1

#

x1

#

y �!
�iC2

�iC1 �i

1

1
#

x2

#

y

; p 7�! pjx1 7!x2

1
CA ; (36)

��

��iC1 i

� 7�!

0
B@

�iC2 �iC1 �i

1

1

#

y

#

x1

�!
�iC2 �iC1 �i

1

1

#

y

#

x2
; p 7�! pjx1 7!x2

1
CA ; (37)

��

��

i iC1

� 7�!

0
B@

�iC2 �iC1 �i

1

1

#

x1

#

y �!
�iC2

�iC1 �i

1

1#

x2

#

y

; p 7�! pjx1 7!x2

1
CA ;

��

��

iC1 i

� 7�!

0
B@

�iC2 �iC1 �i

1

1

#

y

#

x1

�!
�iC2 �iC1 �i

1

1

#

y

#

x2 ; p 7�! pjx1 7!x2

1
CA I

for ji � j j � 2 we have

����

i j

� 7�! id

0
B@

�iC1 �i

1 � � �

�jC1 �j

1

1
CA ;

�� ��i j

� 7�! id

0
B@

�iC1 �i

1

� � �

�jC1 �j

1

1
CA I

sideways crossings for ji � j j � 2 are defined in the same way as in the case of
ji � j j D 1:

�� 		

i
� 7�!

0
BBBBBB@

�iC1 �i

�!
�iC1 �i

1

1

#

x

.
t

p 7�!
�iP

`D0

.�1/`x�i�`e`.t/p

1
CCCCCCA
;



��

i
� 7�!

0
BBBBBB@

�iC1 �i

�!
�iC1 �i

1

1

"

y

%

z

p 7�!
�iC1P
`D0

.�1/`e�iC1�`.z/y
`p

1
CCCCCCA
;
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��

i

� 7�!

0
BBBB@

�iC1 �i

1

1

#

y

"

x

!u �!
�iC1 �i

p 7�! @ux.pjyDx/

1
CCCCA ;

�� ��

i

� 7�!

0
BBBB@

�iC1 �i

1

1

#

y

"

x

 u
�!

�iC1 �i

p 7�! @xu.pjyDx
/

1
CCCCA :

This ends the definition of FBim. Without giving any details, we remark that the
bimodule maps above can be obtained as composites of elementary ones, called zip,
unzip, associativity, digon creation and annihilation, which can be found in [25].

4.3. FBim is a 2-functor. We are now able to explain the relation between our FBim

and Khovanov and Lauda’s (see Subsection 6.3 in [16])

�G
d W U.sln/� �! EqFLAG�d � Bim�:

In the first place, we categorify the homomorphism  n;d from Section 2. Note
that all the relations in �.n; d/ only depend on sln-weights, except the value of the
degree zero bubbles, which truly depend on gln-weights.

Definition 4.1. We define a 2-functor

‰n;d W U.sln/ �! �.n; d/:

On objects and 1-morphisms ‰n;d is defined just as  n;d W PU.sln/! PS.n; d/ in (3).
On 2-morphisms we define ‰n;d as follows. Let D be a string diagram representing
a 2-morphism in U.sln/ (from now on we will simply say that D is a diagram in
U.sln/). Then ‰n;d maps D to the same diagram, multiplied by a power of �1
depending on the left cups and caps in D according to the rule in (6). The labels in
Zn�1 of the regions of D are mapped by 'n;d to labels in Zn of the corresponding
regions of‰n;d .D/, or to �. This means that, ifD has a region labeled by � such that
'n;d .�/ 62 ƒ.n; d/, then ‰n;d .D/ D 0 by definition. Finally, extend this definition
to all 2-morphisms by linearity.

It is easy to see that ‰n;d is well-defined, full and essentially surjective.

In the second place, recall that there is a well-known isomorphism

QŒx1; : : : ; xd �
S�1
�����S�n Š HGL.d/.F l.k//;

with k D .k0; k1; k2; k3; : : : ; kn/ D .0; �1; �1 C �2; �1 C �2 C �3; : : : ; d /, for
any � 2 ƒ.n; d/ (see (6.25) in [16], for example). Using this isomorphism, it is
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straightforward to check that the following lemma holds by comparing the images of
the generators. Recall that �G

d
kills all diagrams with labels outside ƒ.n; d/.

Lemma 4.2. The following triangle is commutative:

U.sln/
� �G

d ��

‰n;d ����
���

���
��

Bim�

�.n; d/�
FBim

������������

:

The following result is now an immediate consequence of Khovanov and Lauda’s
Theorem 6.13.

Proposition 4.3. FBim defines a 2-functor from �.n; d/� to Bim�.

One could of course prove Proposition 4.3 by hand. We will just give two sample
calculations. The result of the second one, the image of the dotted bubbles, will be
needed in a later section.

4.3.1. Examples of the direct proof of Proposition 4.3. We shall give the proof
for the zig-zag relation of biadjointness and compute the images of the bubbles by
FBim.

Before proceeding, we give some useful relations that are used in the computa-
tions. First of all, both the kernel and the image of the divided difference operator
@xy consist of the polynomials that are symmetric in the variables x and y. If p is
symmetric in the variables x and y then

@xy.p q/ D p @xyq

for any polynomial q. Also, note that @yx D �@xy .
We shall frequently use the following useful identities (see for example [10] for

the proofs). For x D .x1; : : : ; xk/, let hj .x/ denote the j -th complete symmetric
polynomial in the variables x1; : : : ; xk . Then we have

@yx.y
N / D hN�k.y; x/; (38)

and
kX

jD0

.�1/j ej .x/hk�j .x/ D ık;0: (39)

Moreover, if x, u D .u1; : : : ; ua/ and t D .t1; : : : ; taC1/ are variables such that

el.x; u/ D el .t/; l D 1; : : : ; aC 1;
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then for every l D 1; : : : ; aC 1 we have

el.u/ D
lX

jD0

.�1/jxj el�j .t/; (40)

and

el .t/ D el .u/C xel�1.u/: (41)

The zig-zag relations. In order to reduce the number of subindices (to keep the
notation as concise as possible), we denote �i D a and �iC1 D b.

Then the left hand side of the first of the relations (7) is mapped by FBim as follows:

�� �� ��
�

i

7�!

0
BBBBBBB@

b a

1

"

x1

&
u

.
t

�!
b a

1

1

1

 v

#

x2

"

x1

y

&
u

 t

�!
b a

1
"

x2

p 7�! @x1v

� aP
`D0

.�1/`xa�`
2 e`.v/p

�

1
CCCCCCCA
:

Note that p D p.x1; u; t/ is symmetric in the variables u and t separately. Also,
the lowest trivalent vertex on the right strand in the middle picture of the movie,
implies that el .x1; v/ D el .t/, for every l D 1; : : : ; a C 1. So, xj

1 for j > a is a
symmetric polynomial in the variables t (e.g. this follows from (40) for l D aC 1).
Thus we can write p as

p D
aX

jD0

x
j
1qj .u; t/; (42)

where qj D qj .u; t/, j D 0; : : : ; a, are polynomials symmetric in u and t separately.
Then we have

@x1v

� aX
lD0

.�1/lxa�l
2 el .v/p

�
D

aX
lD0

.�1/lxa�l
2 @x1v

�
el .v/

aX
jD0

x
j
1qj

�

.l 7!a�l/D
aX

lD0

aX
jD0

.�1/a�lxl
2qj @x1v.x

j
1 ea�l .v//:

(43)

Since el.x1; v/ D el .t/, for every l D 1; : : : ; aC 1, by (40) we have

ea�l.v/ D
a�lX
kD0

.�1/kxk
1 ea�l�k.t/:
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After replacing this in (43), we get

@x1v

� aX
lD0

.�1/lxa�l
2 el .v/p

�
D

aX
lD0

aX
jD0

xl
2qj

a�lX
kD0

.�1/a�l�kea�l�k.t/@x1v.x
jCk
1 /

(38)D
aX

lD0

aX
jD0

xl
2qj

a�lX
kD0

.�1/a�l�kea�l�k.t/hjCk�a.x1; v/

D
aX

lD0

aX
jD0

xl
2qj

a�lX
kD0

.�1/a�l�kea�l�k.t/hjCk�a.t/

.k 7!a�l�k/D
aX

lD0

aX
jD0

xl
2qj

a�lX
kD0

.�1/kek.t/hj�l�k.t/:

Since hp.t/ D 0 for p < 0, we must have k � j � l.� a � l/ in the innermost
summation, and so by (39) the last expression above is equal to

aX
lD0

aX
jD0

xl
2qj

j�lX
kD0

.�1/kek.t/hj�l�k.t/ D
aX

lD0

aX
jD0

xl
2qj ıj�l;0

D
aX

jD0

x
j
2qj D pjx1 7!x2

;

which is just the identity map, as wanted.

Images of bubbles by FBim. Again we denote �i D a and�iC1 D b. The clockwise
oriented bubble with r � 0 dots on it is mapped by FBim as follows:

i
����

	
r

�

7�!

0
BBBBBB@

b a

%

t

-

u

�!
b a

.
u

.
v

x

y
%

t �!
b a

p 7�! @xv

� bP
`D0

.�1/`eb�`.t/x
`Crp

�

1
CCCCCCA
:

The polynomial p D p.t; u/ is symmetric in the variables t and u separately. In
particular, we have @xv.p q/ D p @xv.q/, for any polynomial q. We have

@xv

� bX
lD0

.�1/leb�l .t/x
lCrp

�
D

bX
lD0

.�1/leb�l .t/p@xv.x
lCr/

(38)D p
bX

lD0

.�1/leb�l .t/hlCr�aC1.u/
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.l 7!b�l/D p.�1/b
bX

lD0

.�1/lel .t/hb�aCrC1�l .u/:

Since el .t/ D 0 for l > b, and hb�aCrC1�l .u/ D 0, for l > b � aC r C 1, we have
that the clockwise oriented bubble is mapped by FBim to the bimodule map

p 7�! p.�1/b
b�aCrC1X

lD0

.�1/lel .t/hb�aCrC1�l .u/: (44)

In particular, if b�aC rC1 < 0, i.e. if r < a�b�1, the bubble is mapped to zero,
and if r D a � b � 1, the bubble is mapped to .�1/b times the identity (note that
a� b D �i ��iC1 is sln weight). Also, r can be naturally extended to r � a� b� 1
(in (44)), i.e. to include fake bubbles in the case a � b.

The counter-clockwise oriented bubble with r � 0 dots on it is mapped by FBim

as follows:

i
����

	
r

�

7�!

0
BBBBB@

b a

%

t

-

u

�!
b a

&
t

-
u

"

x

y

&
v �!

b a

p 7�! @vx

� aP
`D0

.�1/`xa�`Cre`.u/p
�

1
CCCCCA :

Completely analogously as above, we have that the counter-clockwise oriented
bubble is mapped by FBim to the bimodule map

p 7�! p.�1/bC1

a�bCrC1X
lD0

.�1/lel .u/ha�bCrC1�l .t/: (45)

Again, from r < b � a � 1, the bubble is mapped to zero, and if r D b � a � 1, it
is mapped to .�1/bC1 times the identity. Moreover, r can be naturally extended to
r � b � a � 1, i.e. to include fake bubbles in the case b � a.

Remark 4.4. Our reason for changing the signs from [16], was to make the signs in
the image of the degree zero bubbles, i.e. .�1/b for the clockwise bubble and .�1/bC1

for the counter-clockwise bubble, coincide with those of (14).

Finally, by the Giambelli and the dual Giambelli formulas (see e.g. [10]), from (44)
and (45) the infinite Grassmannian relation follows directly.

5. Comparisons with U.sln/

In this section we show the analogues for �.n; d/ of some of Khovanov and Lauda’s
results on the structure of U.sln/. Our results are far from complete. More work will
need to be done to understand the structure of �.n; d/ better.
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To simplify terminology, by a 2-functor we will always mean an additive Q-linear
degree preserving 2-functor.

5.1. Categorical inclusions and projections. In the first place, we categorify the
homomorphisms �d 0;d from Section 2.

Definition 5.1. Let d 0 D d C kn, with k 2 N. We define a 2-functor

…d 0;d W �.n; d 0/ �! �.n; d/:

On objects and 1-morphisms …d 0;d is defined as �d 0;d . On 2-morphisms …d 0;d is
defined as follows. For any diagramD in �.n; d 0/with regions labeled � 2 ƒ.n; d 0/
such that ��.kn/ 2 ƒ.n; d/, let…d 0;d .D/ be given by the same diagram with labels
of the form � � .kn/, multiplied by .�1/k for every left cap and left cup in D. For
any other diagram D, let …d 0;d .D/ D 0. Extend this definition to all 2-morphisms
by linearity.

Note that …d 0;d is well-defined, because N� D � � .kn/. The extra .�1/k for left
cups and caps is necessary to match our normalization of the degree zero bubbles. It
also ensures that we have

…d 0;d‰n;d 0 D ‰n;d ;

where
‰n;d W U.sln/ �! �.n; d/

is the 2-functor defined in Definition 4.1.
Note also that the …d 0;d form something like an inverse system of 2-functors

between 2-categories, because

…d 0;d…d 00;d 0 D …d 00;d

(compare to (4)). We say “something like” an inverse system, because we have not
been able to find a precise definition of such a structure in the literature onn-categories.
Also one would have to think carefully if the “inverse limit” of the �.n; d/ would
still be Krull–Schmidt. Finally, there appears to be no general theorem that says that
the Grothendieck group of an inverse limit is the inverse limit of the Grothendieck
groups (even for algebras there is no such theorem). So we cannot (yet) reasonably
conjecture the categorification of the embedding (5). All we can say at the moment
is the following corollary.

Corollary 5.2. We have (1) Let f 1˛ be a 2-morphism in U.sln/. Let d0 > 0 be
the minimum value such that ˛ D Ň with ˇ 2 ƒ.n; d0/. Then f D 0 if and only if
‰n;d0Cnk.f / D 0 for any k � 0.

(2) Let ffi1˛gsiD1 be a finite set of 2-morphisms in HomU.sln/.x; y/. Then thefi1˛

are linearly independent if and only if there exists a d > 0 such that the ‰n;d .fi1�/

are linearly independent in Hom�.n;d/.x; y/.
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The proof of Corollary 5.2 follows from Khovanov and Lauda’s Lemma 6.16
in [16], which implies Theorem 1.3 in [16], our Lemma 4.2 and the remarks above
Corollary 5.2.

The main reason for trying to categorify (5) is the following: if the inverse limit of
the �.n; d/ turns out to exist, perhaps it contains a sub-2-category which categorifies
Uq.sln/.

5.2. The structure of the 2HOM-spaces. We now turn our attention to the structure
of the 2HOM-spaces in �.n; d/. The reader should compare our results to Khovanov
and Lauda’s in [16]. We first show the analogue of Lemma 6.15.

5.2.1. Bubbles for n D 2. For starters suppose that n D 2. Let � D .a; b/ 2
ƒ.2; d/. Recall that a partially symmetric polynomial

p.x; y/ D p.x; y/ 2 QŒx1; : : : ; xa; y1; : : : ; yb�
Sa�Sb

is called supersymmetric if the substitution x1 D t D y1 gives a polynomial in-
dependent of t (see [11] and [23] for example). We let Rss

a;b
denote the ring of

supersymmetric polynomials. The elementary supersymmetric polynomials are

ej .x; y/ D
jX

sD0

.�1/shj�s.x/"s.y/;

where hj�s.x/ is the .j � s/-th complete symmetric polynomial in a variables and
"s.y/ the s-th elementary symmetric polynomial in b variables, which we put equal
to zero if s > b by convention. It is easy to see that ej .x; y/ is supersymmetric,
because we have

aY
rD1

bY
sD1

1 � yrZ

1 � xsZ
D
X

j

ej .x; y/Z
j :

Using the supersymmetric analogue of the Giambelli formula we can define the
supersymmetric Schur polynomials

�˛.x; y/ D det.e˛iCj�i .x; y//

for 1 � i; j � m and ˛ a partition of length m. In the following lemma we give the
basic facts about supersymmetric Schur polynomials, which are of interest to us in
this paper. For the proofs see [11], [23] and the references therein. Let �.a; b/ be
the set of partitions ˛ such that j̨ � b for all j > a.

Lemma 5.3. (1) If ˛ 62 �.a; b/, then �˛.x; y/ D 0.

(2) The set f�˛.x; y/ j˛ 2 �.a; b/g is a linear basis of Rss
a;b

.

(3) We have
�˛.x; y/�ˇ .x; y/ D

X
�

C
�

˛ˇ
�� .x; y/;
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where C �

˛ˇ
are the Littlewood–Richardson coefficients.

(4) We have
�˛.x; y/ D .�1/j˛j�˛0.y; x/;

where j˛j DPi ˛i and ˛0 is the conjugate partition.

(5) We also get the ordinary Schur polynomials as special cases:

�˛.x; 0/ D �˛.x/;

�ˇ .0; y/ D .�1/jˇ j�ˇ 0.y/:

In [18] the extended calculus in U.sl2/ was developed. Here we only use a little
part of it. Below, for partitions ˛; ˇ with length m, we write ˛� D ˛ � .a � b/�m
for counter-clockwise oriented bubbles of thicknessm in a region labeled .a; b/, and
ˇ� D ˇ C .a � b/ �m for clockwise oriented bubbles of thickness m. Recall that
thick bubbles labeled by a spaded Schur polynomial can be written as Giambelli type
determinants (see Equations (3.33) and (3.34) in [18], but bear our sign conventions
in mind):

��˛

m

.a;b/

D

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌

����

	�C˛1

.a;b/
����

	�C˛1C1

.a;b/
����

	�C˛1C2

.a;b/

: : : ����

	�C˛1C.m�1/

.a;b/

����

	�C˛2�1

.a;b/
����

	�C˛2

.a;b/
����

	�C˛2C1

.a;b/

: : : ����

	�C˛2C.m�2/

.a;b/

: : : : : : : : : : : : : : :

����

	�C˛m�mC1

.a;b/
����

	�C˛m�mC2

.a;b/
����

	�C˛m�mC3

.a;b/

: : : ����

	�C˛m

.a;b/

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌

; (46)

��
ˇ

m

.a;b/

D

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌

����

	�Cˇ1

.a;b/

����

	�Cˇ1C1

.a;b/

����

	�Cˇ1C2

.a;b/

: : : ����

	�Cˇ1C.m�1/

.a;b/

����

	�Cˇ2�1

.a;b/

����

	�Cˇ2

.a;b/

����

	�Cˇ2C1

.a;b/

: : : ����

	�Cˇ2C.m�2/

.a;b/

: : : : : : : : : : : : : : :

����

	�Cˇm�mC1

.a;b/

����

	�Cˇm�mC2

.a;b/

����

	�Cˇm�mC3

.a;b/

: : : ����

	�Cˇm

.a;b/

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌

: (47)
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The reader unfamiliar with [18] can interpret the above simply as definitions. In
Proposition 4.10 in [18] it is proved that the clockwise thick bubbles form a linear
basis of ENDU.sln/.1a�b/ and that they obey the Littlewood–Richardson rule under
multiplication. Of course the counter-clockwise thick bubbles form another basis and
also obey the L-R rule. Proposition 4.10 in [18] also shows the relation between the
two bases (recall that we have slightly different sign conventions in this paper and
that ˛0 is the partition conjugate to ˛):

��˛

m

.a;b/

D .�1/j˛jCm ��
˛0

m

.a;b/

: (48)

Therefore, in our case the non-zero clockwise thick bubbles also form a nice basis of

END�.n;d/.1.a;b//:

Lemma 5.4. FBim W END�.n;d/.1.a;b// ! Rss
a;b

is a ring isomorphism, mapping the
clockwise thick bubbles to the corresponding supersymmetric Schur polynomials.

Proof. It is clear that the thick bubbles generate END�.n;d/.1.a;b//, because they are
the image of the thick bubbles in ENDU.sln/.1a�b/, which form a linear basis. Since
‰n;d is a 2-functor, we see that the multiplication of bubbles in END�.n;d/.1.a;b//

satisfies the Littlewood–Richardson rule. In Section 4 we showed that using FBim we
get

i
����

	
r

.a;b/

7�! .�1/be�.a�b/C1Cr .x; y/:

This implies that

��
ˇ

m

.a;b/

7�! .�1/mb�ˇ .x; y/:

Therefore, by Lemma 5.3, all we have to show is that

��
ˇ

m

.a;b/

D 0

if ˇ 62 �.a; b/. We proceed by induction on m. Note that if m < a C 1, then
ˇ 2 �.a; b/, so the induction starts atm D aC1. Ifm D aC1, thenˇaC1 D ˇm > b
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implies that ˇi > b holds for all i D 1; : : : ; m, because ˇ is a partition. Therefore,
for any i D 1; : : : ; m, we have

ˇi C a � b �m D ˇi C a � b � .aC 1/ D ˇi � b � 1 � 0:
Thus the bubble is real and equals zero because its inner region is labeled

.�1; aC b C 1/ 62 ƒ.2; d/:
Suppose that m > a C 1 and that the result has been proved for bubbles of

thickness < m. Using induction, we will prove that it holds for bubbles of thickness
m. The trouble is that in this case the bubble can be fake, so we cannot repeat
the argument above. Instead we use a second induction, this time on ˇm. Write
ˇ0 D .ˇ1; : : : ; ˇm�1/. First suppose ˇm D 0. Then

��
ˇ

m

.a;b/

D .�1/b ��
ˇ0

m � 1

.a;b/

D 0

by induction on m. Now suppose ˇm > 0. Then we have

��
ˇ0

m � 1

.a;b/

����

	
a�b�1Cˇm

D 0

by induction on m. By Pieri’s rule, the left-hand side equals

X
ˇ<��ˇC.ˇm/

���

m

.a;b/

C ��
ˇ

m

.a;b/

whereˇC.ˇm/ D .ˇ1Cˇm; ˇ2; : : : ; ˇm�1; 0/. Note that for anyˇ < � � ˇC.ˇm/,
we have � 62 �.a; b/ and �m < ˇm. Thus, by induction on ˇm, all the thick bubbles
labeled with ��� are zero. This implies that

��
ˇ

m

.a;b/

D 0:

Note that for bubbles with the opposite orientation we have

i
����

	
r

.a;b/

7�! .�1/bC1e.a�b/C1Cr .y; x/:
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This implies that

��˛

m

.a;b/

7�! .�1/m.bC1/�˛.y; x/: (49)

This way we get another isomorphism between END�.n;d/.1.a;b// and Rss
a;b

.

5.2.2. Bubbles for n > 2. For n > 2, we get polynomials in thick bubbles of n� 1
colors. Unfortunately we have not been able to find anything in the literature on a
generalization of supersymmetric polynomials to more than two alphabets. Nor has
the extended calculus for U.sln/ been worked out and written up for n > 2 so far.
Therefore all we can say is the following. Let

S…� D
n�1O
iD1

Rss
�i ;�iC1

:

There is a surjective homomorphism

S…� �! END�.n;d/.1�/

sending supersymmetric polynomials to the corresponding clockwise oriented thick
bubbles. Note that ‰n;d W … N� Š ENDU.sln/.1 N�/ ! END�.n;d/.1�/ factors through
S…�. Recall that

… N� Š
n�1O
iD1

ƒ.x/;

where ƒ.x/ is the ring of symmetric functions in infinitely many variables x D
.x1; x2; : : : /; see (3.24) and Lemma 6.15 in [16]. The map … N� ! S…� referred to
above is defined by

� i
˛.x/ 7�! �˛.x; y/;

where .x; y/ D .x1; : : : ; x�i
; y1; : : : ; y�iC1

/ and � i
˛.x/ D 1˝� � �˝�˛.x/˝� � �˝1

belongs to the i-th tensor factor.
Note also that the projection

S…� �! END�.n;d/.1�/

is not an isomorphism in general. For example, with blue bubbles colored 1 and red
bubbles colored 2, we have

2
����

	
1

.0;1;0/

� 1
����

	�1

.0;1;0/

D 0: (50)
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To see why this holds, first use

2
����

	
1

.0;1;0/

D
1

����

	
0

2
����

	
1

.0;1;0/

(51)

This equation holds because

1
����

	
0

.0;1;0/

D 1:

Then slide the red bubble inside the blue one on the r.h.s. of (51) with bubble-
slide (29). Note that we have to switch the colors i and i C 1 in (29), but that only
changes the sign on the r.h.s. of that bubble-slide, as remarked below the list of
bubble-slides. After doing that, only one blue bubble with one dot survives, because
in the interior of that bubble, which is labeled .1; 0; 0/, only a degree zero red bubble
is non-zero. This holds because the red bubbles of positive degree are real bubbles
and their interior is labeled .1;�1; 1/ 62 ƒ.3; 1/. The degree zero red bubble is equal
to 1, by (14). Thus we have obtained

2
����

	
1

.0;1;0/

D
1

����

	
1

.0;1;0/

; (52)

which is equal to

1
����

	�1

.0;1;0/

(53)

by the infinite Grassmannian relation (18) and relation (14).
The relation above between bubbles of different colors generalizes. Using the

extended calculus for �.n; d/ [18], we can see that whenever � is of the form
.: : : ; 0; �i ; 0; : : : /, bubbles of the same degree of colors i � 1 and i are equal up
to a sign. This also has to do with the fact that compositions of d of the form
.: : : ; a; 0; : : : / and .: : : ; 0; a; : : : / are equivalent as objects in the Karoubi envelope
P�.n; d/. We will explain this in Remark 7.1. Here we just leave a conjecture about
End�.n;d/.1�/.

Conjecture 5.5. Let � 2 ƒ.n; d/ be arbitrary and let � 2 ƒ.n; d/ be obtained from
� by placing all zero entries of � at the end, but without changing the relative order of
the non-zero entries, e.g. for � D .2; 0; 1/ we get � D .2; 1; 0/. Then we conjecture
that

End�.n;d/.1�/ Š S…�:

Note that if �k ¤ 0 and �kC1 D 0 for a certain 1 � k � n � 1 in Conjec-
ture 5.5, then S…� is isomorphic to the algebra of all partially symmetric polynomi-
als QŒx1; : : : ; xd �

S�1
�����S�k . This follows from the fact that Rss

�k ;0 is the algebra of
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symmetric polynomials in �k variables. For example, suppose � D .1; 1; 0/. Then
Rss

1;1 Š QŒx � y� and Rss
1;0 Š QŒy�, so S….1;1;0/ Š QŒx � y�˝QŒy�. The latter

algebra is isomorphic to QŒx; y� by

.x � y/˝ 1C 1˝ y  ! x; 1˝ y  ! y:

5.2.3. More general 2-morphisms. There is not all that much that we know about
more general 2-hom spaces in �.n; d/. Let us give a conjecture about an “analogue”
of Lemma 3.9 from [16] for �.n; d/. Let 
 2 NŒI � and i; j 2 
. Recall (see Section 2
in [14] and Subsection 3.2.2 in [16]) that iR.
/j is the vector space of upwards
oriented braid-like diagrams as in U.sln/ whose lower boundary is labeled by i and
upper boundary by j, modulo the braid-like relations in U.sln/. Note that all strands
of such a diagram have labels uniquely determined by i and j. Note also that the braid-
like relations in U.sln/ are independent of the weights, so the definition of iR.
/j
does not involve weights. Unfortunately, we cannot define the analogue of iR.
/j
for �.n; d/, because there the braid-like diagrams with a region labeled by a weight
outside ƒ.n; d/ are equal to zero, creating a weight dependence. However, we will
be able to use iR.
/j and the fact that‰n;d is full. Khovanov and Lauda (Lemma 3.9,
Definition 3.15 and the remarks thereafter, and Theorem 1.3 in [16]) showed that the
obvious map

‰i;j; N� W iR.
/j ˝… N� �! HOMU.sln/.Ei1 N�;Ej1 N�/

is an isomorphism. Unfortunately it is impossible to factor HOM�.n;d/.Ei1�;Ej1�/

so nicely into braid-like diagrams and bubbles. For example, let � D .0; 1/ and look
at the following reduction to bubble relation

0 D
.0;1/��

��

��

��

i

D �
1X

fD0

.0;1/

��

i

i
����

	
f

	 1�f

:

This result generalizes to any �, using the extended calculus in [18]. Thus, given any
�, there is an upper bound tr for the number of dots on the arcs of the r-strands. Any
braid-like diagram in HOM�.n;d/.Ei1�;Ej1�/ with more than tr dots on an r-colored
strand can be written as a linear combination of braid-like diagrams whose r-strands
have� tr dots with coefficients in END�.n;d/.1�/. By the fullness of‰n;d and the fact
that iR.
/j has a basis iBj which only contains a finite number of braid-like diagrams if
one forgets the dots (see Theorem 2.5 in [14]), it follows that HOM�.n;d/.Ei1�;Ej1�/

is finitely generated over END�.n;d/.1�/. In Section 6 we will say a little more about
the image of

Bi;j; N� D ‰i;j; N�.iBj/ � HOMU.sln/.Ei1 N�;Ej1 N�/
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in HOM�.n;d/.Ei1�;Ej1�/ under‰n;d . Recall again that iBj is Khovanov and Lauda’s
basis of iR.
/j in Theorem 2.5 in [14]. Unfortunately, all we can give for now is a
conjecture.

Conjecture 5.6. We conjecture that HOM�.n;d/.Ei1�;Ej1�/ is a free right module of
finite rank over END�.n;d/.1�/.

Note that if Ei1� D 1�Ei and Ej1� D 1�Ej, then we also conjecture that
HOM�.n;d/.1�Ei; 1�Ej/ is a free left module of finite rank over END�.n;d/.1�/. How-
ever, it is not hard to give examples which show that, if the conjectures are true at all,
the ranks of HOM�.n;d/.1�Ei1�; 1�Ej1�/ as a right END�.n;d/.1�/-module and as a
left END�.n;d/.1�/-module are not equal in general. This is not surprising, because
the graded dimensions of END�.n;d/.1�/ and END�.n;d/.1�/ are not equal in general
either.

5.3. The categorical anti-involution. The last part of this section is dedicated to
the categorification of the anti-involution � W PS.n; d/ ! PS.n; d/op in Section 2. We
simply follow Khovanov and Lauda’s Subsection 3.3.2. Let �.n; d/coop denote the
2-category which the same objects as �.n; d/, but with the directions of the 1- and
2-morphisms reversed. We define a strict degree preserving 2-functor

Q� W �.n; d/ �! �.n; d/coop

by

� 7�! �;

1�Es1
Es2

: : :Esm�1
Esm

1�ftg 7�! 1�E�sm
E�sm�1

: : :E�s2
E�s1

1�f�t C t 0g;
 7�! �:

Let D be a diagram, then D� is obtained from D by rotating the latter 180B. Since
�.n; d/ is cyclic, it does not matter in which way you rotate. By linear extension
this defines � for any 2-morphism. The shift t 0 is defined by requiring that Q� be
degree preserving. One can easily check that Q� is well-defined. For more details on
the analogous Q� defined on U.sln/ see Subsection 3.3.2 in [16]. As a matter of fact Q�
is a functorial anti-involution. The most important result about Q� is the analogue of
Remark 3.20 in [16].

Lemma 5.7. There are degree zero isomorphisms of graded Q-vector spaces

HOM�.n;d/.f x; y/ Š HOM�.n;d/.x; Q�.f /y/
and

HOM�.n;d/.xg; y/ Š HOM�.n;d/.x; y Q�.g//;
for any 1-morphisms x; y; f; g.
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6. The diagrammatic Soergel categories and �.n; d/

6.1. The diagrammatic Soergel category revisited. In this subsection we recall
the diagrammatics for Soergel categories introduced by Elias and Khovanov in [8].
Actually we first recall the version sketched by Elias and Khovanov in Section 4.5
and used by Elias and Krasner in [9]. After that we will comment on how to alter it
in order to get the original version by Elias and Khovanov. Note that both versions
categorify the Hecke algebra, although they are not equivalent as categories. In this
paper we will need both versions.

Fix a positive integer n. The category �C1.n/ is the category whose objects are
finite length sequences of points on the real line, where each point is colored by an
integer between 1 and n � 1. We read sequences of points from left to right. Two
colors i and j are called adjacent if ji � j j D 1 and distant if ji � j j > 1. The
morphisms of �C1.n/ are given by generators modulo relations. A morphism of
�C1.n/ is a Q-linear combination of planar diagrams constructed by horizontal and
vertical gluings of the following generators (by convention no label means a generic
color j ).

Generators involving only one color

; ; ; :

EndDot StartDot Merge Split

It is useful to define the cap and cup as

� ; � :

Generators involving two colors. The 4-valent vertex, with distant colors,

i j

ij

and the 6-valent vertex, with adjacent colors i and j

i j i

j i j

j i j

i j i

; :
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In this setting a diagram represents a morphism from the bottom boundary to the
top. We can add a new colored point to a sequence and this endows �C1.n/ with a
monoidal structure on objects, which is extended to morphisms in the obvious way.
Composition of morphisms consists of stacking one diagram on top of the other.

We consider our diagrams modulo the following relations.

“Isotopy” relations

D D ; (54)

D D ; (55)

D D ; (56)

D D ; (57)

D D : (58)

The relations are presented in terms of diagrams with generic colorings. Because
of isotopy invariance, one may draw a diagram with a boundary on the side, and
view it as a morphism in �C1.n/ by either bending strands up or down. By the same
reasoning, a horizontal line corresponds to a sequence of cups and caps.

One color relations

D ; (59)

D 0; (60)

C D 2 : (61)
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Two distant colors

D ; (62)

D (63)

; D : (64)

Two adjacent colors

D C ; (65)

D � ; (66)

D ; (67)

j

i

�
j

i

D 1

2

 
i

i

�
i

i

!
: (68)

Relations involving three colors. (Adjacency is determined by the vertices which
appear.)

D ; (69)
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D ; (70)

D : (71)

Introduce a grading on �C1.n/ by declaring dots to have degree 1, trivalent
vertices degree �1 and 4- and 6-valent vertices degree 0.

Definition 6.1. The category �C2.n/ is the category containing all direct sums and
grading shifts of objects in �C1.n/ and whose morphisms are the grading preserving
morphisms from �C1.n/.

Definition 6.2. The category �C.n/ is the Karoubi envelope of the category �C2.n/.

6.2. The extension �C 0.n/ of �C .n/. In [8] Elias and Khovanov give a slightly
different diagrammatic Soergel category, denoted �C 0.n/, which is a faithful exten-
sion of �C.n/. The objects of �C 01.n/ are the same as those of �C1.n/. The vector
spaces of morphisms are an extension of the ones of �C1.n/ in the following sense.
Regions can be decorated with boxes colored by i for 1 � i � n, which we depict as

i

For f a polynomial in the set of boxes colored from 1 to n we use the shorthand
notation

f

The set of boxes is therefore in bijection with the polynomial ring in n variables. Let
si be the transposition that switches i and i C 1. Define the formal symbol

@i f D @xi xiC1
f

where @xi xiC1
was defined in Equation (33). This way any box f can be written as

f D Pi .f / C i @i f

where Pi .f / is a polynomial which is symmetric in i and iC1 (we will take this
formula as a definition of Pi .f /).

The boxes are related to the previous calculus by the box relations

i

D i � iC1 (72)
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�
i C iC1

�

i

D

i

�
i C iC1

�
; (73)

i iC1

i

D

i

i iC1 ; (74)

j

i

D

i

j for j ¤ i; i C 1. (75)

It is clear that �C.n/ is a faithful monoidal subcategory of �C 0.n/. As explained
in Section 4.5 of [8], the category �C.n/ is also isomorphic to the quotient of �C 0.n/
by the central morphism

e1 D
nX

iD1

i :

This result depends subtly on the base field, which in our case is Q.
The category �C 01.n/ has a grading induced by the one of �C1.n/, if we declare

that a box colored i has degree 2 for all 1 � i � n.

Definition 6.3. The category �C 02.n/ is the category containing all direct sums and
grading shifts of objects in �C 01.n/ and whose morphisms are the grading preserv-
ing morphisms from �C 01.n/. The category �C 0.n/ is the Karoubi envelope of the
category �C 02.n/.

Elias and Khovanov’s main result in [8] is that �C.n/ and �C 0.n/ are equivalent
to the corresponding Soergel categories. A corollary to that is the following theorem,
where K0 is the split Grothendieck group and KQ.q/

0 .�/ D K0.�/˝ZŒq;q�1� Q.q/.

Theorem 6.4 (Elias–Khovanov, Soergel). We have

K
Q.q/
0 .�C.n// Š KQ.q/

0 .�C 0.n// Š Hq.n/:

As explained in [8], this result also depends on the fact that we are working over Q.
Recall that �C.n/ and �C 0.n/ are monoidal categories, with the monoidal structure
defined by concatenation. Therefore their Grothendieck groups are algebras indeed.

Let Bim.n/� D EndBim�.QŒx1; : : : ; xn�/. Elias and Khovanov defined functors
from �C.n/ and �C 0.n/ to Bim.n/� (see [8] and [9]) which we denote by FEK and
F 0EK respectively.
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6.3. A functor from �C .n/ to �.n; n/�..1n/; .1n//. Let n � 1 be arbitrary but
fixed. In this subsection we define an additive Q-linear monoidal functor

†n;n W �C1.n/ �! �.n; n/�..1n/; .1n//;

where the target is the monoidal category whose objects are the 1-endomorphisms
of .1n/ in �.n; n/� and whose morphisms are the 2-morphisms between such 1-
morphisms in �.n; n/�. This monoidal functor categorifies the homomorphism 	n;n

from Section 2.

On objects. †n;n sends the empty sequence in �C1.n/ to 1n D 1.1n/ in �.n; n/�
and the one-term sequence .i/ to E�i ECi1n, with †n;n.jk/ given by the horizontal
composite E�j ECj E�kECk1n.

On morphisms
� The empty diagram is sent to the empty diagram in the region labeled .1n/.

� The vertical line colored i is sent to the identity 2-morphism on

i 7�! ��

i

��

i

.1n/:

� The StartDot and EndDot morphisms are sent to the cup and the cap respectively:

i
7�! �� 		

i
.1n/;

and

i 7�!
��

i .1n/:

� Merge and Split are sent to diagrams involving cups and caps:

i

7�!
�� ��

i
.1n/;

��

��

i i

and

i
7�!



��

i
.1n/:

��

��

i i
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� The 4-valent vertex with distant colors. For i and j distant we have

j i

7�! .1n/:

��

  

!!

""

j j ii

� For the 6-valent vertices we have

iC 1 i

7�! .1n/

��

��

##

$$ ��

��

%%
iC1 iC1 i i iC1

i

(76)

and

i iC 1

7�! .1n/:

��

��&&

'' ((
))

��
i i iC1 iC1 i i

iC1

It is clear that †n;n respects the gradings of the morphisms. Moreover, let us
remark that, in the decategorified picture, the image ofHq.n/ lies in the projection of
the zero weight space of PU.sln/ onto PS.n; n/, so we haveEiE�i D E�iEi . Using the
2-isomorphism Ei E�i Š E�i Ei given by the crossing, we obtain a 2-functor naturally
isomorphic to †n;n. However, this 2-functor cannot be obtained by simply inverting
the orientation of the diagrams defining †n;n, as can be easily checked. As a matter
of fact, inverting the orientations does not even give a 2-functor, e.g. relation (65) is
not preserved.

Lemma 6.5. †n;n is a monoidal functor.

Proof. The assignment given by †n;n clearly respects the monoidal structures of
the categories �C1.n/ and End�.n;n/�.1

n/. So we only need to show that †n;n is a
functor, i.e. it respects the relations (54) to (71).

“Isotopy relations”. Relations (54) to (58) are straightforward to check and corre-
spond to isotopies of their images under †n;n.
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One color relations. To check the one color relations we only need to use the sl2
relations. Relation (59) corresponds to an easy isotopy of diagrams in �.n; n/. For
relation (60) we have

†n;n

 
i

!
D

i
����

��
i

.1n/

.1n
Ci

/

D 0

because the bubble in the diagram on the r.h.s. has negative degree. We have used the
notation 1nCi D .1; : : : ; 2; 0; 1; : : : ; 1/, with the 2 on the i-th coordinate.

Relation (61) requires some more work. First notice that from relations (14)
and (16) it follows that

0 D
i

��
**

i ��
��

.1n/

D
i

��++

i �� ��

.1n/ �

��

	
++

.1n/

i i

�

��

	
++

.1n/

i i

C i ����

	�2

��

��

.1n/

i i

: (77)

The first diagram is zero, because the middle region has label .1; : : : ; 3;�1; : : : ; 1/ 62
ƒ.n; n/, with 3 on the i-th coordinate. Therefore

†n;n

 
i

i
!
D

i
��++

i �� ��

.1n/ D

��

	
++

.1n/

i i

C

��

	
++

.1n/

i i

� i ����

	�2

��

��

.1n/

i i

:

Using (27) and the bubble evaluation (14) we obtain

†n;n

 
i

!
D 2

��

	
++

.1n/

i i

� i ����

	�2

��

��

.1n/

i i

(78)

and

†n;n

 
i

!
D 2

��

	
++

.1n/

i i

� i ����

	�2

��

��

.1n/

i i

: (79)

This establishes that

†n;n

 !
C†n;n

 !
D 2†n;n

 !
:
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Two distant colors. Checking relations (62) to (64) is straightforward and only uses
relations (21) and (22) with distant colors i and j .

†n;n

 
i iC1

!
D .1n/

��

��&&

'' ((
,,--

i i i i

iC1iC1

D .1n/

..

��

&&

'' ((
//00

i i i i

iC1iC1

:

Note that the other term on the r.h.s. of (25) is equal to zero, because it contains a
region whose label has a negative entry, i.e. does not belong to ƒ.n; n/.

Using (16) followed by (21) and (14) gives

.1n/

11

��

%%

�� ��

i i

iC1iC1

C .1n/

11

��

%%

�� ��

i i

iC1iC1

:

Applying (17) to the two red strands in the middle region of the second term (only
one term survives) followed by (21) and (14) gives

†n;n

 
i iC1

!
D .1n/

11

��

%%

�� ��

i i

iC1iC1

C .1n/

11

��

%%

�� ��

i i

iC1iC1

;

which is equal to †n;n

� �C†n;n

� �
.

The corresponding relation with colors switched is not difficult to prove. We have

†n;n

 
iC1 i

!
D .1n/

##��

22
$$ ��

��

%%
iC1 iC1

i

iC1

i

:

Use (22) on the bottom part of the diagram. Only one of the resulting terms survives
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(use the first relation in (19)), which in turn equals

.1n/

����

$$ ��

��

%%
iC1 iC1

i

iC1

i

(use the first relation in (19) combined with (20)). Applying (16) we get two terms,
one of which is

.1n/

11

��

%%

�� ��

i i

iC1iC1

(this follows easily from (21)) and the other equals

.1n/

11

��

%%

�� ��

i i

iC1iC1

:

Here we used (14). The rest of the computation is the same as in the previous case.

We now prove relation (66). We only prove the case where “blue” corresponds to
i and “red” corresponds to i C 1. The relation with the colors reversed is proved in
the same way. Start with

†n;n

0
BBB@

i C 1i

1
CCCA D

33

��

44

��

55

66

��

��

��

�� ��

.1n/

i i iC1 iC1 i i

i

iC1

D

77

��

88

��

,,

99

��

��

��

��

.1n/

i i iC1 iC1 i i

i

;
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where the second equality follows from (21) and (14). Now notice that

0 D

77

��

88

��

,,

99

��

��

��

��

.1n/

i i iC1 iC1 i i

i

D

77

��

88

��

,,

99

��

��

��

��

.1n/

i i iC1 iC1 i i

i

�

77

::

	

88

��

	

��

��

��

��

.1n/

i i iC1 iC1 i i

:

(80)

The first equality in (80) comes from the fact that the inner most region of the diagram
has a label outside ƒ.n; n/. The second equality follows from (16). The last term is
the only non-zero term coming from the sum in (16) (this is a consequence of (19)).

Applying (19) and (20) to the last term, we obtain a diagram that can be simplified
further by successive application of (25), (16), (21) and again (14).

44;;

��33 ��

��

��

++

.1n/

i i iC1 iC1 i i

(25)D

**

33

44

����

��

��

++

.1n/

i i iC1 iC1 i i
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(16)+(14)D

**

<<

==

��<<

==

.1n/

i i iC1 iC1 i i

C

**

����

��

<<

==

.1n/

i i iC1 iC1 i i

(21)D

**

��

**

����

��

.1n/

i i iC1 iC1 i i

C

**

����

��

<<

==

.1n/

i i iC1 iC1 i i

:

Applying (17) to the vertical red strands in the second term, followed by (21) and (14),
we get that it is equal to

::

����

��

��

��

.1n/

i i iC1 iC1 i i

;

which equals †n;n

� �
. Therefore †n;n

� � D †n;n

� �C†n;n

� �
.

We now prove relation (67). We denote the left and right hand sides of (67) L
and R, respectively. We have

†n;n.L/ D

33

��

44

��

55

66

��

��

��

>>
��

.1n/

i i iC1 iC1 i i

i

iC1

D

��



 ??

@@

��

��

��

>>

.1n/

i i iC1 iC1 i i

i

:

The second equality is obtained as in Equation (80). The same argument shows that
this equals †n;n.R/.

Relation (68) is straightforward to check (it only uses bubble slides).
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Relations involving three colors. Relations (69) and (70) are easy because the green
strands have to be distant from red and blue and so we have all Reidemeister 2 and
Reidemeister 3 like moves between green and one of the other colors.

It remains to prove that†n;n respects relation (71). First notice that the diagrams
on the left- and right-hand side of (71) are invariant under 180B rotations and that
they can be obtained from one another using a 90B rotation. Therefore it suffices to
show that the image of one of them is invariant under 90B rotations. Denote by L the
diagram on the left-hand-side of (71). Then we have

†n;n.L/ D

33

44

$$

AA

��

��

BB

CC

88

77��

��

.1n/

i i

ii

iC1 iC1

iC1

iC1

iC2
iC2

iC2
iC2

:

Taking into account that the green strands are distant from the blue ones, we apply (21)
and a sequence of Reidemeister 3 like moves to obtain

†n;n.L/ D

33

44

$$

AA

��

��

��

>>

��

��''

DD

.1n/

i i

ii

iC1 iC1

iC1

iC1

iC2
iC2

iC2
iC2

:

Using (30) twice between the two horizontal red lines and a vertical blue line, followed
by (17) gives

†n;n.L/ D

33

44

$$

AA

��

��

��

>>

��

��''

DD

.1n/

i i

ii

iC1 iC1

iC1

iC1

iC2
iC2

iC2
iC2

:
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Notice that the sums in (17) are not increasing and therefore there are no terms with
dots here. Applying (30) and (31) to the top and bottom we can pass the top and
bottom .i; i/ crossings to the middle of the diagram (the terms coming from the sums
in (31) are zero). We get

†n;n.L/ D

EE

44

FF

GG

HH

00

��

>>

��

��II

JJ

.1n/

i i

ii

iC1 iC1

iC1

iC1

iC2
iC2

iC2
iC2

:

Using (16) in the middle of the diagram followed by (21) and a sequence of Reide-
meister 3 like moves to pass the vertical red strands to the middle gives

†n;n.L/ D

<<

KK

LL

MM

��

KK

NN

OO

��

��II

JJ

.1n/

i i

ii

iC1 iC1

iC1

iC1

iC2
iC2

iC2
iC2

;

which is symmetric under 90B rotations.

6.4. �C 1.n/ is a full sub-2-category of �.n; n/

Lemma 6.6. The following diagram commutes:

�C1.n/
FEK ��

†n;n DD��
���

���
���

�
Bim.n/� :

�.n; n/�..1n/; .1n//

FBim

PP�������������

Proof. The commutativity of the diagram can be checked by direct computation. Most
of the computation is straightforward except for the 6-valent vertex. To compute its
image under FBim†n;n we divide it in layers and compute the bimodule maps for
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each layer. We do the case with the colors as in Equation 76, the other case being
similar. Remember that

iC 1 i

†n;n7�����! .1n/

��

��

##

$$ ��

��

%%
iC1 iC1 i i iC1

i

:

It is easy to see that the map corresponding to the layer

.1n/

��

��

QQ RR

��

��
iC1 iC1 i i iC1

consists only of a relabeling of variables. The next one is

�� 		

i

.1n/
��

��

��

��

i iiC1 iC1

7�!

0
BBBBBBBBBBBB@

1 1 1

y

x

z

�!

1 1 1

y

x0

x

z

t1; t2

p 7�!
2P

`D0

.�1/`x02�`"`.t1; t2/p

1
CCCCCCCCCCCCA
:

The next step consists of the two crossings between strands labeled i ,

.1n/;

��SS

��



��

��
iC1 i i i i iC1

corresponding to the map p 7! @zx0@xyp. The left pointing .i; i/-crossing and
the remaining .i; i C 1/ crossings consist only of relabeling of variables and shifts.
Putting everything together, the reader can check that this map coincides with the one
obtained from FEK by a straightforward computation.

We now get to the main result of this subsection.

Proposition 6.7. The functor †n;n is an equivalence of categories.
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Proof. We have to show that †n;n is essentially surjective and fully faithful. By the
commutation 2-isomorphisms, i.e. the relations involving Reidemeister II and III type
moves between diagrams in �.n; n/, we can commute the factors of any object x in
�.n; n/�..1n/; .1n// so that it becomes a direct sum of objects whose factors are all
of the form E�iECi1n. This is always possible because x has to have as many factors
E�j as ECj , for any j D 1; : : : ; n�1, or else x contains a factor 1� with � 62 ƒ.n; n/
and is therefore equal to zero. This shows that †n;n is essentially surjective.

Since the functor FEK is faithful [8], it follows from Lemma 6.6 that †n;n is
faithful too. Therefore it only remains to show that †n;n is full. To this end we first
note that

Q�.E�i ECi1n/ D E�i ECi1n:

By simply checking the definitions one sees that the natural isomorphisms in Corol-
lary 4.12 in [8] and the ones in Lemma 5.7 in this paper intertwine†n;n. For example,
we have a commutative square

HOM�C1.n/.ik; j/
Š ��

†n;n

��

HOM�C1.n/.k; i j/

†n;n

��

HOM�.n;n/.E�i ECi1n†n;n.k/; †n;n.j// Š
�� HOM�.n;n/.†n;n.k/;E�iECi1n†n;n.j//:

This observation together with the results after Corollary 4.12 in Section 4.3 in [8]
and the fact that †n;n is additive and Q-linear implies that it is enough to prove that

†n;n W HOM�C1.n/.;; i/ �! HOM�.n;n/.1n;E�i1ECi1 : : :E�it
ECit

1n/

is surjective, where i D .i1; : : : ; it / is a sequence of t points of strictly increasing
color 1 � i1 < i2 < � � � < it � n � 1. If t D 0, then this is true, because
HOM�C1.n/.;;;/ Š QŒx1 � x2; x2 � x3; : : : ; xn�1 � xn� by Elias and Khovanov’s
Theorem 1. Note that

�.n; d/�..1n/; .1n// Š QŒx1 � x2; x2 � x3; : : : ; xn�1 � xn�

is exactly the ring generated by the colored bubbles, as we proved in Lemma 5.4. The
functor †n;n sends double dots to colored bubbles.

Note also that S….1n/ Š QŒx1 � x2; x2 � x3; : : : ; xn�1 � xn� and the surjective
map S….1n/ ! END�.n;n/.1n/, which we explained in Section 5, is equal to †n;n.
This actually shows that END�.n;n/.1n/ Š S….1n/, which is compatible with our
Conjecture 5.5.

For t > 0, note that by Corollary 4.11 in [8] HOM�C1.n/.;; i/ is a free left
HOM�C1.n/.;;;/-module of rank one, generated by the diagram consisting of t
StartDots colored i1; : : : ; it respectively. Note also that, by the fullness of ‰n;n and
by Theorem 1.3, Proposition 1.4 and Theorem 2.7 in [16], we know that

HOM�.n;n/.1n;E�i1ECi1 : : :E�it
ECit

1n/
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is a free END�.n;n/.1n/-module of rank one generated by the diagram consisting of
t cups colored i1; : : : ; it respectively. Our functor †n;n maps the StartDots to the
cups, so we get that

†n;n W HOM�C1.n/.;; i/ �! HOM�.n;n/.1n;E�i1ECi1 : : :E�it
ECit

1n/

is an isomorphism.

6.5. A functor from �C 0
1
.d/ to �.n; d/�..1d/; .1d// for d < n. Let d < n be

arbitrary but fixed. For .1d / 2 ƒ.n; d/, we write 1d D 1.1d /. We define a monoidal
additive Q-linear functor

†n;d W �C 01.d/! �.n; d/�..1d /; .1d //;

which is very similar to †n;n from the previous subsection and categorifies 	n;d of
Section 2. Recall that �C1.d/ � �C 01.d/ is a faithful subcategory. So we define
†n;d in exactly the same way as†n;n, but restricting to the colors 1 � i � d �1 and
sending ; to the empty diagram in the region labeled .1d / instead of .1n/. The only
new ingredient for the definition of †n;d is the image of the boxes, which we define
by

†n;d

�
i
� D d�1X

jDi

����

j

.1d / � d
����

	�1

.1d /

for any i D 1; : : : ; d . Note that we have

†n;d

�
i � iC1

� D ����

i

.1d /

which agrees with the first box relation (72). One easily checks that †n;d preserves
the other box relations as well. The rest of the proof that †n;d is well-defined uses
the same arguments as in the previous subsection.

As in Subsection 6.3 we have

Lemma 6.8. There is a commutative diagram

�C 01.d/
F 0EK ��

†n;d DD��
���

���
���

�
Bim.d/� :

�.n; d/�..1d /; .1d //

FBim

PP�������������

Proposition 6.9. The functor †n;d is an equivalence of categories.

Proof. Note that ECk1d D 0, for any k � d , so by the commutation isomorphisms
in �.n; d/ we see that any object x in �.n; d/�..1d /; .1d // is isomorphic to a direct
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sum of objects whose factors are all of the form E�iECi1d with 1 � i � d � 1.
This is a consequence of the commutation relations on the decategorified level [7]
which become commutation isomorphisms on the category level. Therefore †n;d is
essentially surjective. Faithfulness follows from Elias and Khovanov’s results and
the commuting triangle in Lemma 6.8, just as in the previous subsection.

The arguments which show that†n;d is full are almost identical to the ones in the
previous subsection. The only difference is that we now have

HOM�C 01.d/.;;;/ Š QŒx1; : : : ; xd � Š END�.n;d/.1d /:

The first isomorphism follows from Elias and Khovanov’s results in [8]. The second
isomorphism follows from the fact that the i-colored bubbles of positive degree are
all zero for i > d , since their inner regions are labeled by elements that do not belong
toƒ.n; d/, and the d -colored bubble with a dot is mapped to xd . Therefore we have

END�.n;d/.1d / Š QŒx1 � x2; : : : ; xd�1 � xd ; xd � Š QŒx1; : : : ; xd �:

7. Grothendieck algebras

7.1. The Grothendieck algebra of �.n; d/. To begin with, let us introduce some
notions and notations analogous to Khovanov and Lauda’s in Section 3.5 in [16]. Let
PU.sln/ and P�.n; d/ denote the Karoubi envelopes of U.sln/ and �.n; d/ respectively.

We define the objects of P�.n; d/ to be the elements inƒ.n; d/ and we define the hom-
category P�.n; d/.�; �/ to be the usual Karoubi envelope of �.n; d/.�; �/, for any
�; � 2 ƒ.n; d/. There exist idempotents e 2 End�.n;d/.Ei1�/, so that .Ei; e/ is a
direct summand of Ei in P�.n; d/. For example, we can define the idempotents

eCi;m;� D

����

	
��

		
��

	
		

�

and

e�i;m;� D .�1/
m.m�1/

2

�� ��

	

��

		

��

	
		

�

in End�.n;d/.ECim1�/ and End�.n;d/.E�im1�/ respectively. We can define the 1-mor-
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phisms in P�.n; d/,

E˙i.m/1� D .E˙im1�; e˙i;m;�/
°m.1 �m/

2

±
;

and have
E˙im1� Š .E˙i.m/1�/

˚Œm�Š:

Recall that Œm�Š 2 NŒq; q�1� is the q-factorial Œm�Œm � 1� : : : 1, with

Œs� D qs � q�s

q � q�1
:

For any q-integer ˚k
nD�janq

n 2 NŒq; q�1�, we define

A
˚k

nD�j
anqn D

kM
nD�j

� anM
iD1

Afng
�
:

Note that eCi;m;� D 0 for m > �iC1 and e�i;m;� D 0 for m > �i , because for those
values ofm the left-most region of their defining diagrams has a label with a negative
entry. This shows that these idempotents depend on �, which was not the case in [16].
Note that these lower bounds for m are sharp, i.e.

ECi.m/1� D 0 () m > �iC1

and

E�i.m/1� D 0 () m > �i :

This follows from observing the image of E˙i.m/1� under the 2-functor

FBim W �.n; d/� �! Bim�:

Before we go on, let us make the remark alluded to the above Conjecture 5.5,
when we showed that

2
����

	
1

.0;1;0/

� 1
����

	�1

.0;1;0/

D 0: (81)

Remark 7.1. Suppose � D .: : : ; a; 0; : : : / 2 ƒ.n; d/, with a in the i-th position.
Let � D .: : : ; 0; a; : : : / be obtained from � by switching a and 0. From Theorem 5.6
and Corollary 5.8 in [18] it follows that

Ei.a/E�i.a/1� Š 1�

and

E�i.a/Ei.a/1� Š 1�;

because we have Ei.j /1� D 0 and E�i.j /1� D 0 in P�.n; d/ for any j > 0. Therefore
� and � are isomorphic objects in the 2-category P�.n; d/. Our proof of (81) used the
2-isomorphism between 1.0;1;0/ and E�1E11.0;1;0/ explicitly in the first step.
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Note that P�.n; d/ is Krull–Schmidt, just as PU.sln/. Therefore, we can take the
split Grothendieck algebras/categories KQ.q/

0 . PU.sln// and KQ.q/
0 . P�.n; d//. Con-

sidering the latter as a category, we follow Khovanov and Lauda [16] and define
ƒ.n; d/ to be the set of objects. The hom-space hom.�; �/ we define to be the split
Grothendieck algebra of the additive category P�.�; �/. Alternatively, we can see
this as an (idempotented) algebra rather than a category. In the sequel we will use
both points of view interchangeably. Note that the remark above shows that there are
objects in KQ.q/

0 . P�.n; d// which are isomorphic, e.g. .1; 0; 0/; .0; 1; 0/ and .0; 0; 1/

are all isomorphic in KQ.q/
0 . P�.3; 1//.

Analogous to Khovanov and Lauda’s homomorphism

� D �U W PU.sln/ �! K
Q.q/
0 . PU.sln//;

we define a homomorphism

�S W PS.n; d/ �! K
Q.q/
0 . P�.n; d//

by
Es1

: : : Esm
1� 7�! ŒEs1

: : :Esm
1��:

Our main goal in this section is to prove that �S is an isomorphism. Recall that in
order to show that �U is an isomorphism, Khovanov and Lauda had to determine
the indecomposable direct summands of certain 1-morphisms x in PU.sln/. They did
this by looking at KQ.q/

0 .ENDU.sln/.x//, which is the Grothendieck group of the
finitely generated graded projective ENDU.sln/.x/-modules. This allowed them to
use known results about the Grothendieck groups of graded algebras, which we recall
below. The connection between the two sorts of Grothendieck groups relies on the
fact that a finitely-generated graded projective ENDU.sln/.x/-module is determined

by an idempotent e in ENDU.sln/.x/ and Œ.x; e/� is an element of KQ.q/
0 . PU.sln//.

The isomorphism classes of indecomposable projective modules form a basis of
K

Q.q/
0 .ENDU.sln/.x// and correspond to the minimal idempotents in ENDU.sln/.x/.

We refer to [16] for more details. We will follow Khovanov and Lauda’s approach
closely to show that �S is surjective, but will use a completely different method to
show that �S is injective. Although we have tried to explain our results clearly, we
suspect that the part of this section which deals with the surjectivity of �S will be
quite hard to understand for someone unfamiliar with [14], [15], [16], and [20]. The
part on the injectivity of �S can probably be read independently.

Before we move on to our results in this section, we should recall the basic
facts about Grothendieck groups of (graded) algebras which Khovanov and Lauda
explained in Subsections 3.8.1 and 3.8.2 in [16]. If A is a finite-dimensional algebra
over a field, let K0.A/ be the Grothendieck group of the category of the finitely
generated projective A-modules.
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Proposition 7.2. Let f W A! B be a surjective homomorphism between two finite-
dimensional algebras. Then K0.f / W K0.A/! K0.B/ is surjective.

Unfortunately in the applications in [16] and in our paper, the algebras involved
are not finite-dimensional. But fortunately they are Z-graded and we can resort to
finite-dimensional quotients which do not alter the Grothendieck groups. Let A be a
Z-graded algebra over a field such that in each degree it has finite dimension and the
grading is bounded from below.

Definition 7.3. Let I � A be a two-sided homogeneous ideal. We say that I is
virtually nilpotent if for each degree a 2 Z there exists an N > 0 such that the
degree a summand of IN is equal to zero.

Lemma 7.4. Let I � A be a virtually nilpotent ideal. Then K0.A/ Š K0.A=I /.

Corollary 7.5. Let f W A! B be a degree preserving homomorphism of Z-graded
algebras of the type described above, and I � A a virtually nilpotent ideal of finite
codimension. Iff is surjective, thenK0.f / W K0.A/ Š K0.A=I /! K0.B=f .I // Š
K0.B/ is surjective.

We also need a fact about the split Grothendieck group of Krull–Schmidt cate-
gories. This result is not recalled in [16], but is well known in homological algebra.
We thank Mikhail Khovanov for explaining it to us. To help the reader, we briefly
sketch the proof below.

Proposition 7.6. Let F W C ! D be an additive Q-linear degree preserving func-
tor between two graded Krull–Schmidt categories, whose hom-spaces are finite-
dimensional in each degree and whose gradings are bounded from below. If F

is fully faithful, then K0.F / W K0.C /! K0.D/ is injective.

Since C and D are Krull–Schmidt, each object in C or D can be uniquely de-
composed into indecomposables, which generate K0.C / and K0.D/ respectively.
Being fully faithful, F maps the set of indecomposables in C injectively into the set
of indecomposables in D.

We now get to the main part of this section. By simply checking the definitions,
we see that the following square commutes:

PU.sln/
�

U ��

'n;d

��

K
Q.q/
0 . PU.sln//

K
Q.q/
0

.‰n;d /
��

PS.n; d/
�
S

�� K
Q.q/
0 . P�.n; d//:

(82)

We know that 'n;d is surjective and �U is an isomorphism. We also know that ‰n;d

is full, but we cannot automatically conclude thatKQ.q/
0 .‰n;d / is surjective, because
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END�.n;d/.x/ is infinite-dimensional for any 1-morphism x. We want to prove that

K
Q.q/
0 .‰n;d / and �S are surjective. Of course it suffices to prove that �S is surjective.

Let us first sketch the chain of arguments that leads to the proof of the surjectivity
of �U in Theorem 1.1 in [16]. The proof is by induction with respect to the width
of an indecomposable 1-morphism P in U.sln/, which by definition is the smallest
non-negative integer m such that P is isomorphic to a direct summand of Ei1�ftg
with jjijj D m. In Lemma 3.38 Khovanov and Lauda prove that any indecomposable
object of width m is isomorphic to a direct summand of E�;��01�ftg, for certain
� 2 Zn�1, t 2 Z and 
; 
0 2 NŒI � such that jj
jj C jj
0jj D m. This narrows down
the number of cases that need to be considered in the proof of Theorem 1.1.

Next, suppose P has width zero; then we have P Š 1� up to a shift, and
K

Q.q/
0 .ENDU.sln/.1�// lies in the image of �U , because it is isomorphic to Q with

generator Œ1��. The induction step relies on the exact sequence of rings (3.38) in [16]

0 �! I�;��0;� �! ENDU.sln/.E�;��01�/ �! R�;��0;� ! 0: (83)

Recall that for g D sln, the ring R�;��0;� is isomorphic to that of 2-morphisms
whose diagrams are split into upward strands with source and target belonging to

, downward strands with source and target belonging to �
0, and bubbles on the
right-hand side. The ideal I�;��0;� is generated by diagrams which contain at least
one cup or cap between 
 and�
0. Note that the latter are precisely the 2-morphisms
which factor through a direct sum of objects with width smaller than jj
jj C jj
0jj.
As they remark in Remark 3.18, this exact sequence is split for g D sln. Therefore
there is a direct sum decomposition

K
Q.q/
0 .ENDU.sln/.E�;��01�// Š KQ.q/

0 .I�;��0;�/˚KQ.q/
0 .R�;��0;�/: (84)

The fact that KQ.q/
0 .R�;��0;�/ lies in the image of �U is essentially a consequence

of the results in [14], and [15] and a technical result involving a virtually nilpo-
tent ideal, the details of which we do not need here. On the other hand, The
2-morphisms in I�;��0;� factor through direct sums of objects of smaller width, so
any minimal idempotent in this ideal corresponds to an object of smaller width.
Therefore KQ.q/

0 .I�;��0;�/ lies in the image of �U by induction. This shows that

K
Q.q/
0 .ENDU.sln/.E�;��01�// lies in the image of �U , as had to be proved. We

should warn the reader that, contrary to what might seem at a first reading, the di-
rect sum decomposition in (84) does not preserve indecomposability. For example,
consider the direct sum EF11 Š FE11 ˚ 11 for n D 2. This corresponds to the
diagrammatic equation

�� �� .1/.1/ D ����

��

��

.1/ � .1/

����

TT��

: (85)

The identity on EF11 is an indecomposable idempotent in RC;�;.1/, but can be
decomposed in ENDU.sln/.EC;�11/ into the two indecomposable idempotents on
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the right-hand side of (85), which have width 2 and 0 respectively. Note that the
second term on the right-hand side belongs to IC;�;.1/. So Khovanov and Lauda’s
homomorphism

ˇ W ENDU.sln/.EC;�11/ �! RC;�;.1/

maps the first term on the right-hand side to the identity onEF11. The map backwards,
which they call ˛, is simply the inclusion, so it maps the identity to the identity. In
the induction step above, one therefore writes

����

��

��

.1/ D �� �� .1/.1/ �
 
� .1/

����

TT�� !

to prove that the class of the indecomposable summand of EF11 of width 2 corre-
sponding to the idempotent on the left-hand side, belongs to the image of �U .

Next let us see how Khovanov and Lauda’s proofs can be adapted to our setting.
In the first place, note that all results in Section 3.5 of [16] continue to be true.
More precisely, the statements in their Propositions 3.24, 3.25 and 3.26 are still true,
although some direct summands might now be zero depending on the labels of the
regions in the diagrams. The crucial Lemma 3.38 in Section 3.8 in [16] holds literally
true in our case just as well.

Let us now prove the analogue of their Theorem 1.1. Our proof is essentially the
same, except that we use the fact that �U is an isomorphism and‰n;d is full to avoid
having to formulate and use analogues of the results in [14] and [15], which might
be hard. This is the reason why we did not go into the details of those results above.

Lemma 7.7. The homomorphism

�S W PS.n; d/ �! K
Q.q/
0 . P�.n; d//

is surjective.

Proof. For the basis of the induction, recall our surjection S…� ! END�.n;d/.1�/

explained in Section 5. The ideal of elements of positive degree S…C
�

is virtually
nilpotent of codimension one, so by Corollary 7.5 it follows that

Q Š KQ.q/
0 .S…�/ �! K

Q.q/
0 .END�.n;d/.1�//

is surjective. Therefore KQ.q/
0 .END�.n;d/.1�// is generated by Œ1��, i.e. 1� is also

indecomposable in our case. Since�S .1�/ D Œ1��, we see thatKQ.q/
0 .END�.n;d/.1�//

lies in the image of �S . Note that we have not yet proved that Œ1�� ¤ 0. After
we have proved that KQ.q/

0 . P�.n; d// Š PS.n; d/ in Theorem 7.11, it follows that

K
Q.q/
0 .END�.n;d/.1�// Š Q with Œ1�� ¤ 0 being the generator.
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For the induction step, note that ‰n;d maps the exact sequence (83) surjectively
onto the exact sequence

0 �! ‰n;d .I�;��0; N�/ �! END�.n;d/.E�;��01�/

�! END�.n;d/.E�;��01�/=‰n;d .I�;��0; N�/ �! 0:
(86)

We do not know if this exact sequence is split, but fortunately it does not matter for
our purpose.

Note also that ‰n;d induces a surjective map

R�;��0;� �! END�.n;d/.E�;��01�/=‰n;d .I�;��0; N�/:

Recall that Khovanov and Lauda defined a virtually nilpotent idealˇ˛.J / � R�;��0; N�
of codimension one in Section 3.8.3 in [16], alluded to above. By Corollary 7.5 this
implies that

K
Q.q/
0 .R�;��0; N�/ �! K

Q.q/
0 .END�.n;d/.E�;��01�/=‰n;d .I�;��0; N�// (87)

is surjective. Now, just as in the proof of Theorem 1.1, let e 2 END�.n;d/.E�;��01�/

be a minimal idempotent of width m, with jj
jj C jj
0jj D m. We have to show that
Œ.E�;��01�; e/� lies in the image of �S .

Let Ne be the image of e in END�.n;d/.E�;��01�/=‰n;d .I�;��0; N�/. Note that we
do not know a priori that Ne is indecomposable, but that does not matter. By the
surjectivity of (87), we can lift Ne to an idempotent e0 2 R�;��0; N�. By Khovanov and
Lauda’s results, we know that

Œ.E�;��01 N�; e
0/� 2 KQ.q/

0 .ENDU.sln/.E�;��01�// � KQ.q/
0 . PU.sln//

is in the image of �U . By the commutativity of the square in (82), this implies that

Œ.E�;��01�; ‰n;d .e
0//� 2 KQ.q/

0 .END�.n;d/.E�;��01�// � KQ.q/
0 . P�.n; d//

is in the image of �S .
Note that e �‰n;d .e

0/maps to zero in END�.n;d/.E�;��01�/=‰n;d .I�;��0; N�/. By
the minimality of e, we therefore have ‰n;d .e

0/ D e C e00, with e00 an orthogonal
idempotent in ‰n;d .I�;��0; N�/ which can be decomposed into minimal idempotents
of width < m. By induction Œ.E�;��01�; e

00/� is contained in the image of �S . This
shows that Œ.E�;��01�; e/� is contained in the image of �S too, as we had to show.

The following two corollaries are immediate.

Corollary 7.8. The homomorphism

K
Q.q/
0 .‰n;d / W KQ.q/

0 . PU.sl.n/// �! K
Q.q/
0 . P�.n; d//

is surjective.
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Corollary 7.9. KQ.q/
0 . P�.n; d// is a quotient of PS.n; d/. In particular, we have that

K
Q.q/
0 . P�.n; d// is finite-dimensional and semi-simple.

Before we prove the main result of this paper, we first categorify the homomor-
phism �n;m from Section 2. Let m � n and d arbitrary. Let „n;m D ˚�2ƒ.n;d/1� 2
�.m; d/. Let �.n;m; d/ be the full sub-2-category of �.m; d/whose objects belong
to ƒ.n; d/ � ƒ.m; d/.
Definition 7.10. Let m � n and d arbitrary. We define a functor

�n;m W �.n; d/ �! �.n;m; d/

by mapping any diagram in �.n; d/ to itself, using the inclusionƒ.n; d/ � ƒ.m; d/
for the labels.

It is easy to see that �n;m is well-defined and essentially surjective. We conjecture
it to be faithful, but have no proof. It is certainly not full, because �.n;m; d/ contains
n-colored bubbles for example. Perhaps there is a virtually nilpotent ideal I �
�.n;m; d/ such that �.n; d/ Š �.n;m; d/=I , e.g. the ideal generated by all diagrams
with n-colored bubbles of positive degree on the right-hand side.

Theorem 7.11. The homomorphism

�S W PS.n; d/ �! K
Q.q/
0 . P�.n; d//

is an isomorphism.

Proof. After the result of Lemma 7.7 it only remains to show that KQ.q/
0 .�.n; d//

and PS.n; d/ have the same dimension.
We first show the case n D d . Let 1n D 1.1n/. In Proposition 6.7 we proved

that �C1.n/ Š �.n; n/�..1n/; .1n// is a full sub-2-category of �.n; n/�. By Propo-
sition 7.6 this implies

K
Q.q/
0 .�C.n// Š KQ.q/

0 . P�.n; n/..1n/; .1n/// � KQ.q/
0 . P�.n; n//:

By Theorem 6.4 we know that KQ.q/
0 .�C.n// is isomorphic to Hq.n/. Therefore,

by Lemma 2.13, we have that KQ.q/
0 . P�.n; n// Š PS.n; n/.

Now let d < n. In Proposition 6.9 we proved that the category �C 01.d/ Š
�.n; d/�..1d /; .1d // is a full sub-2-category of �.n; d/�. By Proposition 7.6 this
implies

K
Q.q/
0 .�C 0.d// Š KQ.q/

0 . P�.n; d/..1d /; .1d /// � KQ.q/
0 . P�.n; d//:

By Theorem 6.4 we know that KQ.q/
0 .�C 0.d// is isomorphic to Hq.d/. Thus

Lemma 2.13 shows that KQ.q/
0 . P�.n; d// Š PS.n; d/.
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Next, assume that n < d . Consider the functor

�n;d W �.n; d/ �! �.n; d; d/:

We have the following commuting square

PS.n; d/ 	n;d
��

�
S

.n/

��

�n;d
PS.d; d/�n;d

�
S

.d/

��

K
Q.q/
0 . P�.n; d//

K
Q.q/
0

.In;d /

�� K
Q.q/
0 . P�.n; d; d//:

We already know that

�S .d/ W PS.d; d/ �! K
Q.q/
0 .�/.d; d//

is an isomorphism from the first case we proved. Therefore

�S .d/ W �n;d
PS.n; d/�n;d �! Œ„n;d �K

Q.q/
0 . P�.d; d//Œ„n;d � Š KQ.q/

0 . P�.n; d; d//
is an isomorphism as well. Recall that �n;d is an isomorphism. It follows that
�S .n/ is injective. Recall that �S .n/ is surjective, by Lemma 7.7. It follows that
K

Q.q/
0 . P�.n; d// Š PS.n; d/.

Note that we did not follow Khovanov and Lauda’s approach to prove injectivity
of �S . Recall that they defined a non-degenerate Q-semilinear form on PU .sln/, which
is closely related to Lusztig’s bilinear form in [22], and defined an inner product on
K

Q.q/
0 . PU.sln// by

hŒx�; Œy�i D dimq.HOM PU.sln/
.x; y//:

They showed that �U is injective by proving that it is an isometry. We could not prove
that �S is injective in this way, because we could not find such a Q-semilinear form
on PS.n; d/ in the literature.4 By our Theorem 7.11, we can define one now. We first
define a non-degenerate Q-semilinear form on KQ.q/

0 . P�.n; d// as above

hŒx�; Œy�i D dimq.HOM P�.n;d/
.x; y//:

Definition 7.12. We define a non-degenerate Q-semilinear form on PS.n; d/ by

hx; yi D h�S .x/; �S .y/i:
4Williamson defines such a form in [39] for n D d , but we do not know of any diagrammatic

interpretation of his form even in that restricted case. We conjecture that his form is equivalent to ours
for n D d . This is the only related form in the literature that we could find, even after asking numerous
experts.



70 M. Mackaay, M. Stošić and P. Vaz

By definition �S is an isometry. It is easy to see that the semilinear form on
PS.n; d/ has the following properties (compare to Proposition 2.4 in [16]).

Corollary 7.13. We have

(1) h1�1
x1�2

; 1�0
1
x1�0

2
i D 0 for all x; y unless �1 D �01 and �2 D �02;

(2) hux; yi D hx; �.u/yi:

However, Khovanov and Lauda’s interpretation of the semilinear form on PU .sln/
in Theorem 2.7 in [16], which shows that hŒx�; Œy�i D dimq.HOM PU.sln/

.x; y//

can be obtained by counting the number of minimal diagrams in each degree in
HOM PU.sln/

.x; y/, does not hold in our case. This is because minimal diagrams in
�.n; d/ are not linearly independent in general. For example, consider relation (16)
for n D 2 and � D .1; 0/. Note that the sum on the right-hand side only contains
one term. The first term on the right-hand side, i.e. the one with the two crossings,
has a middle region with label .2;�1/ 62 ƒ.2; 1/, so it is equal to zero. This shows
that the minimal diagram on the left-hand side is equivalent to the minimal diagram
on the right-hand side.

7.2. Categorical Weyl modules. We conjecture that it is easy to categorify the
irreducible representations V�, for � 2 ƒC.n; d/, using the category �.n; d/. Recall
from Lemma 2.10 that

V� Š PS.n; d/1�=Œ� > ��:

Definition 7.14. For any � 2 ƒC.n; d/, let �.n; d/1� be the category whose ob-
jects are the 1-morphisms in �.n; d/ of the form x1� and whose morphisms are
the 2-morphisms in �.n; d/ between such 1-morphisms. Note that �.n; d/1� does
not have a monoidal structure, because two 1-morphisms x1� and y1� cannot be
composed in general. Alternatively one can see �.n; d/1� as a graded ring, whose
elements are the morphisms.

Let V� be the quotient of �.n; d/1� by the ideal generated by all diagrams which
contain a region labeled by � > �.

Note that there is a natural categorical action of �.n; d/, and therefore of U.sln/,
on V�, defined by putting a diagram in �.n; d/ on the left-hand side of a diagram in
V�. This action descends to an action of PS.n; d/ Š KQ.q/

0 . P�.n; d// on KQ.q/
0 . PV�/,

where PV� is the Karoubi envelope of V�. Note that �S induces a well-defined linear
map �� W V� ! K

Q.q/
0 . PV�/, which intertwines the PS.n; d/-actions.

Lemma 7.15. The linear map �� is surjective.

Proof. We first show that KQ.q/
0 . P�.n; d/1�/ ! K

Q.q/
0 . PV�/ is surjective. Again,

we want to use Proposition 7.2, but have to be careful because the graded rings
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involved are not finite-dimensional. Choose an object x 2 �.n; d/1�. Recall
that END�.n;d/.x/ is finitely generated as a right module over END�.n;d/.1�/. Let
END�.n;d/.1�/

C � END�.n;d/.1�/ be the two-sided ideal of 2-morphisms of strictly
positive degree. Note that END�.n;d/.1�/

C is a codimension one virtually nilpo-
tent ideal. Let ENDC

�.n;d/
.x/ � END�.n;d/.x/ be the image of END�.n;d/.x/ ˝

END�.n;d/.1�/
C under the right action. Then ENDC

�.n;d/
.x/ is a two-sided ideal of

finite codimension and is virtually nilpotent, because the grading of END�.n;d/.1�/

is bounded from below.
Now let END>�

�.n;d/.x/ � END�.n;d/.x/ be the two-sided ideal generated by all
diagrams with at least one region labeled by a� > �. By Corollary 7.5, the projection

END�.n;d/.x/ �! END�.n;d/.x/=END>�
�.n;d/.x/

induces a surjective homomorphism

K
Q.q/
0 .END�.n;d/.x// �! K

Q.q/
0 .END�.n;d/.x/=END>�

�.n;d/.x//:

Since x was arbitrary, it follows that

K
Q.q/
0 . P�.n; d/1�/ �! K

Q.q/
0 . PV�/

is surjective. Thus, the composite linear map

PS.n; d/1� Š KQ.q/
0 . P�.n; d/1�/ �! K

Q.q/
0 . PV�/

is surjective. Note that Œ� > �� is contained in the kernel of this map, which proves
this lemma.

Conjecture 7.16. For any � 2 ƒC.n; d/, we have

K
Q.q/
0 . PV�/ Š V�:

We do not know how to prove the conjecture in general. Note that by Lemma 7.15,
we have a surjective linear map �� W V� ! K

Q.q/
0 . PV�/, which intertwines the PS.n; d/-

actions. Since V� is irreducible, we have KQ.q/
0 . PV�/ Š V� or KQ.q/

0 . PV�/ D 0. So

it suffices to show that KQ.q/
0 . PV�/ ¤ 0. Particular cases can be proved easily. For

example, if � D .d/, then V� D �.n; d/1�, because there are no weights higher than
.d/. By Theorem 7.11 we have KQ.q/

0 . P�.n; d/1�/ Š PS.n; d/1�, which proves the
conjecture in this case.

We can also prove the case n D 2. If � D .d; 0/, then the result follows from the
previous case. Suppose � D .d � c; c/, for 0 < 2c � d . Note that .d � 2c; 0/ D
.d � c; c/ � .c; c/ 2 ƒC.2; d � 2c/. Recall that we have a functor

…d;d�2c W �.2; d/ �! �.2; d � 2c/;
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which induces a functor

…d;d�2c W V.d�c;c/ �! V.d�2c;0/:

Thus we have the following commuting square:

V.d�c;c/


d;d�2c
��

�.d�c;c/

��

V.d�2c;0/

�.d�2c;0/

��

K
Q.q/
0 . PV.d�c;c//

K
Q.q/
0

.…d;d�2c/

�� K
Q.q/
0 . PV.d�2c;0//:

We know that �d;d�2c and �.d�2c;0/ are isomorphisms and �.d�c;c/ is surjective.

Therefore �.d�c;c/ is an isomorphism too, so KQ.q/
0 . PV.d�c;c// Š V.d�c;c/.

There is an obvious functor from the Khovanov and Lauda [14] cyclotomic quo-
tient categoryR.�; �/ to a quotient of our V�. The quotient is obtained by putting all
bubbles of positive degree in the right-most region of the diagrams, labeled �, equal
to zero. By our observations above about ENDC

�.n;d/
.x/, this quotient has the same

Grothendieck group as V�. The functor is the “identity” on objects and morphisms.
The reduction to bubbles argument before Conjecture 5.6 shows that our quotient sat-
isfies the cyclotomic condition. The functor is clearly essentially surjective and full
and we conjecture it to be faithful, so that it would be an equivalence of categories.
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